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ABSTRACT
Generating explanations of high quality is fundamental to the de-
velopment of trustworthy human-AI interactions. We here study
the problem of generating contrastive explanations with formal
robustness guarantees. We formalise a new notion of robustness
and introduce two novel verification-based algorithms to (i) identify
non-robust explanations generated by other methods and (ii) gener-
ate contrastive explanations augmented with provable robustness
certificates. We present an implementation and evaluate the util-
ity of the approach on two case studies concerning neural agents
trained on credit scoring and image classification tasks.
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1 INTRODUCTION
The forthcoming adoption of AI in modern societies has lead to the
emergence of sophisticated multi-agent systems in which humans
and artificial agents interact and collaborate [2, 14, 24]. Advances in
deep learning [19] have facilitated the development of neural agents
governed by neural networks (NNs) synthesised from data [1]. We
call Human-Neural Multi-Agent System (HNMAS) a system com-
posed by humans and neural agents interacting and communicating
in view of achieving common goals. While HNMAS may offer rapid
gains in terms of performance and generalisation, neural agents
are known to produce outputs that are not normally intelligible
to humans, thus hindering the development and deployment of
HNMAS that can be trusted by human agents.

The area of Explainable AI (XAI) is concerned with making
NNs, and other learned models, more understandable to humans. A
widely recognised factor contributing towards this goal is the avail-
ability of contrastive explanations (CEs), i.e., semi-factual (SF) [17]
and counterfactual (CF) [21] arguments supporting or contrasting
the decisions taken by an NN. Crucially, CEs are typically used to
provide recourse to individuals that have been impacted by the deci-
sions of an AI. Several approaches have been proposed to compute
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CEs for NNs according to different quality criteria, such as validity
and proximity [29], plausibility [17] and actionability [28]. Our fo-
cus here is the criterion of robustness [4, 7, 8, 15, 25, 27]; in particular,
we study robustness to noisy execution. Current algorithms generate
explanations under the assumption that the human receiving a re-
course recommendation will implement it exactly. However, several
studies have reported that this rarely happens in practical appli-
cations [3, 22]. The noise introduced may jeopardise the validity
of CEs, ultimately reducing the trust humans put into their neural
agent counterpart. To remedy this, we draw from the literature on
(local) robustness verification of NNs [5, 10, 12, 12, 16, 18, 23, 30]
and propose a novel approach to generate CEs that are robust to
noisy execution.

2 ROBUST EXPLANATIONS VIA
VERIFICATION

The notion of robustness that we study is tied to variations of
a CE’s classification with respect to changes applied to the CE
itself. Intuitively, if a CE is modified slightly then the classification
provided by the classifier for that new input should not change
radically. If this property does not hold, it is likely to signify that
the CE is an artefact of the NN and does not represent, nor explain,
its underlying classification logic [11]. Furthermore, this lack of
robustness is not in line with human intuition and expectations,
which ultimately weakens the power of CEs within HNMAS.

Contributions.We begin by formalising the notion of robust-
ness to noisy execution which we target in this work.

Definition 1. Consider an input xF and a binary neural network
classifier f such that f (x ) = 0. Let x be a CF (resp. SF) explanation
computed for xF s.t. f (x ) = 1 (resp. f (x ) = 0). The CF (resp. SF)
explanation x is said to be robust to noisy execution up to magnitude
δ if for all inputs x ′ such that ∥x ′−x ∥∞ ≤ δ , we have that f (x ′) = 1
(resp. f (x ′) = 0).

In a nutshell, Def. 1 requires that explanations remain valid
across a (reasonably-sized) neighbourhood. This is to ensure that
they cannot be invalidated by small noise introduced by humans
when implementing recourse recommendations.

We then propose an approach based on formal verification of
neural networks to mechanise the analysis and discovery of con-
trastive explanations and associated robustness. The approach relies
on solving the following two problems:

(1) Prove that a (possibly non-robust) CE exists for a given
input. We show that answering this question yields an NP-
complete problem, which can be recast as a verification prob-
lem and solved using any (complete) verification procedure.
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(2) Prove that a CE is robust to noisy execution. We show
that answering this question yields a coNP-complete prob-
lem, which again can be solved using verification techniques.

3 EXPERIMENTAL EVALUATION
We use the results above to derive algorithms to (i) determine
whether explanations generated by other methods are robust for
user-defined δ ’s and (ii) generate robust explanations. We apply
these algorithms on different input data types (tabular and images)
and neural architectures (fully-connected and convolutional). Our
approach can be instantiated with any complete neural network
verifier; the current implementation leverages Venus [5] and Ver-
iNet [13]. Both verifiers are used as black-boxes from their user
interface; we refer to the respective papers for more details. We
evaluated our approach on two case studies involving neural agents
trained to perform credit scoring and traffic sign recognition.

Automated credit scoring. We consider the verification and
generation of robust CF explanations for a neural agent trained to
perform credit scoring tasks based on the HELOC dataset [9].

Experiment 1.We used verification techniques to check the ro-
bustness of heuristically-computed explanations. For these experi-
ments we considered Contrastive Explanation Method (CEM) [6],
a popular algorithm which uses a gradient-based search to com-
pute SF and CF explanations. Our aim is to understand the extent
to which explanations provided by CEM are robust. Given a con-
trastive explanation x , a neural classifier f and a robustness thresh-
old δ , we formulate a verification query to establish whether f
satisfies local robustness for x and δ . If local robustness is satisfied,
then the explanation is guaranteed to be δ -robust. Otherwise, a
counterexample can be returned that identifies an input for which
the explanation is invalidated. Overall, we observed that both SFEs
and CFEs obtained via CEM are robust for small δ ’s. However, their
robustness decreases when considering larger domains, revealing
that most of the explanations proposed by the tool are not robust.
This is understandable as CEM is not designed to generate robust
explanations; however users have no way to determine the extent
to which an explanation is robust.

Experiment 2.We also present a procedure to generate robustness
guarantees for CF explanations. The algorithm receives an input
xF , a neural classifier f and a robustness threshold δ . The overall
aim of the algorithm is to first decide whether a CF explanation
x exists; if one can be found, the algorithm operates further steps
to quantify its robustness. More specifically, a binary search is
performed to find the largest δ across which x is robust. At each
step of the search, a verification query checking the robustness
of the explanations is performed until either the largest robust δ
is found or a termination condition is reached. Our experiments
reveal that the explanations generated are characterised by small
robustness thresholds on average; this information can be used
by regulators and users alike to select only explanations that are
robust for larger δ ’s, and filter out others that may be problematic.

Experiment 3.We performed additional experiments and modi-
fied our procedure to account for actionability (as well as robust-
ness). Actionability is typically enforced by allowing changes only
on input features which are classified as mutable a-priori (e.g., the
education level of an applicant may change while their ethnicity

Figure 1: Our GUI to generate robust SF explanations.

may not). Such domain knowledge can be seamlessly incorporated
into our framework. We validated the ability of our approach to
generate robust, actionable CF explanations for the HELOC dataset.
Our results have important practical implications: our explanations
suggest changes that are achievable in practice and are formally
guaranteed to yield the expected outcome for any slight perturba-
tion of magnitude less than the robustness threshold identified. We
see these results as an important contribution toward complement-
ing existing formal approaches for XAI [20].

Traffic sign recognition. We also considered agents dealing
with traffic sign recognition tasks based on the GTSRB dataset [26],
which contains images of traffic signs collected under strong vari-
ations in visual appearance due to, e.g., illumination and weather
conditions. Given such variability, a neural agent may fail to pro-
vide robust decisions: a correctly classified image may cease to
be so if small photometric changes were applied to it. We then
show how SF explanations, augmented with robustness guarantees,
can provide formal assurances to demonstrate that images will be
classified correctly even in presence of photometric changes.

Experiment 4. We trained a convolutional neural network to
solve the GTSRB classification task. We use a verification-based
procedure to check whether classifications are robust across a set of
photometric changes suggested by the user. When this is the case,
the user is given the possibility to generate several SFEs by using
GUI shown in Fig. 1, where sliders can be used to navigate the space
of parameters controlling photometric changes (α for contrast and β
for brightness). Otherwise, an explanation is returned to exemplify
the circumstances under which the neural classifier fails.

4 FUTUREWORK
Our preliminary results motivate several further research directions,
including: (i) extending our approach to other learned models (ii)
investigating further synergies between XAI and VNN, aiming to
improving the user-friendliness of our explanations (iii) conducting
user studies to evaluate the implications that robustness (or a lack
thereof) may have on human trust within HNMAS.
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