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ABSTRACT
We introduce a family of normative principles to assess fairness

in the context of participatory budgeting. These principles are

based on the fundamental idea that budget allocations should be

fair in terms of the resources invested into meeting the wishes of

individual voters. This is in contrast to earlier proposals that are

based on specific assumptions regarding the satisfaction of voters

with a given budget allocation. We analyse these new principles in

axiomatic, algorithmic, and experimental terms.
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1 INTRODUCTION
Budgeting, i.e., the allocation of money or other sparse resources

to specific projects, is one of the key decisions any political body

or organisation has to take. Participatory budgeting (PB) was de-

veloped in the 1990s as a method for making such decisions in a

more democratic way, by putting it to a vote [7, 22]. It has found

rapid adoption worldwide, in particular at the municipal level [26].

The most common form of eliciting the views of the voters

is to ask which projects they approve of [13], but the question

of which voting rules should be used to select the projects to be

funded is not yet settled. In this paper, we advocate for the use

of fairness measures based on the resources spent on behalf of

individual voters to guide the search for the best and most equitable

voting rules. Specifically, we focus on a measure of equality of
resources [8, 9] called the share, recently introduced by Lackner et al.
[15]. It is computed by equally dividing the cost of each funded

project amongst the supporters of that project.

Let us briefly motivate this approach. Suppose 40% of citizens

of a city support funding more cycling infrastructure, while 60%

are in favour of more car infrastructure. Then, under the kind of

voting rule usually employed in practice, where the projects with

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

the most support get selected, only car-centric projects would get

funded. This clearly is not desirable. Instead, one would hope to

select a proportional outcome [3, 4, 10, 17, 19], funding a mixture of

cycling and car infrastructure projects. But how should one define

proportionality? So far, the literature has focused on generalisations

from approval-based multiwinner voting, where we often aim for a

proportional distribution of satisfaction amongst voters, assuming

that each approved candidate provides the same satisfaction to all

of their supporters [11, 16]. However, lifting this assumption to the

richer framework of PB is questionable, as projects vary in cost.

So, given their approval ballot, how should one infer a voter’s

satisfaction for a set of selected projects?
1
Most researchers as-

sume that the satisfaction of a voter is either equal for all approved

projects [17, 19, 25] or proportional to the cost of a project [4, 10,

15, 23]. Both assumptions are problematic. Regarding the former,

for example, in the 2019 Toulouse participatory budgeting pro-

cess a cycling infrastructure project costing 390,000 euros (“Tous

à la Ramée à vélo! A pied, en trottinette et rollers!”) and a project

about installing birdhouses costing 2,000 euros (“Nichoirs pour

mésanges”) were proposed (see Pabulib [24]). It seems unlikely

that both projects offer the same utility to their supporters. But

full proportionality of utility and cost also seems implausible, be-

cause the cost effectiveness of different projects can vary widely.

Consider, for example, a scenario where two parks of equal size

could be built in different neighbourhoods. Now, it might be more

expensive to build the park in one neighbourhood due to higher

property prices. In that case, there is no reason to assume that the

more expensive park offers more utility to its supporters. Crucially,

these two examples show that higher cost sometimes implies higher

utility, while sometimes it does not. This makes it hard to imagine a

way of estimating utilities in a principled way that works for both

examples.

To circumvent these difficulties we propose to develop fairness

measures that are not based on equality of welfare but that in-

stead aim for equality of resources, an idea first proposed by Ronald

Dworkin [8, 9]. In other words, we do not aim for a fair distribution

of satisfaction, but instead we strive to invest the same effort into

satisfying each voter. The advantage is that the amount of resources

spent is a quantity we can measure objectively. This idea can be

formalised through the notion of share [15]. Ideally, we want to

1
In principle, there is also another possibility, namely to directly ask voters for their

satisfaction (or utility). But this would imposes a significant cognitive burden on them,

and it is debatable whether it is even possible to elicit utilities in a way that allows for

interpersonal comparisons [6, 14].
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find a budget allocation where each voter has the same share. Let

us emphasise that we do not interpret the share as a measure of

satisfaction, but rather of a distribution of resources. Interestingly,

fairness notions based on share also provide an explanation on

how each voter’s part of the budget was spent. In contrast to the

related notion of priceability [20], here all supporters of a project

“contribute” the same amount. As priceability allows for unequal

contribution of voters, it does not qualify as a notion based on

equality of resources.

In this paper, we investigate the viability of the share as a basis

of fairness notions in PB in several complementary ways. First,

we propose several axioms that formalise what it means for an

outcome to be fair in terms of share. We observe that it is not always

possible to guarantee everyone their fair share, which we define as

the budget divided by the numbers of voters. For this reason, we

consider several relaxations, such as the justified share, where we
only aim to allocate to a voter the resources they deserve by virtue

of being part of a cohesive group. Moreover, we identify a version

of MES [19], that satisfies all share-based axioms known to be

satisfiable by a tractable voting rule. Finally, using data from a large

number of real-life PB exercises [24], we analyse to what extent it

is possible to provide voters with their fair share in practice and

how well established PB voting rules meet share-based desiderata.

Roadmap.After introducing our model in Section 2, we investigate

the fair share in Section 3 and the justified share in Section 4. Rela-

tionships between the concepts are discussed in Section 5, while

Section 6 reports on an experimental study. Due to space constraints,

some proofs are only available in the full version [18].

2 THE MODEL
A PB problem is described by an instance 𝐼 = ⟨P, 𝑐, 𝑏⟩ where P is

the set of available projects, 𝑐 : P → N is the cost function—mapping

any project 𝑝 ∈ P to its cost 𝑐 (𝑝) ∈ N—and 𝑏 ∈ N is the budget
limit. We write 𝑐 (𝑃) instead of∑𝑝∈𝑃 𝑐 (𝑝) for sets of projects 𝑃 ⊆ P.

If 𝑐 (𝑝) = 1 for all 𝑝 ∈ P, then 𝐼 belongs to the unit-cost setting.
LetN = {1, . . . , 𝑛} be a set of agents. When facing a PB instance,

each agent is asked to submit a (not necessarily feasible) approval
ballot representing the subset of projects they approve of. The

approval ballot of agent 𝑖 ∈ N is denoted by 𝐴𝑖 ⊆ P, and the

resulting vector 𝑨 = (𝐴1, . . . , 𝐴𝑛) is called a profile. We assume

without loss of generality that every project is approved by at least

one agent.

Given an instance 𝐼 = ⟨P, 𝑐, 𝑏⟩, we need to select a set of projects
𝜋 ⊆ P to implement. Such a budget allocation 𝜋 has to be feasible,
i.e., we require 𝑐 (𝜋) ≤ 𝑏. Let A(𝐼 ) = {𝜋 ⊆ P | 𝑐 (𝜋) ≤ 𝑏} be the
set of feasible budget allocations for 𝐼 .

Choosing allocations is done bymeans of (resolute) PB rules. Such
a rule 𝐹 is a function that maps any instance 𝐼 and profile 𝑨 over 𝐼

to a single feasible budget allocation 𝐹 (𝐼 ,𝑨) ∈ A(𝐼 ). Whenever ties

occur between several outcomes, we assume that they are broken

in a fixed and consistent manner (e.g., lexicographically).
We are going to propose several fairness properties we might

want a rule to satisfy. All of these properties will be defined in terms

of the fundamental notion of an agent’s share.

Definition 1 (Share). Given an instance 𝐼 = ⟨P, 𝑐, 𝑏⟩ and a profile𝑨,
the share of agent 𝑖 for a subset of projects 𝑃 ⊆ P is defined as follows:

share(𝐼 ,𝑨, 𝑃, 𝑖) =
∑︁

𝑝∈𝑃∩𝐴𝑖

𝑐 (𝑝)
|{𝐴 ∈ 𝑨 | 𝑝 ∈ 𝐴}|

When clear from context, we shall omit the arguments of 𝐼 and 𝑨.
We interpret an agent’s share as the amount of resources spent

by the decision maker on satisfying the needs of that agent. It is

important to note that the share cannot be captured via independent

cardinal utility functions as the share of an agent depends on the

ballots submitted by the other agents. Let us illustrate the concept

of share on an example.

Example 1. Consider a PB instance with three projects such that
𝑐 (𝑝1) = 8 and 𝑐 (𝑝2) = 𝑐 (𝑝3) = 2, and a budget limit 𝑏 = 8. The
profile 𝑨 is composed of four ballots such that 𝐴1 = 𝐴2 = {𝑝1, 𝑝2},
𝐴3 = {𝑝1} and 𝐴4 = {𝑝3}. The most commonly used PB rule, which
greedily picks the most approved projects, would select the bundle
{𝑝1, 𝑝2}. This gives agents 1 and 2 a share of 6/3 + 2/2 = 3, agent 3
a share of 6/3 = 2 and agent 4 a share of 0. We claim that {𝑝1, 𝑝3}
would be a fairer bundle as it gives agent 1, 2 and 3 a share of 6/3 = 2

and agent 4 a share of 2/1 = 2. Hence, all agents have the same share.

In the sequel, we will introduce several properties of budget alloca-

tions. We shall extend them to properties of rules so that rule 𝐹 is

said to satisfy fairness property F defined for budget allocations if,

for every 𝐼 and 𝑨, the outcome 𝐹 (𝐼 ,𝑨) satisfies F .

3 FAIR SHARE
The first fairness property we study is based on the idea that each

voter deserves 1/𝑛 of the budget—a fundamental idea familiar, for in-

stance, from the classical fair division (“cake cutting”) literature [21].

So a perfect allocation would give each voter a share of 𝑏/𝑛 (unless

they do not approve of enough projects for this to be possible).

Definition 2 (Fair Share). Given an instance 𝐼 = ⟨P, 𝑐, 𝑏⟩ and a
profile 𝑨, the fair share of agent 𝑖 ∈ N is defined as:

fairshare(𝑖) = min{𝑏/𝑛, share(𝐴𝑖 , 𝑖)}.
A budget allocation 𝜋 ∈ A(𝐼 ) is said to satisfy fair share (FS) if for
every agent we have share(𝜋, 𝑖) ≥ fairshare(𝑖).
It is easy to see that for some instances, no budget allocation would

provide a fair share, and thus no rule can possibly satisfy FS. Take

for instance two projects of cost 1, a budget limit of 1 and two agents

each approving of a different project. Then, both agents have a fair

share of min{1/2, 1} = 1/2. However, whichever project is selected
(at most one can be selected), the share of one agent would be 0.

Even more, we can show that no polynomial-time computable

rule can return an FS allocation whenever one exists. Indeed, check-

ing whether an FS allocation exists is NP-complete.

Proposition 1. Given an instance 𝐼 = ⟨P, 𝑐, 𝑏⟩ and a profile 𝑨,
checking whether there exists a feasible budget allocation 𝜋 ∈ A(𝐼 )
that satisfies FS is NP-complete, even in the unit-cost setting.

The proof involves a reduction from 3-Set-Cover [12]. Due to these

shortcomings of FS, we introduce two relaxations that are inspired

by relaxations of important, satisfaction based fairness axioms,

Extended Justified Representation up to one project (EJR-1) [19] and

Local-Budget Proportional Justified Representation (Local BPJR) [4].
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Definition 3 (FS up to one project). Given an instance 𝐼 = ⟨P, 𝑐, 𝑏⟩
and a profile 𝑨, a budget allocation 𝜋 ∈ A(𝐼 ) is said to satisfy fair
share up to one project (FS-1) if, for every agent 𝑖 , there is a project
𝑝 ∈ P such that:

share(𝜋 ∪ {𝑝}, 𝑖) ≥ fairshare(𝑖) .
Thus, FS-1 requires that every agent is only one project away from

their fair share. Unfortunately, FS-1 is not always satisfiable.

Proposition 2. There exist instances 𝐼 for which no budget allocation
𝜋 ∈ A(𝐼 ) provides FS-1.

Proof. Consider an instance with three projects of cost 3 and

a budget limit 𝑏 = 5. Consider three agents, with approval ballots

{𝑝1, 𝑝2}, {𝑝1, 𝑝3} and {𝑝2, 𝑝3}, respectively.
Here the fair share of each agent is 5/3 ≈ 1.67. As a single project

only yields a share of 1.5 to an agent who approves of it, for any

agent to reach their fair share threshold, two projects must be

selected. However, a feasible budget allocation can select at most

one project, meaning that for one agent none of the projects they

approve of will be selected. □

As for FS, we can show that deciding whether an FS-1 budget

allocation exists is NP-complete.

Proposition 3. Given an instance 𝐼 = ⟨P, 𝑐, 𝑏⟩ and a profile 𝑨,
checking whether there exists a feasible budget allocation 𝜋 ∈ A(𝐼 )
that satisfies FS-1 is NP-complete, even in the unit-cost setting.

Alternatively, we can require that every project that is not part of

the winning budget allocation should give some voter at least their

fair share when that project is added.
2

Definition 4 (Local-FS). Given an instance 𝐼 = ⟨P, 𝑐, 𝑏⟩ and a
profile 𝑨, a budget allocation 𝜋 ∈ A(𝐼 ) is said to satisfy local fair
share (Local-FS) if there is no project 𝑝 ∈ P \ 𝜋 such that, for all
agents 𝑖 ∈ N with 𝑝 ∈ 𝐴𝑖 , we have:

share(𝜋 ∪ {𝑝}, 𝑖) < fairshare(𝑖).
Intuitively, if there exists a project 𝑝 that could be added to the

budget allocation 𝜋 without any supporter of 𝑝 receiving at least

their fair share, then every supporter of 𝑝 receives strictly less than

their fair share and one of the following holds:

• 𝑝 can be selected without exceeding the budget limit 𝑏;

• some voter 𝑖★ receives more than their fair share.

In the first case, it is clear that 𝑝 should be selected and thus 𝜋 must

be deemed unfair. In the second case, it might be considered fairer

to exchange one project supported by 𝑖★ with 𝑝 . In this sense, the

property can be seen as an “upper quota” property, as we have to

add projects such that no voter receives more than their fair share

as long as possible.

In contrast to FS-1, we can always find an allocation that sat-

isfies Local-FS. Indeed, an adaption of the Method of Equal Shares
(MES)

3
[19] satisfies Local-FS. Our definition closely resembles the

definition of MES for PB with additive utilities [19]. We adapt it

by plugging in the share. Note that this rule can be executed in

polynomial time.

2
We stress that this formulation of Local-FS relies on our assumption that every

project 𝑝 is approved by at least one agent.

3
The rule used to be named Rule X until recently. The new name—method of equal
share—is not related to the definition of share, first introduced by Lackner et al. [15].

Definition 5 (MESshare). Given an instance 𝐼 = ⟨P, 𝑐, 𝑏⟩ and a
profile 𝑨, MESshare constructs a budget allocation 𝜋 , initially empty,
iteratively as follows. A load ℓ𝑖 : 2P → R≥0, is associated with every
agent 𝑖 ∈ N , initialised as ℓ𝑖 (∅) = 0 for all 𝑖 ∈ N . It represents the
total contribution of the agents for a given budget allocation. Given
𝜋 and a scalar 𝛼 ≥ 0, the contribution of agent 𝑖 ∈ N for project
𝑝 ∈ P \ 𝜋 is defined by:

𝛾𝑖 (𝜋, 𝛼, 𝑝) = min (𝑏/𝑛 − ℓ𝑖 (𝜋), 𝛼 · share({𝑝}, 𝑖)) .

For a specific budget allocation 𝜋 , a project 𝑝 ∈ P \ 𝜋 is said to be
𝛼-affordable, for 𝛼 ≥ 0, if

∑
𝑖∈N 𝛾𝑖 (𝜋, 𝛼, 𝑝) · 1𝑝∈𝐴𝑖

= 𝑐 (𝑝), i.e., if 𝑝
can be afforded with none of its supporters contributing more than 𝛼 .

At a given round with current budget allocation 𝜋 , if no project is
𝛼-affordable for any 𝛼 , MESshare terminates. Otherwise, it selects a
project 𝑝 ∈ P \ 𝜋 that is 𝛼★-affordable where 𝛼★ is the smallest 𝛼
such that one project is 𝛼-affordable (𝜋 is updated to 𝜋 ∪ {𝑝}). The
agents’ loads are then updated: If 𝑝 ∉ 𝐴𝑖 , then ℓ𝑖 (𝜋 ∪ {𝑝}) = ℓ𝑖 (𝜋),
and otherwise ℓ𝑖 (𝜋 ∪ {𝑝}) = ℓ𝑖 (𝜋) + 𝛾𝑖 (𝜋, 𝛼, 𝑝).

Theorem 4. MESshare satisfies Local-FS.

Proof. Given a budget allocation 𝜋 and a scalar 𝛼 > 0, we say

that agent 𝑖 ∈ N contributes in full to project 𝑝 ∈ 𝐴𝑖 if we have:

𝛾𝑖 (𝜋, 𝛼, 𝑝) = 𝛼 · share({𝑝}, 𝑖).
During a run of MESshare , all the supporters of a project 𝑝 ∈ P

contribute in full to 𝑝 if and only if 𝑝 is 1-affordable. In this case, for

all supporters 𝑖 of 𝑝 , we have ℓ𝑖 ({𝑝}) = share({𝑝}, 𝑖). Moreover, if a

project 𝑝 is 𝛼-affordable but at least one voter cannot contribute in

full to 𝑝 , then 𝛼 > 1. MESshare only terminates when no project is 𝛼-

affordable, for any 𝛼 . Therefore, there is a round where no project 𝑝

is 1-affordable. Let 𝑘 be the first such round and let 𝜋𝑘 be the budget

allocation before round 𝑘 . It follows that every project in 𝜋𝑘 was

1-affordable and hence ℓ𝑖 (𝜋𝑘 ) = share(𝜋𝑘 , 𝑖) for all 𝑖 ∈ N . As no

project 𝑝 is 1-affordable in round 𝑘 , for no projects in P \𝜋𝑘 can all

the supporters contribute in full to. Thus, for every 𝑝 ∈ P\𝜋𝑘 , there
is a voter 𝑖 ∈ N such that 𝑏/𝑛 − ℓ𝑖 (𝜋𝑘 ) < share({𝑝}, 𝑖). Using the

fact that ℓ𝑖 (𝜋𝑘 ) = share(𝜋𝑘 , 𝑖) and the additivity of share, it follows

that share(𝜋𝑘 ∪ {𝑝}, 𝑖) > 𝑏/𝑛. So 𝜋𝑘 satisfies Local-FS. As MESshare
returns an allocation 𝜋 with 𝜋𝑘 ⊆ 𝜋 , it satisfies Local-FS. □

In fact, the proof of Theorem 4 establishes a slightly stronger state-

ment: there is no project 𝑝 ∈ P \ 𝜋 such that for all agents 𝑖 ∈ N
with 𝑝 ∈ 𝐴𝑖 we have share(𝜋 ∪ {𝑝}, 𝑖) ≤ 𝑏/𝑛. In other words, any

project added to 𝜋 gives at least one votermore than their fair share.

4 JUSTIFIED SHARE
Local-FS and FS-1 require the outcome to be, in some sense, close to

satisfying FS. Another idea for weakening FS is to spend on a voter

only the resources they can claim to deserve by virtue of being part

of a cohesive group. This idea is inspired by the well-known axioms

of justified representation extensively studied in the literature on

approval-based committee elections [1, 2, 16, 20]. Before exploring

this idea further, let us define what we mean by cohesive groups.

Definition 6 (𝑃-cohesive groups). Given an instance 𝐼 = ⟨P, 𝑐, 𝑏⟩
and a profile 𝑨, for a set of projects 𝑃 ⊆ P we say that a non-
empty group of agents 𝑁 ⊆ N is 𝑃-cohesive, if 𝑃 ⊆ ⋂

𝑖∈𝑁 𝐴𝑖 and
|𝑁 |
𝑛 ≥ 𝑐 (𝑃 )

𝑏
.
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So a group 𝑁 is cohesive relative to a set 𝑃 of projects if, first,

everyone in 𝑁 approves of all the projects in 𝑃 and, second, 𝑁 is

large enough—relative to the size 𝑛 of the society and the budget 𝑏—

so as to “deserve” the resources needed for the projects in 𝑃 .

In the unit-cost setting, one of the strongest proportionality prop-

erties known to be satisfiable by a polynomial-time-computable rule

is called Extended Justified Representation (EJR) [2, 20]. It ensures

that one member of every cohesive group receives the satisfaction

deserved due to their cohesiveness. Peters et al. [19] generalised

EJR to the setting of PB with additive utilities. This generalisation

will be our blue-print for modifying EJR to deal with share. Ideally,

we would want to satisfy the following property.

Definition 7 (Strong Extended Justified Share). Given an instance
𝐼 = ⟨P, 𝑐, 𝑏⟩ and a profile 𝑨, a budget allocation 𝜋 ∈ A(𝐼 ) is said to
satisfy strong extended justified share (Strong-EJS) if for all 𝑃 ⊆ P
and all 𝑃-cohesive groups 𝑁 , we have share(𝜋, 𝑖) ≥ share(𝑃, 𝑖) for
all agents 𝑖 ∈ 𝑁 .

The idea behind Strong-EJS is the following: since every 𝑃-cohesive

group 𝑆 controls enough budget to fund 𝑃 , every agent in 𝑆 deserves

to enjoy at least as much share as what they would have gotten if 𝑃

had been the outcome. Intuitively, this is very similar to Strong-EJR,

a property that is known not to be always satisfiable [1]. The same

holds for Strong-EJS: there exist instances for which no budget

allocation can satisfy this axiom.

Example 2. Consider the following instance and profile with three
projects 𝑝1, 𝑝2 and 𝑝3 of cost 1, a budget limit 𝑏 = 2, and four agents
1, . . . , 4 such that 1 approves project 𝑝1, 2 approves project 𝑝1 and 𝑝2,
3 approves 𝑝1 and 𝑝3 and 4 approves 𝑝2 and 𝑝3. Note that {1, 2, 3}
is {𝑝1}-cohesive, {2, 4} is {𝑝2}-cohesive and {3, 4} is {𝑝3}-cohesive.
Hence, to satisfy Strong-EJS, one needs to select all three projects which
is not possible within the given budget limit.

Observe that in this scenario it is not even possible to guaran-

tee each 𝑃-cohesive group the same average share as they receive

from 𝑃 . We thus weaken Strong-EJS and introduce (simple) EJS.

Definition 8 (Extended Justified Share). Given an instance 𝐼 =

⟨P, 𝑐, 𝑏⟩ and a profile 𝑨, a budget allocation 𝜋 ∈ A(𝐼 ) is said to
satisfy extended justified share (EJS), if for all 𝑃 ⊆ P and all 𝑃-
cohesive groups 𝑁 , there is an agent 𝑖 ∈ 𝑁 such that share(𝜋, 𝑖) ≥
share(𝑃, 𝑖).

The difference between Strong-EJS and EJS is the switch from a

universal to an existential quantifier: for the former, we impose

a lower bound on the share of every agent in a cohesive group,

while for the latter this lower bound only applies to one agent of

each cohesive group. Therefore, in Example 2 both {𝑝1, 𝑝3} and
{𝑝2, 𝑝3} satisfy EJS, as either agent 3 or agent 4 satisfies the share

requirement for every cohesive group.

We observe that EJR and EJS, while similar in spirit, do not

coincide, not even in the unit-cost case.

Example 3. Consider an instance with four voters and six projects
with unit cost and 𝑏 = 4, where the approvals are as follows: 𝐴1 =

{𝑝1, 𝑝2, 𝑝3}, 𝐴2 = {𝑝1, 𝑝2, 𝑝4}, 𝐴3 = 𝐴4 = {𝑝4, 𝑝5, 𝑝6}. It is now
easy to check that {𝑝3, 𝑝4, 𝑝5, 𝑝6} satisfies EJS but not EJR, while
{𝑝1, 𝑝4, 𝑝5, 𝑝6} satisfies EJR but not EJS.

The first question that presents itself is whether EJS is always

achievable. This is indeed the case. To see this, one just needs to

adapt the well-known greedy cohesive procedure for satisfying EJR,

which was first introduced by Aziz et al. [1] and extended to PB by

Peters et al. [19], to the share setting.

Proposition 5. For every instance 𝐼 = ⟨P, 𝑐, 𝑏⟩ and every profile 𝑨,
there exists a budget allocation 𝜋 ∈ A(𝐼 ) that satisfies EJS.

However, the greedy approach in general needs exponential time.

This turns out to be unavoidable, unless P = NP, as can be shown

by a standard reduction from Subset Sum.

Theorem 6. There is no polynomial-time algorithm that, given
an instance 𝐼 and a profile 𝑨 as input, always computes a budget
allocation satisfying EJS, unless P = NP.

On the other hand, we recall that the greedy approach generally

runs in FPT-time, when parameterized by the number of projects [1].

This is also the case in the share setting.

Proposition 7. For every instance 𝐼 = ⟨P, 𝑐, 𝑏⟩ and every profile 𝑨,
we can compute a budget allocation 𝜋 ∈ A(𝐼 ) that satisfied EJS in
time O(𝑛 · 2 |P |).

We have seen that EJS can always be satisfied. However, this is

not entirely satisfactory, given that no tractable rule can satisfy it.

Unfortunately, in many PB applications, the use of intractable rules

is not practical due to the large instance sizes. Therefore, we try

to find fairness notions that can be satisfied in polynomial time by

relaxing EJS. First, similar to the property of EJR up to one project

(EJR-1) proposed by Peters et al. [19], we can define EJS up to one

project, requiring that at least one agent in every cohesive group is

at most one project away from being satisfied.
4

Definition 9 (EJS-1). Given an instance 𝐼 = ⟨P, 𝑐, 𝑏⟩ and a profile
𝑨, a budget allocation 𝜋 ∈ A(𝐼 ) is said to satisfy extended justified
share up to one project (EJS-1) if for all 𝑃 ⊆ P and all 𝑃-cohesive
groups 𝑁 there is an agent 𝑖 ∈ 𝑁 for which there exists a project
𝑝 ∈ P such that share(𝜋 ∪ {𝑝}, 𝑖) ≥ share(𝑃, 𝑖).

It is straightforward to adapt the proof of Peters et al. [19] that MES

satisfies EJR up to one project to our setting to prove that MESshare
satisfies EJS up to one project.

Proposition 8. MESshare satisfies EJS-1.

In particular, this implies, together with Example 3, that already in

the unit-cost case MES and MESshare are indeed different rules.

Finally, note that we can define a local variant of EJS, based on a

similar motivation as Local-FS.

Definition 10 (Local-EJS). Given an instance 𝐼 = ⟨P, 𝑐, 𝑏⟩ and
a profile 𝑨, a budget allocation 𝜋 ∈ A(𝐼 ) is said to satisfy local
extended justified share (Local-EJS), if there is no 𝑃-cohesive group
𝑁 , where 𝑃 ⊆ P, for which there exists a project 𝑝 ∈ 𝑃 \ 𝜋 for which
it holds for all agents 𝑖 ∈ 𝑁 that share(𝜋 ∪ {𝑝}, 𝑖) < share(𝑃, 𝑖).

The idea behind Local-EJS is that there is no 𝑃-cohesive group 𝑁

that can claim that they could “afford” another project 𝑝 without

4
We note that in Definition 9 we require that share (𝜋 ∪ {𝑝 }, 𝑖) ≥ share (𝑃, 𝑖) instead
of a strict inequality as used in the definition of EJR-1. Our rationale is that adding

one project guarantees to satisfy the EJS condition (but not more than that).
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a single voter in 𝑁 receiving more share than they deserve due

to their 𝑃-cohesiveness. In this sense, any allocation that satisfies

Local-EJS is a local optimum for any 𝑃-cohesive group. Now, in

our setting we observe that Local-EJS is equivalent to a notion that

could be called “EJS up to any project”.

Proposition 9. Let 𝐼 = ⟨P, 𝑐, 𝑏⟩ be an instance and 𝑨 a profile. An
allocation 𝜋 satisfies Local-EJS if and only if for every 𝑃 ⊆ P and
𝑃-cohesive group 𝑁 there exists an agent 𝑖 such that for all projects
𝑝 ∈ 𝑃 \ 𝜋 we have share(𝜋 ∪ {𝑝}, 𝑖) ≥ share(𝑃, 𝑖).

Proof. It is clear that the statement above implies Local-EJS.

Now, let 𝜋 be an allocation that satisfies Local-EJS, let 𝑃 ⊆ P be a set

of projects and 𝑁 a 𝑃-cohesive group. Let 𝑖∗ ∈ 𝑁 be an agent with

maximal share from 𝜋 in 𝑁 . Consider 𝑝 ∈ 𝑃 \ 𝜋 . By Local-EJS there

is an agent 𝑖𝑝 such that share(𝜋 ∪ {𝑝}, 𝑖𝑝 ) > share(𝑃, 𝑖𝑝 ). By the

choice of 𝑖∗ we have share(𝜋, 𝑖∗) ≥ share(𝜋, 𝑖𝑝 ). By the definition

of share, it follows that share(𝜋 ∪ {𝑝}, 𝑖∗) > share(𝑃, 𝑖∗). □

From this equivalence, it is easy to see that Local-EJS implies EJS-1.

Unfortunately, MESshare fails Local-EJS, as the next example shows.

Example 4. Consider an instance with five projects, a budget limit
𝑏 = 20, and four agents where the costs are as follows:

𝑐 (𝑝1) = 8, 𝑐 (𝑝2) = 5, 𝑐 (𝑝3) = 𝑐 (𝑝4) = 2, 𝑐 (𝑝5) = 10.

Moreover, voters 1 and 2 approve projects 𝑝1, 𝑝2, 𝑝3 and 𝑝4 and voters 3
and 4 prove 𝑝3, 𝑝4 and 𝑝5. With a suitable tie-breaking rule, MESshare
will return the budget allocation 𝜋 = {𝑝2, 𝑝3, 𝑝5}. Note that voters 1
and 2 are {𝑝1, 𝑝4}-cohesive and would thus deserve to enjoy a share
of 4.5. However, if we add 𝑝4 to 𝜋 , voters 1 and 2 would only have a
share of 3.5, showing that 𝜋 fails Local-EJS.

Whether Local-EJS can always be satisfied in polynomial time re-

mains an important open question.

Finally, we observe a crucial difference between EJR and EJS:

MESshare does not satisfy EJS in the unit cost setting, while MES

satisfies EJR in the unit-cost setting [20].

Example 5. Assume that there are two voters 1 and 2, and three
projects 𝑝1, 𝑝2 and 𝑝3, all of cost 1. The budget limit is 𝑏 = 2. Voter 1
approves of 𝑝1 and 𝑝3 and voter 2 of 𝑝2 and 𝑝3. Then voter 1 is {𝑝1}-
cohesive and hence deserves a share of 1, the same applies to voter 2
and {𝑝2}. Nevertheless, with a suitable tie-breaking rule, MESshare
would first select 𝑝3. In that case. neither {𝑝1, 𝑝2}, nor {𝑝2, 𝑝3} would
satisfy EJS, as at least one voter will have only a share of 1/2.

However, it does satisfy Local-EJS in the unit-cost setting.

Theorem 10. MESshare satisfies Local-EJS in the unit-cost case.

5 RELATIONSHIPS BETWEEN CRITERIA
We now analyse the relationships between different fairness criteria.

We start with links within the space of criteria we introduced earlier

and then compare them to the notion of priceability [20].

5.1 Share-Based Fairness Criteria
The following theorem establishes the relations between share-

based fairness concepts. These relations are visualised in Figure 1.

FS Strong-EJS EJS

Local-EJS

EJS-1

Local-FS

FS-1

Figure 1: Taxonomy of criteria. An arrow from one criterion
to another indicates that any budget allocation satisfying the
former also satisfies the latter. MESshare satisfies the criteria
boxed in green solid lines. For the criterion boxed in orange
dashed lines, no efficient algorithms computing them exist
(unless P = NP). Criteria boxed in red dotted lines are not
always satisfiable. The status of Local-EJS is unknown.

Theorem 11. Given an instance 𝐼 and a profile 𝑨, for every budget
allocation 𝜋 ∈ A(𝐼 ) the following statements hold:

(1) If 𝜋 satisfies FS, it also satisfies FS-1, Local-FS, and Strong-EJS.
(2) If 𝜋 satisfies FS-1, it also satisfies EJS-1.
(3) If 𝜋 satisfies Strong-EJS, it also satisfies EJS.
(4) If 𝜋 satisfies EJS, it also satisfies Local-EJS.
(5) If 𝜋 satisfies Local-EJS, it also satisfies EJS-1.

This list of implications is exhaustive when closed under transitivity.

Proof of (1). It is easy to verify that every budget allocation

satisfying FS also satisfy FS-1 and Local-FS. So let us show that FS

also implies Strong-EJS. Let 𝑖 ∈ N . We distinguish two cases.

First, assume share(𝐴𝑖 , 𝑖) < 𝑏/𝑛. For FS to be satisfied, we must

have share(𝜋, 𝑖) ≥ share(𝐴𝑖 , 𝑖). This entails that𝐴𝑖 ⊆ 𝜋 . Hence, the

conditions for Strong-EJS are trivially satisfied for agent 𝑖 .

Second, assume share(𝐴𝑖 , 𝑖) ≥ 𝑏/𝑛. Since 𝜋 satisfies FS, we know

that share(𝜋, 𝑖) ≥ 𝑏/𝑛. Let 𝑁 ⊆ N be a 𝑃-cohesive group, for some

𝑃 ⊆ P, such that 𝑖 ∈ 𝑁 . By definition of a cohesive group, we know

that 𝑐 (𝑃) ≤ 𝑏/𝑛 · |𝑁 |. Hence, share(𝑃, 𝑖) ≤ 𝑏/𝑛. Overall, we have
share(𝜋, 𝑖) ≥ 𝑏/𝑛 ≥ share(𝑃, 𝑖) and thus 𝜋 satisfies Strong-EJS. □

The proof of claim (2) is similar to the proof of claim (1) and can

be found in the full version on arXiv [18]. The proofs of claims (3)

and (4) are immediately derived from the respective definitions.

The proof of claim (5) is a direct consequences of Proposition 9.

The absence of any further implications between fairness cri-

teria can be established by counterexamples. We include here a

representative sample of such counterexamples. The remaining

counterexamples can be found in the full version of the paper [18].

Example 6 (FS-1 not implying Local-FS). Consider the following
instance with four projects and a budget limit of 𝑏 = 6.

𝑝1 𝑝2 𝑝3 𝑝4

Cost 3 3 6 1

𝐴1 ✓ ✓ ✗ ✗

𝐴2 ✗ ✗ ✓ ✓

𝐴3 ✗ ✗ ✓ ✓

Then {𝑝1, 𝑝2} satisfies FS-1 as agent 1 already receives (more than)
their fair share, while 2 and 3 receive their fair share from {𝑝1, 𝑝2} ∪
{𝑝3}. However, no supporter of 𝑝4 receives their fair share from
{𝑝1, 𝑝2} ∪ {𝑝4}. Therefore, Local-FS is violated.
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The other direction (Local-FS does not imply FS-1) follows from

the fact that a Local-FS allocation always exists (as a consequence

of Theorem 4) while FS-1 is not always satisfiable (Proposition 2).

Example 7 (EJS-1 not implying Local-EJS, even in the unit-cost

setting). Consider an instance with two voters, 1 and 2, and six
projects 𝑝1, . . . , 𝑝6 all of cost 1. Voter 1 approves of {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5}
and voter 2 approves of {𝑝4, 𝑝5, 𝑝6}. The budget limit is 𝑏 = 4. We
claim that 𝜋 = {𝑝1, 𝑝2, 𝑝3, 𝑝4} satisfies EJS-1 but not Local-EJS.

The share of 1 in 𝜋 is 3.5 so every cohesive group containing them
will satisfy the conditions for EJS-1 and Local-EJS. Consider now voter
2. Their share in 𝜋 is 1/2. Note that they are {𝑝5, 𝑝6}-cohesive and
deserve thus a share of 3/2. Since 𝜋 ∪ {𝑝6} would provide them a share
of 3/2, 𝜋 satisfies EJS-1. However, 𝜋 ∪ {𝑝5} would only provide 2 a
share of 1, showing that 𝜋 fails Local-EJS.

We now turn to Local-FS and show that it does not imply EJS-1.

Due to the implications shown in Theorem 11, Local-FS also does

not imply any of Local-EJS, EJS, Strong-EJS, FS-1 and FS.

Example 8 (Local-FS not implying EJS-1). Consider the following
instance with three projects, a budget limit of 𝑏 = 6, and two agents.
Agent 1 approves of {𝑝1, 𝑝2, 𝑝3} and agent 2 of {𝑝2, 𝑝3}. Allocation
𝜋 = {𝑝1} satisfies Local-FS: for both 𝑝2 and 𝑝3, if we were to add them
to 𝜋 , agent 1 would have a fair share. However, it does not satisfy
EJS-1: {2} is a {𝑝2, 𝑝3}-cohesive group but neither project is selected.

5.2 Comparison with Priceability
Priceability is a fairness criterion requiring that the budget allo-

cation can be obtained through a market-based approach [20]. It

is similar in spirit to share-based criteria as it also measures the

amount of money spent on each agent. However, priceability does

not require the cost of a project to be equally distributed between

its supporters. Instead it requires there to be some distribution of

the costs of the selected projects to their supporters that satisfies

certain conditions.

Definition 11 (Priceability). Given an instance 𝐼 = ⟨P, 𝑐, 𝑏⟩ and a
profile 𝑨, a budget allocation 𝜋 satisfies priceability if there exists an
allowance 𝛼 ∈ R≥0 and a collection (𝛾𝑖 )𝑖∈N of contribution functions,
𝑝𝑖 : P → [0, 𝛼] such that all of the following conditions are satisfied:

C1: If 𝛾𝑖 (𝑝) > 0 then 𝑝 ∈ 𝐴𝑖 for all 𝑝 ∈ P and 𝑖 ∈ N .
C2: If 𝛾𝑖 (𝑝) > 0 then 𝑝 ∈ 𝜋 for all 𝑝 ∈ P and 𝑖 ∈ N .
C3:

∑
𝑝∈P 𝛾𝑖 (𝑝) ≤ 𝛼 for all 𝑖 ∈ N .

C4:
∑
𝑖∈N 𝛾𝑖 (𝑝) = 𝑐 (𝑝) for all 𝑝 ∈ 𝜋 .

C5:
∑
𝑖∈N |𝑝∈𝐴𝑖

𝛼★
𝑖
≤ 𝑐 (𝑝) for all 𝑝 ∈ P \ 𝜋 , where for any 𝑖 ∈ N ,

𝛼★
𝑖
= 𝛼 −∑

𝑝∈P 𝛾𝑖 (𝑝) is their unspent allowance.

Due to the similar motivation of share based fairness concepts

and priceablility, it is interesting to understand the relationships

between them. Let us first consider FS.

Proposition 12. There exists instances 𝐼 = ⟨P, 𝑐, 𝑏⟩ and profiles 𝑨
such that there exists 𝜋 ∈ A(𝐼 ) satisfying FS, but such that no FS
budget allocation 𝜋 is priceable.

Proof. Consider the following instance with four projects, a

budget limit of 𝑏 = 9, and three agents.

𝑝1 𝑝2 𝑝3 𝑝4

Cost 1 5 3 1

𝐴1 ✓ ✗ ✗ ✗

𝐴2 ✗ ✓ ✗ ✗

𝐴3 ✗ ✗ ✓ ✓

In this instance, only 𝜋 = {𝑝1, 𝑝2, 𝑝3} satisfies FS. For the sake

of contradiction, suppose that 𝜋 is priceable with allowance 𝛼 ∈
R≥0 and contribution functions 𝛾1, 𝛾2 and 𝛾3. Since only agent 2

approves of 𝑝2, from conditionsC1 andC4wemust have𝛾2 (𝑝2) = 5.

Condition C3 then implies that 𝛼 ≥ 5. For similar reasons we

should have 𝛾3 (𝑝3) = 3 and 𝛾3 (𝑝1) = 𝛾3 (𝑝2) = 0. Condition C2 also
imposes 𝛾3 (𝑝4) = 0. Overall this means that 𝛼★

3
= 𝛼 − 𝛾3 (𝑝3) ≥ 2.

This is a violation of condition C5 for agent 3 and project 𝑝4. □

Interestingly, the intuitive connection between fair share and price-

ablility does hold when ballots are large enough.

Proposition 13. For every instance 𝐼 = ⟨P, 𝑐, 𝑏⟩ and profile 𝑨 such
that for every agent 𝑖 ∈ N , fairshare(𝑖) = 𝑏/𝑛, every budget allocation
𝜋 ∈ A(𝐼 ) that satisfies FS is also priceable.

Proof. Consider a suitable instance 𝐼 = ⟨P, 𝑐, 𝑏⟩ and profile 𝑨.
Let 𝜋 ∈ A(𝐼 ) be a budget allocation that satisfies FS. We claim

that 𝜋 is priceable for the allowance 𝛼 = 𝑏/𝑛 and the contribution

functions (𝛾𝑖 )𝑖∈N defined for every 𝑖 ∈ N and 𝑝 ∈ P as:

𝛾𝑖 (𝑝) =
{
share({𝑝}, 𝑖) if 𝑝 ∈ 𝐴𝑖 ∩ 𝜋,

0 otherwise.

First note that conditions C1 and C2 of priceability are trivially sat-

isfied for all 𝑖 ∈ N and 𝑝 ∈ P. Now, we know that for every agent,

we have share(𝜋, 𝑖) ≥ fairshare(𝑖) = 𝑏/𝑛. Since ∑𝑖∈N share(𝜋, 𝑖) =
𝑐 (𝜋) and 𝜋 is feasible, we must have share(𝜋, 𝑖) = 𝑏/𝑛 for all 𝑖 ∈ N .

Overall, we have

∑
𝑝∈P 𝛾𝑖 (𝑝) = share(𝜋, 𝑖) = 𝑏/𝑛 ≤ 𝛼 , so con-

dition C3 also is satisfied. In addition, we have

∑
𝑖∈N 𝛾𝑖 (𝑝) =∑

𝑖∈N share({𝑝}, 𝑖) = 𝑐 (𝑝). Condition C4 is thus immediately satis-

fied. Finally, as we have for every agent

∑
𝑝∈P 𝛾𝑖 (𝑝) = share(𝜋, 𝑖) =

𝑏/𝑛 = 𝛼 , condition C5 is vacuously satisfied. □

Next, we consider the relation between the weaker share-based

notions and priceability. The following shows that there are no

other implications between priceability and share-based fairness,

even if we assume that agents approve of enough projects.

Proposition 14. Local-FS, FS-1, and EJS do not imply priceability,
even if fairshare(𝑖) = 𝑏/𝑛 for every agent 𝑖 ∈ N . Vice versa, priceabil-
ity does not imply Local-FS or EJS-1, even if fairshare(𝑖) = 𝑏/𝑛 for
every agent 𝑖 ∈ N and the agents have an allowance of at least 𝑏/𝑛.

Proof. Consider an instance with two projects with 𝑐 (𝑝1) =

3 and 𝑐 (𝑝2) = 2, 𝑏 = 3 and two agents such that 𝐴1 = {𝑝1}
and 𝐴2 = {𝑝2} Then {𝑝1} satisfies FS-1 and Local-FS as we have

share({𝑝1, 𝑝2}, 𝑖) > fairshare(𝑖) for both agents 𝑖 . Moreover, EJS is

trivially satisfied, as there are no cohesive groups. On the other

hand, for {𝑝1} to be priceable, each agent must receive an allowance

of 3. In this case, the fact that 𝑝2 is not selected is a contradiction

to C5 as 𝑝2 ∈ 𝐴2 and 2 has more than 𝑐 (𝑝2) unspent allowance.
Now consider the instance with four projects such that 𝑐 (𝑝1) =

𝑐 (𝑝2) = 8 and 𝑐 (𝑝3) = 𝑐 (𝑝4) = 5 and 𝑏 = 20. There are two
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agents with ballots 𝐴1 = {𝑝1, 𝑝2} and 𝐴2 = {𝑝2, 𝑝3, 𝑝4}. The bundle
{𝑝1, 𝑝2} is priceable: consider the following contributions with

an allowance of 10 per agent: 𝛾1 (𝑝1) = 8 and 𝛾1 (𝑝) = 0 for 𝑝 ∈
{𝑝2, 𝑝3, 𝑝4}; 𝛾2 (𝑝2) = 8 and 𝛾2 (𝑝) = 0 for 𝑝 ∈ {𝑝1, 𝑝3, 𝑝4}. However,
{𝑝1, 𝑝2} does not satisfy Local-FS as share({𝑝1, 𝑝2} ∪ {𝑝3}, 2) =

9 < 10 = fairshare(2). Moreover, 2 is {𝑝3, 𝑝4}-cohesive but we

have share({𝑝1, 𝑝2} ∪ {𝑝}, 2) = 9 < 10 = share({𝑝3, 𝑝4}, 2) for any
𝑝 ∈ {𝑝3, 𝑝4}. Hence, {𝑝1, 𝑝2} also does not satisfy EJS-1. □

However, Local-FS, EJS-1, and priceability are compatible in the

sense that there always exists a bundle satisfies all three, namely the

output of MESshare . This follows directly from Theorem 4, Proposi-

tion 8, and the fact that MES is priceable for every utility function,

as was shown by Peters et al. [19]. It remains open whether FS-1,

EJS, and Local-EJS are compatible with priceability in this sense.

6 APPROACHING FAIR SHARE IN PRACTICE
As we saw in Section 3, there exist PB instances for which it is

impossible to give every agent their fair share. In this section we re-

port on an experimental study aimed at understanding how serious

a problem this is. Our study is twofold. We first investigate how

close to fair share we can get. In a second experiment, we quantify

how close to this optimal value certain known PB rules get.

For these experiments we use data from Pabulib [24], an online

collection of real-world PB datasets. To be more precise, we used

all instances from Pabulib with up to 65 projects, except for trivial

instances, where either no project or the set of all projects are

affordable. Three instances have been additionally omitted for the

first experiment due to very high compute time. A total of 353 PB

instances are covered by our analysis.

6.1 Optimal Distance to Fair Share
We propose two ways to measure how close to FS a given budget

allocation is. The first one is the average capped fair share ratio: For
every agent 𝑖 with approval ballot 𝐴𝑖 we divide their actual share

by their fair share, capped at 1 in case they get more than their fair

share, and take the average of this ratio over all agents:

1

𝑛
·
∑︁
𝑖∈N

min

(
share(𝜋, 𝑖)
fairshare(𝑖) , 1

)
.

Our second measure is the average 𝐿1 distance to FS, measuring, for

every agent 𝑖 , the absolute value of the difference between their

actual share and their fair share:

1

𝑛
·
∑︁
𝑖∈N

|share(𝜋, 𝑖) − fairshare(𝑖) |.

For each PB instance we computed via integer linear programs bud-
get allocations yielding the optimal average capped fair share ratio

and 𝐿1 distance to FS. Moreover, to better understand what might

cause an instance not to admit a good solution, we also consid-

ered different ways of preprocessing the instances by removing

“problematic” projects:

• Threshold: We remove any project that is not approved by

at least 𝑥% of agents. We considered 𝑥 = 1%, 5%, and 10%.

• Cohesiveness: We remove any project 𝑝 such that its sup-

porters do not deserve enough money to buy the project, i.e.,
such that

| {𝑖∈N |𝑝∈𝐴𝑖 } |
𝑛 𝑏 < 𝑐 (𝑝).

Threshold preprocessing removes under 10% of projects for a thresh-

old of 1%, around 10–20% for a threshold of 5%, and around 20–30%

for a threshold of 10%. Cohesiveness preprocessing removes be-

tween 30% (for the largest instances) and 70% of projects (for the

smallest instances)

Let us now turn to our results, presented in Figure 2. We draw

the following conclusions. Without preprocessing, we can provide

agents on average between 45% (for small instances) and 75% (for

larger instances) of their fair share, albeit with a lot of variation.

Furthermore, we can typically guarantee an 𝐿1 distance to FS of

50% of the worst case distance. Interestingly, preprocessing helps

when using the cohesiveness condition, but not with the threshold

condition. Note that we do not wish to advocate preprocessing as

a method to make budget decisions in practice. Rather, we use it

as a way of checking whether the failure to guarantee fair share is

due to the specific structure of real-life PB instances and whether

similar instances ‘nearby’ might be significantly better behaved.

Our experimental findings suggest that this is not the case, and that

guaranteeing fair share simply is very hard across a wide range of

instances. Note that, across all instances, for only one instance—

with 3 projects and 198 voters—we were able to satisfy FS.

We also investigated approximations of the average capped fair

share ratio. Specifically, for a number of different given approxima-

tion ratios 𝛼 ∈ (0, 1], we replaced the fair share by 𝛼 · fairshare(𝑖) in
the definition. Results indicates that moving from 𝛼 = 1 to 𝛼 = 0.2,

has a very small effect on the optimum value (around 10% bet-

ter for 𝛼 = 0.2). We also interpret this result as stating that FS is

structurally hard to satisfy.

6.2 Distance to Fair Share of Common PB Rules
We now turn to our second experiment: how close to fair share are

the outputs of known PB rules in practice. We will consider the

following rules: MESshare , MEScard [19], MEScost [19],
5
sequential

Phragmén [17], and greedy approval [5]. Due to space constraints,

we omit the definitions of the rules here and instead refer the reader

to relevant references and the full version on arXiv [18].

For every PB instance and every PB rule, we compute the out-

come returned by the rule and assess how close to the optimal value

it is in terms of both the average capped fair share ratio and average

𝐿1 distance to FS. Results are presented in Figure 3.

The first striking observation is that greedy approval is perform-

ing extremely well under the capped fair share ratio measure. This

is particularly surprising given how oblivious to the structure of

the profile greedy approval is. We postulate that this result is due

to the high difference in the percentage of the budget used by the

different rules: MES rules use around 40% of the budget on average,

while greedy approval and sequential Phragmén use around 90% of

the budget. Since using more budget can only improve the average

capped fair share ratio, this is the most likely explanation for the

good performance of greedy approval compared to MES. There are

no standard ways to extend MES budget allocation in the litera-

ture (for PB). It is thus hard to compare rules based on the average

capped fair share ratio the achieve.

5
We write MEScard and MEScost for the rule MES [19] used with utility functions

𝑢𝑖 (𝑝) := 1 and 𝑢𝑖 (𝑝) := 𝑐 (𝑝) for all 𝑖 ∈ N and 𝑝 ∈ P, respectively.
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Figure 2: Average capped fair share ratio (left) and 𝐿1 distance to FS (right) for Pabulib instances. For the latter we actually plot
1 − 1/𝑛 ·∑𝑖∈N

|share (𝜋,𝑖)−fairshare (𝑖) |
fairshare (𝑖) to obtain a normalised value for which 1 is the best.★ Each range (for a number of projects)

shown on the 𝑥-axis contains between 60 and 80 instances.
★
Note that the empty budget allocation provides an 𝐿1 distance to FS of fairshare (𝑖) for all 𝑖 ∈ N. Normalising the 𝐿1 distance with fairshare (𝑖) , thus ensures

that we display the optimal 𝐿1 distance to FS achieved with respect to the worst case.

Figure 3: Average capped fair share ratio (left) and average 𝐿1 distance to FS (right) for different rules on Pabulib instances.
Results are normalised by the optimum value achievable in each instance, giving a score between 0 and 1 where 1 is the best.

Interestingly, the average 𝐿1 distance to FS does not suffer this

drawback. Indeed, since it also penalises rules that provide agents

more than their fair share, spending more is not always better. In-

terpreting the results of Figure 3 in this light, we conclude that MES

rules perform better than sequential Phragmén in terms of equality

of resources. Interestingly, MEScost performs slightly better than

MESshare . It thus provides both good experimental results in terms

of equality of resources and strong representation guarantees [19].

7 CONCLUSION
In this paper, we have proposed to evaluate the fairness of a par-

ticipatory budgeting decision by using the share of a voter as a

measure of the resources spent on satisfying the needs of voters

rather than using the (assumed) satisfaction each voter might derive

from an allocation. Our results suggest that this is an interesting

measure of fairness that deserves further attention.

In summary, we have seen that perfect fairness in the sense of

fair share is not always achievable, as is usually the case in PB,

due to the discrete nature of the process. More surprisingly, our

experiments show that, in practice, it is often even impossible to

achieve outcomes that are close to fair share. Nevertheless, we

were able to relax the requirements of fair share to define several

desiderata that can always be satisfied. Using these criteria, we

are able to identify MESshare as the polynomial-time-computable

PB rule that is most equitable in terms of resources, as it satisfies

both Local-FS as well as EJS-1. This result is strengthened by our

experimental evaluation that shows that MESshare selects bundles

that are close to optimal with regards to distance to FS.

It is worth noting, however, that MEScost performs slightly bet-

ter than MESshare in our experiments, hinting at an interesting

connection between share- and satisfaction-based fairness notions.

Exploring whether a meaningful compromise between these two

types of fairness can be achieved is important future work, even

though, such a compromise would have to be significantly weaker

than EJS and EJR (in view of, e.g., Example 3).

Another important open question is, whether a (natural) PB

rule exists that satisfies EJS as well as FS and FS-1 whenever they

are satisfiable. Such a rule would necessarily be intractable, but it

would provide strong axiomatic fairness guarantees for PB instances

which are small enough to allow for the computation of rules with

exponential runtime.
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