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ABSTRACT
We develop an approach for collective decision making from

first principles. In this approach, rather than using a—necessarily

imperfect—voting rule to map any given scenario where individ-

ual agents report their preferences into a collective decision, we

identify for every concrete such scenario the most appealing set

of normative principles (known as axioms in social choice theory)

that would entail a unique decision and then implement that deci-

sion. We analyse some of the fundamental properties of this new

approach, from both an algorithmic and a normative point of view.
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1 INTRODUCTION
There is a well-known mismatch between, on the one hand, semi-

nal results in social choice theory—the principled study of decision

making in groups—saying that it is essentially impossible to de-

sign an adequate rule for mapping the preferences of individuals

into a collective decision [2, 3, 19, 31] and, on the other hand, our

everyday experience of “making things work”, often by using prag-

matic methods—such as the infamous plurality rule—we know to

be flawed. In fact, this pragmatic approach is not entirely without

scientific justification. Results in behavioural social choice have

shown that the problematic scenarios ultimately responsible for

the mathematically enticing but otherwise discouraging findings

of social choice theory are very rare in practice [30]. But too often

the misguided take-away from this observed mismatch is to throw

the baby out with the bathwater and to ignore the deep insights

about sound and normatively grounded decision making provided

by social choice theory altogether.

Instead, in this paper we put forward an approach to collective

decision making that is grounded in the axiomatic method of social

choice theory [3, 11, 28, 37] but that accounts for the fact that it

is impossible to design a “perfect” voting rule that will produce

a suitable decision for every conceivable profile of preferences

reported by the members of a group. While in classical social choice

theory axioms, i.e., formal renderings of normative principles, are

used to motivate acceptable voting rules (that can then be applied

in any concrete situation we might encounter), in our approach we
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take decisions from first principles—by appealing directly to axioms

when proposing a decision in a given situation:

Axioms
general principles

of decision making

Rules
defined for every

conceivable scenario

Decisions
outcomes for

specific scenarios

motivate produce

force

classical

approach

voting

by axioms

Our approach of “voting by axioms” is inspired by a remark in recent

work of Boixel and Endriss [9] on explainable decision making who

introduce an approach to justifying the outcome of an election

by providing a step-by-step explanation of how that outcome is

entailed by an appealing set of axioms. They suggest that their

approach could also be used to decide such an election in the first

place [9, Example 3], but do not develop the idea any further. In this

paper, we formalise this idea and introduce the notion of a collection

of sets of axioms—ranked from most to least desirable—forcing an

outcome for a given profile R of preferences. Here, a single set A

of axioms forces a given outcomeO on R if every voting rule F that

satisfies all the axioms in A would produce O . When that is the

case and when we find A normatively appealing, then A provides

the perfect justification for choosing O . But often this will not be

the case. Then, if we have available a ranked collection of several

such sets of axioms, we can see whether the next best set might

force an outcome, and so forth. So we end up taking a decision

that is suggested by the best possible set of normative principles

available to us that actually speaks to the situation at hand.

While our approach, in principle, is relevant to any kind of deci-

sion making scenario, in practice it is most suited to high-stakes sit-

uations where a fairly small group of agents need to choose between

a fairly small number of alternatives and where we require any

decision taken to stand on sound normative grounds. Agents here

could be human beings who are assisted by decision support tech-

nology implementing our approach, or they could be autonomous

software agents acting on behalf of human stake-holders.

Related work. In methodological terms, our approach owes much

to the development of the axiomatic method in social choice the-

ory [28, 37], starting with the seminal work of Arrow [2]. More

specifically, as previously mentioned, our approach is inspired

by work of Boixel and Endriss [9] on explainable decision mak-

ing and thus has links to recent work in this area by several au-

thors [5, 8, 10, 13, 22, 24, 27, 29, 34, 35]. While contributions in that

literature tend to focus on the task of generating human-readable

explanations for why a given decision is forced by a given set of

axioms (or, more generally, by a given set of assumptions), our con-

cern here is more basic and fundamental and we ask whether that
decision is forced in the first place. Finally, there are connections

to recent work on using SAT solvers to support the generation of
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proofs for impossibility theorems in social choice theory [18], an

approach pioneered by Tang and Lin [36], because one can use the

same kind of encoding of axioms into propositional logic to develop

practical implementations of our approach on top of a SAT solver.

Contribution.We develop the voting by axioms approach to collec-
tive decision making by motivating, formalising, and analysing the

concept of axioms forcing a collective decision on a given profile of

individual preferences. In particular, we establish the computational

complexity of deciding whether a given set of axioms is sufficiently

strong to force an outcome on a given profile, and we show how

the basic algorithmic task of computing a forced outcome can be

relegated to a state-of-the-art SAT solver. We furthermore elucidate

how voting by axioms relates to the classical approach of using

axioms to motivate voting rules by establishing conditions under

which our approach coincides with applying a reasonable voting

rule that satisfies some given axioms.

Roadmap. The remainder of this paper is structured as follows.

After recalling some basic notions from social choice theory in

Section 2, we develop the voting by axioms approach in Section 3.

We then analyse this approach further: Section 4 is devoted to

algorithmic and Section 5 to axiomatic results. Section 6 concludes.

For a further discussion of the approach and additional results we

refer to the Master’s thesis of the first author [32].

2 PRELIMINARIES
In this section we recall a number of fundamental concepts from

social choice theory [3] and fix our notation for speaking about

scenarios of collective decision making.

2.1 Basic Notational Conventions
Throughout, for any given finite set S , we use use P(S) := {S ′ |
S ′ ⊆ S} to refer to its powerset and P+(S) := P(S) \ {∅} to refer to

the set of all its nonempty subsets.

We furthermore use L(S) to denote the set of all strict linear

orders on S . These are binary relations that are irreflexive, transitive
and connected (so can be used to strictly rank the elements of S
from best to worst). For any ≻ ∈ L(S) and S ′ ⊆ S , we use max≻ S

′

to refer to the unique maximal element in S ′ with respect to ≻.

2.2 Voting with Variable Electorates
We work with a standard model of voting with variable electorates

commonly used in social choice theory [3], where the set of in-

dividuals expressing preferences at any given time may vary. Let

N ∗ = {1, . . . ,n} be a finite set of agents. We also refer to N ∗
as

the universe. Given a set of alternatives X = {1, . . . ,m}, the goal

of voting is to determine a favourable subset of these alternatives

based on the voters’ preferences. For a given electorate N ⊆ N ∗

of agents expressing a preference in a given situation, a profile (or
scenario) R is a function that assigns to each agent i ∈ N a (reported)

preference Ri ∈ L(X ). Taking into account all possible electorates,

we denote the set of all profiles by L(X )+.

A voting rule is is a function F : L(X )+ → P+(X ) that maps

each profile R to an outcome O ⊆ X . Note that an outcome is a set

of (tied-for-best) alternatives rather than a single alternative, so

voting rules are irresolute in general. Many such rules have been

discussed in the literature, including among others the plurality

rule, the Borda rule, and the Copeland rule [39].

2.3 Axioms and their Semantics
A central concept in voting theory are so-called axioms, normative

principles describing what we demand from a good or sensible

decision procedure. They are used to analyse voting rules since

we take a good voting rule to be one that satisfies a lot of these

desirable principles [28, 37, 39]. We will use the following common

axioms throughout the paper for concrete examples:

• Anonymity: If profileR′
can be obtained fromR by renaming

the agents, then both should be assigned the same outcome.

• Neutrality: If R′
can be obtained from R by renaming the

alternatives, then the outcome for R′
should be obtainable

from the outcome for R via the same renaming process.

• Pareto: If profile R is such that all agents prefer alternative

x to y, then y should not be part of the outcome.

• Condorcet: If an alternative x∗ wins all pairwise majority

contests, then the outcome should be {x∗}.
• Reinforcement: If the outcomes for two profiles with dis-

joint electorates have a nonempty intersection, then that

intersection should be the outcome when the union of both

electorates report preferences.
1

• Cancellation: If all pairwise contests result in ties, then

the outcome should be the set of all alternatives.

Throughout this paper, when talking about axioms more abstractly,

we use A and A′
to refer to individual axioms, A and A ′

to refer

to sets of axioms, and A to refer to collections of sets of axioms.

While the definitions of specific well-known axioms we sketched

above are sufficiently precise for our present purposes, in other

situations it can be important to have available a general means to

formally define the semantics of axioms. One possible route to take

is to encode axioms in a suitable logical language; we are going to

briefly discuss this approach in Section 4.1. But the most general

approach is to simply equate an axiom A with the set of voting

rules F that satisfy A.2 So, following Boixel and Endriss [9], we

define the interpretation (or extension) I(A) of an axiom A as the set

containing exactly those voting rules F that satisfy A. Similarly, for

a set of axioms A, its interpretation is given by the voting rules

satisfying all axioms in A simultaneously, i.e., I(A) =
⋂
A∈A I(A).

We call A nontrivial if I(A) , ∅, i.e., if there exists at least one

voting rule that satisfies all of the axioms in A.
3

3 AXIOMATIC FORCING OF DECISIONS
In this section we develop and discuss a formal definition of the

core concept we introduce in this paper: the concept of an outcome

on a given profile of preferences being forced by a corpus of sets

1
In the original formulation of Reinforcement due to Young [38] electorates are not

restricted to subsets of a fixed universe N ∗
. Imposing this restriction, as we do here,

leads to a weaker variant of the axiom, first proposed by Boixel and Endriss [9].

2
We take this opportunity to stress once more that, for the purposes of of this paper,

we are interested in developing a principled approach to collective decision making

that does not rely on the application of a voting rule to a given profile of preferences.

But voting rules still are a convenient means for fixing the formal semantics of axioms,

even though this is not the only way of defining axioms. Indeed, none of the definitions

for specific axioms given earlier involved any reference to the concept of voting rule.

3
Famous examples for axiom sets that are trivial are those involved in so-called

impossibility theorems, such as the Gibbard-Satterthwaite Theorem [19, 31].
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of axioms, ranked from most to least desirable. We begin with the

more basic case of a single set of axioms forcing an outcome.

3.1 Simple Forcing
Suppose we are presented with a profile R and a set A of axioms

on which to base our decision which outcome to choose for R.
Sometimes the axioms in A might allow us to exclude certain

alternatives from the outcome (e.g., when Pareto is applicable),

and sometimes A might even fully determine—or force—a specific
outcome O . Let us make this idea formally precise.

Definition 1 (Forcing). We say that a nontrivial axiom set A
forces an outcome O ∈ P+(X ) on a given profile R ∈ L(X )+ if every
voting rule satisfying the axioms in A would return that outcome:

F (R) = O for all F ∈ I(A).

Recall that A being nontrivial means that I(A) , ∅. The case

of trivial axiom sets is explicitly excluded from our definition of

forcing, because a trivial axiom set would vacuously force every

conceivable outcome O on every conceivable profile R.
We write ForcedProf(A) for the set of all profiles on which

some outcome is forced by A. If R ∈ ForcedProf(A), we write

ForcedOut(A,R) for the unique outcome forced by A for R.

Example 1. Consider the axiom Condorcet. For any profile

with a Condorcet winner, i.e., an alternative that is preferred by a

majority in every pairwise contest with another alternative, the

Condorcet winner should be the single winning alternative. In other

words, if R has a Condorcet winner x∗, then Condorcet forces the

outcome {x∗} on R, i.e., ForcedOut(Condorcet,R) = {x∗}. △

The concept of forcing is closely related to that of axiomatic justi-
fications for election outcomes introduced by Boixel and Endriss

[9]. What they call a justification for choosing a given outcome has

two parts: (i) a set A of axioms, called the normative basis, such
that choosing any other outcome would be incompatible with A,

and (ii) a step-by-step explanation presented in terms of concrete

instances of those axioms illustrating why that is so. So if A forces

O on profile R, it is a normative basis for choosing O for R.
Let us now establish some basic structural properties of our no-

tion of forcing. The first is a simplified version of a result by Boixel

and Endriss [9, Theorem 1]. It demonstrates that our notion of forc-

ing is well-defined: for a given axiom set, in any given situation,

there only ever is (at most) one outcome that is forced.

Observation 1. On any given profile R, it is impossible for a
nontrivial axiom set A to force two distinct outcomes O and O ′.

This is the case because forcing the outcome O requires that all

voting rules satisfying the axiom set A return this outcome for

profile R. Since voting rules return exactly one outcome for each

profile, the same cannot hold for O ′
as well.

Next we show that, if we add new axioms to a given axiom set,

the range of profiles on which an outcome is forced will increase—as

long as we do not add so many axioms as to render it trivial.

Proposition 2. For any two nontrivial axiom setsA andA ′ with
A ⊆ A ′, it is the case that ForcedProf(A) ⊆ ForcedProf(A ′).

Proof. Take any profile R ∈ ForcedProf(A). So for some out-

come O it holds for all F ∈ I(A) that F (R) = O . Since A ⊆ A ′

holds, we have I(A ′) ⊆ I(A). Thus, in particular for all voting rules

F ∈ I(A ′) it holds that F (R) = O , i.e., A ′
forces O on R. Therefore,

we have R ∈ ForcedProf(A ′). Since R was chosen arbitrarily, we

may infer that ForcedProf(A) ⊆ ForcedProf(A ′) is true. □

A nontrivial setA of axioms is said to characterise a (unique) voting
rule F if F is the only voting rule that satisfies all of the axioms in

the set, i.e., if I(A) = {F }. Some of the most important results in

the literature on social choice theory are characterisation theorems

establishing relationships of this kind [see, e.g. 23, 38]. The follow-

ing simple result shows how such characterisation theorems can

be restated in terms of our notion of forcing.

Proposition 3. An axiom set A characterises a unique voting
rule if and only if A forces some outcome on every profile:

ForcedProf(A) = L(X )+.

Proof. If A characterises some voting rule F ∗, then I(A) =

{F ∗} is the case and so, trivially, for every F ∈ I(A) and every

R, we have F (R) = F ∗(R). By definition, this means that on every

profile R, the axiom set A forces some outcome, namely F ∗(R).
Conversely, suppose that ForcedProf(A) = L(X )+ holds. This

means that for every profile R, all F ∈ I(A) return F (R) =
ForcedOut(A,R). But this means that I(A) only consists of the

unique voting rule that maps R 7→ ForcedOut(A,R) for all pro-
files. In other words, A characterises this rule. □

In the rare cases where an appealing axiom set A is known to

characterise some voting rule F , our approach of looking for an

outcome that is forced by our axioms collapses to the standard

approach of simply applying voting rule F to the profile at hand.

Still, even then, being able to argue that outcome O is forced by a

set of appealing axioms is more satisfying than simply knowing

that it is returned by a given voting rule. More problematically, for

some appealing axiom sets A one might want to work with there

simply will not be a unique voting rule that directly corresponds

to A. This follows from the sparsity of characterisation results—as

well as the pervasiveness of impossibility results [2, 19, 31]—in the

literature. To account for this, let us broaden the notion of forcing.

3.2 Ranked Forcing
We now generalise the fundamental idea of forcing by working

with a ranking of several axiom sets rather than a single such set.

This will allow us, for any given profile R, to always look for the

highest-ranked set that actually does force an outcome on R.
Let us now make this idea precise. A ranked axiom corpus is a

pair ⟨A,≻⟩ consisting of a collection A of axiom sets and a strict

linear order ≻ declared on this collection A. We say that ⟨A,≻⟩ is
nontrivial if every axiom set A in A is nontrivial.

Definition 2 (Ranked Forcing). We say that a nontrivial
ranked axiom corpus ⟨A,≻⟩ forces an outcome O ∈ P+(X ) on a
given profile R ∈ L(X )+ if at least one axiom set A ∈ A forces some
outcome on R and if O is the outcome forced by the top-ranked such
axiom set in A ∈ A:

O := ForcedOut(max≻{A ∈ A | R ∈ ForcedProf(A)}, R).

We extend our notation for plain forcing to the case of ranked

forcing in the natural manner by writing ForcedOut(A,≻,R) for
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the outcome that ⟨A,≻⟩ forces on profile R, and ForcedProf(A,≻)
for the set of all profiles on which some outcome is forced by ⟨A,≻⟩.

By Proposition 3, A including an axiom set A that characterises

a unique voting rule is a sufficient (but not a necessary) condition

for ⟨A,≻⟩ forcing an outcome on every profile. So by placing a set

A that characterises some rule (which might not be ideal but offers

a decent level of quality) at the bottom of the ranked axiom corpus,

we can ensure that there always is an outcome being forced.

Example 2. Let ⟨A,≻⟩ be a corpus of the form {Condorcet} ≻

A, whereA is some axiom set characterising the well-known Borda
rule [38, 39]. It is easy to see that {Condorcet} forces an outcome

on all profiles that have a Condorcet winner, i.e., an alternative that

beats all others in pairwise majority contests, and that it does not

force an outcome on any other profile. Since {Condorcet} is the

top-ranked set in the corpus, on Condorcet profiles the corpus

⟨A,≻⟩ forces the singleton containing the Condorcet winner. On

all other profiles, by assumption, ⟨A,≻⟩ forces the same outcome

as would be returned by the Borda rule. Overall, we end up with

the same form of decision making as has been proposed by Duncan

Black back in 1958, who argued we should choose the Condorcet

winner when it exists and otherwise use the Borda rule [7]. △

Also note that by placing an axiom setA that characterises a unique

rule F at the very top of the ranked axiom corpus, voting by axioms
reduces to simply applying F to produce outcomes. In this sense

our approach can be seen as generalising the classical approach of

social choice theory, where we first use axioms to motivate voting

rules and then apply those voting rules to concrete profiles.

We have not yet commented on the question where ⟨A,≻⟩ might

come from. It seems natural to assume that wemight start out with a

large set of candidate axioms and then use some or all of the subsets

of that set to populate A. But supplying, from scratch, a complete

and strict ranking over the sets in A might be infeasible in practice.

First, comparing sets of items is more complex a task for humans

than comparing items themselves and, second, the number of axiom

sets might be exponential in the number of axioms, yielding an

extensive number of items to rank. To overcome this difficulty, an

alternative approach is to provide a ranking ▷ on single axioms and

to then lift it to a ranking ≻ on the sets in A. There are myriad

ways of how to lift an order on objects to an order on sets of objects,

and there is a large literature on how to axiomatically characterise

such preference extensions [4]. In our context, there are two natural

objectives when lifting a ranking: First, all else being equal, smaller

axiom sets should be preferred over larger sets since we want to

use only as many axioms to force an outcome as are absolutely

needed. Second, axiom sets with highly-ranked axioms should be

preferred over those with less desirable axioms. The following

example illustrates one way of achieving these objectives.

Example 3. Let ▷ be a strict linear order over a set of axiomsA∗

and let A be an axiom corpus only featuring axioms from A∗
. We

define the shortlex maximax ranking4 ≻ over A as follows:A ≻ A ′

holds if and only if either |A| < |A ′ |, or in case both sets have the

same size, there is an index i such that the top i axioms in both

4
This takes the lexicographic maximax ranking by Pattanaik and Peleg [25] as the basis
and then analogously applies the principle of shortlex [see, e.g. 33] to give priority to

shorter sets over larger sets.

sets are the same but the (i + 1)st-highest ranked axiom in A is

preferred to the one in A ′
with respect to ▷.

For instance, consider the axioms Par ▷ Con ▷ Ano. This order

would be lifted to this order on sets: {Par} ≻ {Con} ≻ {Ano} ≻

{Par,Con} ≻ {Par,Ano} ≻ {Con,Ano} ≻ {Par,Con,Ano}. △

Another way of generating a ranking ≻ on a collection A of axiom

sets would be to associate each axiom A with a cost c(A), calculate
for each axiom set the sum of the costs of the axioms it contains,

and then rank the sets from cheapest to most expensive. Here,

c(A) might reflect the cost of persuading someone to accept A. For
example, wemight expect that most people are more likely to accept

Pareto than, say, Cancellation. To fit our definition of a ranked

axiom corpus with a strict ranking ≻, care would have to be taken

when defining the cost function c , so as to ensure that no two axiom
sets end up having the exact same total cost.

5

Example 4. Again, consider the three axioms from the previ-

ous example, now with assigned costs c(Par) = 1, c(Con) = 3,

c(Ano) = 5. We obtain the following costs (displayed in the

induced order ≻ from most to least preferred): c({Par}) = 1,

c({Con}) = 3, c({Par,Con}) = 4, c({Ano}) = 5, c({Par,Ano}) =
6, c({Con,Ano}) = 8, c({Par,Con,Ano}) = 9. △

3.3 Extensions
As mentioned earlier, it might be a challenge to arrange all sets of

an axiom corpus in a coherent, strict ranking. This is so not only

because of the possibly very large number of axiom sets involved,

but also because one may find two sets incomparable or one may

be indifferent between two axiom sets.

To address this concern, one could extend our approach to allow

for corpora A with weak or incomplete orders ⪰. The former are

binary relations that are transitive and strongly connected (so allow

for clusters of equally preferred elements), while the latter need not

be connected (i.e., they allow for two sets to be incomparable). In

these cases there not always is a single top-ranked axiom set forcing

an outcome, but there could be multiple (either equally-ranked or

incomparable) ones.We then can use the solution concept of possible
winners [21] to define ranked forcing. The idea is that instead of

returning thewinning set, we determinewhich alternatives could be

in the winning set according to current information. If the ranking

were to be refined at a later point in time, the outcome would then

be a subset of the set of possible winners.

Formally, a nontrivial (weakly or incompletely) ranked axiom

corpus ⟨A, ⪰⟩ forces an outcome O ∈ P+(X ) on a given profile

R ∈ L(X )+ if O is the union of the outcomes forced by the top-

ranked axiom sets in A that force some outcome:

O :=
⋃

A∈A∗

ForcedOut(A,R),

where A∗ := max⪰{A ∈ A | R ∈ ForcedProf(A)} is the set of

maximal axiom sets in the corpus with respect to ⪰ that force some

outcome on profile R.
We are not going to consider this possible extension of our ap-

proach any further in the remainder of this paper.

5
One pragmatic way of achieving that no two axioms sets have the same total cost

would be to first define a cost function mapping axioms to natural numbers and to

then refine that function by adding for each axiom A a small real number chosen

uniformly at random from the interval [0, ε ], for a suitably small constant ε .

Session 6C: Voting II
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2070



4 COMPUTATIONAL CONSIDERATIONS
Now that we have motivated and formally introduced the notion

of forcing and explained how it can be used for taking collective

decisions, in this section we discuss the design of algorithms for

determining the outcome forced in a given situation. We begin by

showing how SAT solvers can be utilised to this end by encoding

axioms in a simple propositional language. We then sketch the

limitations of any algorithm designed to determine forced outcomes

by establishing the computational complexity of this problem.

Due to the similarities between the forcing of outcomes and

axiomatic justifications for outcomes [9] we had noted earlier, there

will be close links both to the design of practical algorithms for jus-

tifying election outcomes [24] and to the computational complexity

of computing axiomatic justifications [8].

4.1 Forcing as Satisfiability Solving
Recall that an axiom set A forces an outcome O on a profile R if

every voting rule F that satisfiesA returnsO when applied to R. In
other words, proposing any outcome other than O for R would be

inconsistent with the axioms in A. So we can think of the task of

proving that O is the right outcome as the task of proving that A

together with the assumption that O is not the outcome is logically

inconsistent. To operationalise this idea, we need to find a way of

encoding axioms into a suitable logic. If we succeed, we can make

use of state-of-the-art tools for automated reasoning to handle the

task of determining forced outcomes. This is precisely the approach

we take. There, by now, is much precedent for this approach in

the literature on computational social choice, where encodings of

axioms into propositional logic have been used so as to be able to

utilise modern SAT solvers [6] to reason about scenarios of collec-

tive decision making. Most such contributions of this kind have

been concerned with offering computational support for proving

impossibility theorems [see, e.g., 12, 17, 18, 26, 36], but Nardi et al.

[24] utilised this idea to design a practically viable algorithm for

computing axiomatic justifications for election outcomes.

So let us define a propositional logic to reason about voting

scenarios that allows us to speak about which alternatives win for

a given profile. The models of formulas in this logic are given by

voting rules. Similar encodings are common in the literature on

using SAT solvers to prove impossibility theorems, starting with the

work of Tang and Lin [36], and have also been used, for instance,

by Cailloux and Endriss [13] and Nardi et al. [24] in the context of

computing justifications for election outcomes.

We use propositional variables of the form pR,x , where R is the

name of a profile and x is the name of an alternative, to express that

for profile R alternative x belongs to the outcome. We use the usual

connectives to define a propositional language L of formulas φ:

φ ::= pR,x | ¬φ | φ ∨ φ | φ ∧ φ

Note that a voting rule F can be represented in this language by

taking a conjunction over all profiles and alternatives and including

either the positive or negative literal, depending on whether the

alternative is contained in the voting rule’s outcome for the profile

in question or whether it is not.
6
Thus, every conceivable axiom A

6
Observe that here we rely on our assumption that the universe N ∗

is finite, which

ensures that any such formula will have finite length.

can be expressed in our language L by taking the disjunction over

all the conjunctions corresponding to voting rules in I(A).

Example 5. The axiom Pareto can be encoded in L as follows:∧
y∈X

∧
x ∈X \{y }

∧
R:∀i .(x,y)∈Ri

¬pR,y .

Here, the third conjunction operator is intended to range over all

profiles R for which it is the case that every agent i who expresses

a preference in R ranks x above y. △

Next, let us define the semantics for L, by specifying under which

circumstances a given voting rule F satisfies a given formula φ.
We say that an atomic formula pR,x is true for the voting rule F
(or that F is a model for pR,x ), denoted by F |= pR,x , if and only if

x ∈ F (R) is the case. We recursively extend the truth conditions

for the connectives in the familiar way [see, e.g. 14, Chapter 1].

Then we can define the interpretation of a formula φ as the set of

all voting rules that φ is true for, i.e., I(φ) := {F | F |= φ}. We call a

formula φ satisfiable if there exists some rule that is a model for it,

i.e., if I(φ) , ∅. Note that if φ describes an axiom A, then φ being

satisfiable corresponds to A being nontrivial. We say that a set of

formulas Σ logically entails a formula φ, denoted by Σ |= φ, if for
all rules F with F |= ψ for allψ ∈ Σ it also is the case that F |= φ.

Now we are in a position to express the notion of forcing as a

condition formulated in terms of logical consequence:

Observation 4. A nontrivial set of axiomsA encoded as formulas
in L forces an outcome O on profile R if and only if

A |=
∧
x ∈O

pR,x ∧
∧

x ∈X \O

¬pR,x .

By a slight abuse of notation, we will refer to the righthand formula

by pR,O . It expresses that for profile R outcome O is assigned.

Note that asking whetherA logically entails assigning a specific

outcome O is equivalent to determining whether A together with

the condition that O is not assigned to R is unsatisfiable. Therefore,

we can use a SAT solver to determine whether a nontrivial axiom

set A forces an outcome O . However, in standard propositional

logic the models are given by arbitrary valuations as opposed to

voting rules. So to feed our problem into a standard SAT solver, we

need to add to every formula the requirement that the model is a

well-defined voting rule, i.e., that for everyR, at least one alternative
must be chosen. This corresponds to the following formula:

atLeastOne :=
∧

R∈L(X )+

∨
x ∈X

pR,x .

To summarise, a nontrivial axiom setA forcesO on R if and only if

SAT returns false for the formula atLeastOne∧
(∧

A∈A A
)
∧¬pR,O .

We might also want to characterise—using our logic—when R ∈

ForcedProf(A) is the case, i.e., we might want to be able to tell

whetherA forces any outcome at all on R. In view of Observation 4,

to force an outcome, A will have to determine for each alternative

whether it should belong to the outcome. Formally, for each x either

pR,x or ¬pR,x must be a logical consequence of A. This provides a

clear way of computing the forced outcome. Conversely, A does

not force an outcome on R if we can find an alternative for which

the axiom does not determine whether it should be in the outcome.
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Observation 5. A nontrivial axiom set A does not force any
outcome on R if and only if there exists an x ∈ X such that both

A ̸|= pR,x and A ̸|= ¬pR,x .

Note that, by definition of the logical consequence relation, this

means that there exist voting rules F1, F2 ∈ I(A) such thatx ∈ F1(R)
and x < F2(R). So since these two rules return distinct outcomes on

profile R, no outcome is forced.

Again, we can transform this into a SAT problem by checking

for each alternative x whether both atLeastOne ∧
(∧

A∈A A
)
∧

pR,x and atLeastOne ∧
(∧

A∈A A
)
∧ ¬pR,x are satisfiable formulas.

This provides us with an algorithm for deciding whether a given

nontrivial axiom set forces an outcome on a given profile. This

algorithm amounts to up to 2m calls to a SAT solver (wherem is

the number of alternatives). If for some alternative both SAT calls

succeed, then no outcome is being forced. Otherwise, for each pair

of calls exactly one will succeed. Then, from the answers returned

by the SAT solver, we can construct the forced outcome in question.

4.2 Computational Complexity
While we have been able to outline a pragmatic approach for com-

puting forced outcomes that exploits the availability of advanced

SAT solving technology, it nevertheless is clear that this is a very de-

manding task. To better understand this problem, we now analyse

its computational complexity. We focus on the most fundamental

question one can ask in our context, namely whether or not there

exists a forced outcome for a given axiom set and a given profile:

ExistsForced

Input: L-encoding of nontrivial axiom set A, profile R ∈ L(X )+

Question: Is it the case that R ∈ ForcedProf(A)?

Thus, when presented with a setA of axioms, all encoded in propo-

sitional logic, and a profile R, we ask whether A forces some out-
come on R.7 Unsurprisingly, this problem is computationally in-

tractable. The following result establishes its precise complexity.

Theorem 6. The problem ExistsForced is coNP-complete in the
combined size of the L-encodings of the axioms in the set provided.

Proof. Given that a voting rule satisfies (the L-encodings of)

all axioms in A if and only if it satisfies their conjunction, w.l.o.g.

we may assume that A consists of a single axiom A.
To show coNP-completeness of ExistsForced, we prove NP-

completeness of the dual problem: decide whether—for given A =

{A} and R—it is not the case that R ∈ ForcedProf({A}).
To establish membership in NP for the dual problem, we need to

show that there is a way of providing a polynomial-time-verifiable

certificate for the claim that A does not force an outcome on R. In
principle, a suitable certificate could consist of two voting rules

F1, F2 ∈ I(A) and an alternative x with x ∈ F1(R) and x < F2(R),
showing that there are two rules that both satisfy A and that return

distinct outcomes for R. But for this to be a suitable form of provid-

ing certificates, we still need to demonstrate that such a certificate

can be represented using a number of bits that is polynomial in the

7
We do not include N ∗

and X as part of the input of ExistsForced, because this

information is implicit when we specify a profile R , which we can think of as a partial

function from N ∗
into the set of preferences over X .

size of (the L-encoding of) A and that we can verify x ∈ F1(R) and
x < F2(R) in polynomial time.

Recall that there is a one-to-one correspondence between voting

rules in I(A) andmodels of the formula atLeastOne∧A. So a concrete
way of providing a voting rule as part of a certificate is to provide

the corresponding model. Verifying x ∈ F1(R) and x < F2(R) then
reduces to one simple lookup of the truth value for the variablepR,x
in each of the two models, so certainly can be done in polynomial

time. What about the size of the certificate? If the encoding of A
mentions all propositional letters in the language (as is the case,

for instance, for Anonymity), then the size of any of its models is

at most that of the size of A—and thus surely polynomial. But for

axioms (such as Condorcet) that only refer to a small subset of all

possible pairs of profiles and alternatives, this is less obvious (and

simply false in some extreme cases). But for such axioms A we can

use the following trick. We know that, if the encoding of A never

mentions pR∗,x ∗ , then A does not rule out the possibility that in

profile R∗ alternative x∗ is part of the outcome. So we can restrict

attention to rules F1 and F2 with x∗ ∈ F1(R
∗) and x∗ ∈ F2(R

∗)

for all profiles R∗ and alternatives x∗ for which pR∗,x ∗ does not

occur in the encoding of A. By using the convention that for any

description of a model that does not mention a specific variable

the intended meaning is that that variable is set to true, we obtain
a way of representing rules that requires a number of bits that is

polynomial in the size ofA. It now remains to be shown that we can

always verify in polynomial time that a given model really satisfies

atLeastOne ∧ A. Such a model-checking operation clearly can be

performed in time polynomial in the size of atLeastOne ∧ A, but
once again this size might be super-exponential in the size ofA. But
now we can use the same kind of trick as before and simply work

with a shortened version of atLeastOne that omits every conjunct

(pR∗,1∨· · ·∨pR∗,m ) for whichR∗ is nevermentioned in the encoding

of A. This completes the proof of NP-membership.

Next, we show NP-hardness for the dual problem via a

polynomial-time reduction from SAT. Suppose we are given a for-

mula φ and want to check its satisfiability. Let {p1, . . . ,pk } be the
set of propositional variables occurring in φ. Set n = 1 and define

m to be the smallest natural number such thatm! ≥ k + 1 (meaning

thatm ≥ 2). Our voting model then contains as many profiles as

there are distinct ballots, namely m!. Fix an enumeration of the

profiles L(X )+ = {R1,R2, . . . ,Rm!} and identify the variables pi
with pRi ,1 for i = 1, . . . ,k . We can now express φ in terms of (some

of) the variables pR,x . Denote this formula by Aφ := φ[pi/pRi ,1].
So we replace every occurrence of a variable pi in φ by pRi ,1 for
all i = 1, . . .k . Now Aφ expresses whatever φ said, but now speaks

about whether alternative 1 wins or looses in profiles R1, . . . ,Rk .
Consider the formula A := Aφ ∨

∧
x ∈X pRk+1,x , which is satisfi-

able because the second disjunct always is (it corresponds to assign-

ing the full outcomeX to profileRk+1). We now treatA as our axiom

and consider the dual problem of ExistsForced for profileRk+1. Re-
call thatA does not force any outcome if and only if we can find an al-

ternativey such that both atLeastOne∧A∧pRk+1,y and atLeastOne∧
A ∧ ¬pRk+1,y are satisfiable. Observe that the first formula is log-

ically equivalent to (atLeastOne ∧ Aφ ∧ pRk+1,y ) ∨ (atLeastOne ∧∧
x ∈X pRk+1,x ), which is satisfiable since the second disjunct is.

The second formula is logically equivalent to (atLeastOne ∧Aφ ∧
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¬pRk+1,y )∨(atLeastOne∧¬pRk+1,y ∧
∧
x ∈X pRk+1,x ), which in turn

is equivalent to just atLeastOne ∧Aφ ∧ ¬pRk+1,y .
So deciding the dual problem of ExistsForced (with inputs {A}

and Rk+1) boils down to deciding the satisfiability of atLeastOne ∧
Aφ ∧¬pRk+1,y for all y, aiming at finding one such alternative y for

which the formula is satisfiable. But note that the given formula

is satisfiable—for any choice of y—if and only if Aφ is. Indeed,

atLeastOne can always be satisfied by making pRℓ,2 true for every

profile Rℓ with ℓ , k + 1 and making pRk+1,y′ true for y′ , y. This
ensures that the literal ¬pRk+1,y , too, can always be satisfied since it

refers only to profile Rk+1, which renders it independent from Aφ .
Finally, since we merely renamed the variables, Aφ is satisfiable if

and only if φ is satisfiable. This completes the reduction. □

One practical take-away from Theorem 6 is that ExistsForced

can be decided with a single call to a SAT solver. This observation

might seem to be in conflict with our earlier discussion of a practical

algorithm for computing forced outcomes, which involved 2m calls

to a SAT solver. To understand that, in fact, there is no such conflict,

note that the 2m calls of our algorithm could in principle be reduced

to a single call by renaming all the variables in each of the 2m
formulas involved and then, for each alternative, constructing the

conjunction of both formulas associated with it, and finally taking

the disjunction of all these conjoined formulas. This is possible

because, to determine that a given axiom set does not force any

outcome for a given profile, we do not need to be able to retrieve

the individual results for the 2m SAT calls but only need to know

the result for this combined call.

How should we interpret our complexity result? Boixel and de

Haan [8] study the complexity of closely related problems arising

in the context of the justification and explanation of election out-

comes and show these problems to be hard for complexity classes

that, under the usual complexity-theoretic assumptions, are located

above coNP. Specifically, for the problem of deciding existence of a

justification they prove Σ
p
2
-completeness when axioms are encoded

in propositional logic (albeit using a somewhat different encoding

than we do). So in view of these known results, Theorem 6 should

be interpreted as surprising and as good news. The difference in

complexity is due to the fact that in our model we do not require a

step-by-step explanation for why a given outcome is forced.

Having said this, it also is important to not over-interpret our

findings. It still is the case that the L-encoding of certain axioms

can be huge, and the upper bound established by Theorem 6 of

course holds only relative to the size of this encoding.

Finally, while our SAT-based algorithm has the advantage of

being completely general, there is room for the development of

special-purpose algorithms tailored to specific axioms. For instance,

Cailloux and Endriss [13] and Peters et al. [27] have done so for the

justification problemwith axioms characterising the Borda rule [38].

A class of structurally simple axioms, where such a tailored ap-

proach seems particularly promising, are the so-called algebraic
axioms introduced by Kaminski [20]. There are three kind of basic

algebraic axioms (stationary, variance, invariance) fromwhichmore

complex axioms can be built. While stationary axioms express that

a certain outcome is forced on a specified profile, (in-)variance ax-

ioms are conditionals stating that, if a special outcome is assigned to

a given profile, then some particular outcome needs to be assigned

to another profile. It is conceivable that for those axioms there

exist more efficient algorithms to determine whether an outcome

is forced on a profile. This boils down to answering the question of

whether there is a “path" of axioms, starting with a stationary one,

followed by conditionals such that the antecedent of one axiom is

exactly the consequent of the next one, ending with a consequent

that yields a forcing statement about the target profile.

5 AXIOMATIC ANALYSIS
In this section we want to analyse the decision making process de-

veloped earlier and present interesting instances thereof. As part of

this analysis we consider the case in which ranked forcing induces

a voting rule. We then use the axiomatic method to determine when

this rule itself satisfies some of the given axioms.

5.1 Intraprofile Axioms
For our first axiomatic result, we identify a family of axioms that are

particularly well-behaved in the context of voting by axioms. This
is the family of what Fishburn [16, Chapter 14] calls the intraprofile
axioms. Intraprofile axioms have a particularly simple structure

in that they only speak about conditions on outcomes “one pro-

file at a time”. In our logical encoding, they can be formulated as

conjunctions of conditions that each relate to just one single profile.

Example 6. Pareto is an intraprofile axiom since, whenever the

axiom requires alternative y to not be part of the outcome for a pro-

file R due to y being dominated by x , this condition can be verified

by considering R in isolation. Condorcet and Cancellation also

are easily seen to be intraprofile axioms.

On the other hand, Reinforcement is not an intraprofile ax-

iom, because each instance speaks about three profiles, imposing

an interdependency, namely that the outcome of the unified elec-

tion must be the intersection of the disjoint elections’ outcomes.

Anonymity and Neutrality also are not intraprofile axioms. △

While the notion of intraprofile axiom is used extensively in social

choice theory, and while its intuitive meaning is unambiguous, we

in fact are not aware of a formal, language-independent definition

anywhere in the literature. The following definition closes this gap.

Definition 3 (Intraprofile axioms). We say that an axiom A
is an intraprofile axiom if and only if it is the case that

I(A) =
⋂

R∈L(X )+

{F | F (R) ∈ {F ′(R) | F ′ ∈ I(A)}}.

The set of rules F occurring on the righthand side of the equa-

tion is the set of all voting rules that are consistent with the in-

traprofile conditions that A imposes for profile R. An arbitrary

(non-intraprofile) axiom could impose further conditions on how

the outcomes of multiple profiles should depend on one another.

The equation above, however, requires that no conditions beyond

the intraprofile conditions are imposed by the axiom.

We now show that intraprofile axioms are particularly attractive

and natural to use for voting by axioms since, if such an axiom

forces outcomes (possibly jointly with other axioms), not only will

every forced outcome be consistent with the axiom but the pro-

cedure (across all such profiles) will be as well. Note that, if an

axiom requires that the outcome of one profile is dependent on
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the outcome of another profile, this interdependency might not

be preserved when two different axiom sets in our corpus end up

forcing outcomes on these profiles. In such a situation, the two

forced decisions jointly might not be consistent with the axiom.

This problem does not occur for intraprofile axioms since they do

not allow for such interdependencies. This is why we can show that,

for a given intraprofile axiom A, it is the case that the behaviour
of voting by axioms across all profiles where A belongs to the top-

ranked axiom set forcing an outcome coincides with the behaviour

of a voting rule that satisfies A.

Theorem 7. Given a nontrivial ranked axiom corpus ⟨A,≻⟩ and
an intraprofile axiom A, there exists a voting rule F ∈ I(A) such that
for all profiles R with A ∈ max≻{A ∈ A | R ∈ ForcedProf(A)},
we have F (R) = ForcedOut(A,≻,R).

Proof. We want to construct a voting rule that satisfies A and

that assigns ForcedOut(A,≻,R)wheneverA lies in the top-ranked

set that forces an outcome on R. It follows from the definition of

an intraprofile axiom that a voting rule F satisfies A if and only if,

for every profile R, we have F (R) ∈ {F ′(R) | F ′ ∈ I(A)}. Note that,
if R is such that A lies in the top-ranked forcing set, then the forced

outcome is consistent with A, i.e., ForcedOut(A,≻,R) ∈ {F ′(R) |
F ′ ∈ I(A)}. Thus, any voting rule that assigns ForcedOut(A,≻,R)
on such profiles R and any outcomes allowed by the axiom on the

other profiles satisfies what we were looking for. □

As suggested before, this theorem is not true for all axioms since

there may be multi-profile conditions imposed by the axiom that

the forcing disregards. For example, Anonymity per se does not
determine which alternatives should win for a given profile but it

requires that profiles differing only by renaming the agents should

have the same outcome. Thus, outcomeO might be forced on profile

R by one axiom setA including Anonymity while, on profile R′
ob-

tained from R by renaming agents, a completely unrelated outcome

O ′
is forced by another axiom setA ′

that also contains Anonymity.

Then there would be rules F and F ′ satisfying Anonymity with

F (R) = O and F ′(R′) = O ′
, yet there is no single anonymous voting

rule that will map both these profiles to the given outcomes.

5.2 Induced Rules and Characterisation Results
If ForcedProf(A,≻) = L(X )+, so if the ranked axiom corpus

⟨A,≻⟩ is sufficiently rich to force an outcome on every possible

profile, we can think of ranked forcing as defining a voting rule.

Definition 4 (Induced voting rule). Let ⟨A,≻⟩ be a nontrivial
ranked axiom corpus that forces an outcome on every possible profile.
Then the voting rule F ⟨A,≻⟩ induced by ⟨A,≻⟩ is defined as follows:

F ⟨A,≻⟩ : R 7→ ForcedOut(A,≻,R)

We already explained (in Section 3.2) that, if a voting rule F is char-

acterised by A and we place that axiom set at the top of a ranked

axiom corpus, then voting by axioms is equivalent to applying F to

take decisions. We now want to present a result that further refines

this simple insight by establishing that, if characterising axioms

are placed high enough in a corpus, then the voting rule induced

by ranked forcing will be the characterised rule itself. In particular,

the induced voting rule will satisfy the characterising axioms.

Theorem 8. If an axiom set A uniquely characterises a voting
rule F , so if I(A) = {F }, then for any nontrivial ranked axiom
corpus ⟨A,≻⟩ such that we have A ⊆ max≻{A

′ ∈ A | R ∈

ForcedProf(A ′)} for every profile R, the induced voting rule F ⟨A,≻⟩
coincides with the characterised rule F .

Proof. By Proposition 3, we know that A forces an outcome

on every profile. Since, further, A is contained in the top-ranked

forcing set of the corpus for every profile, we know that, for every

R, we have ForcedOut(A,≻,R) = ForcedOut(A,R) = F (R). By
definition of induced voting rules, this yields F ⟨A,≻⟩ = F . □

As a final observation, we note that the notion of induced voting

rule also allows us to formulate a somewhat stronger variant of

Theorem 7: If an intraprofile axiomA is contained in the top-ranked

axiom set forcing an outcome for every profile R, then the voting

rule induced by the given ranked axiom corpus satisfies A.

6 CONCLUSION
We introduced a novel approach to collective decision making from

first principles. Instead of using a—necessarily imperfect—voting

rule, we proposed to use axioms to determine and justify outcomes

in voting scenarios. By using a collection of multiple axiom sets, this

approach allows us to involve many (even mutually inconsistent)

axioms in the decision process. At the same time it must be noted

that this method is only ever as good as the axioms it uses. The

decisions taken will be appropriate only if the axioms are.

We presented one way of implementing the framework to com-

pute outcomes based on forcing. The encoding is done in a simple

propositional logic that is expressive enough to capture every pos-

sible axiom (though it can be difficult to parse encoded axioms due

to the high number of propositional variables). This allows us to

use a SAT solver to determine forced outcomes. Nonetheless, the

complexity result we obtained suggests that applying voting by
axioms remains a challenging task in practice.

We further explained how our approach can be seen as an exten-

sion of the classical approach of social choice theory by showing

that voting by axioms can sometimes be represented by a voting

rule. We highlighted two cases in which our procedure enjoys par-

ticularly attractive properties.

Future work should be dedicated to making it easier to use voting
by axioms in practice. One aspect of this would be to develop a

formal language for encoding axioms that is more compact and that

lends itself more easily to presenting axioms to users in human-

readable form. Some steps in this direction have been taken by

Boixel and de Haan [8] and more broadly in the literature on mod-

elling social choice scenarios in mathematical logic [see, e.g., 1, 15].

Another aspect would be to develop heuristics leading to faster

algorithms to determine forcing, for instance, along the lines of re-

cent work by Nardi et al. [24]. Related to this point, it also would be

interesting to study special classes of axioms, such as the algebraic

axioms of Kaminski [20], for which forcing is easier to determine.

Finally, more research should be done on how to support users to

construct a suitable corpus of axioms and, specifically, a suitable

ranking of sets of axioms drawn from that corpus. The shortlex
maximax ranking and the cost-based approach briefly discussed in

this paper are just two of many possible ways of doing this.
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