Blame Attribution for Multi-Agent Pathfinding Execution Failures

Extended Abstract

Avraham Natan
Ben-Gurion University of the Negev
Be’er Sheva, Israel
natanavr@post.bgu.ac.il

Roni Stern
Ben-Gurion University of the Negev
Be’er Sheva, Israel
roni.stern@gmail.com

Meir Kalech
Ben-Gurion University of the Negev
Be’er Sheva, Israel
kalech@bgu.ac.il

ABSTRACT
When executing large Multi-Agent Path Finding (MAPF) scenarios, faulty events can occur over time and contribute to the overall degraded system performance. This raises the problem of how to attribute blame over the set of faulty events. The first contribution of this paper is to define this problem and propose the well-known Shapley value for solving it. The second contribution is an efficient approach for approximating Shapley values that is inspired by diagnosis concepts.

KEYWORDS
Multi-Agent Systems; Multi-Agent Pathfinding; Diagnosis; Blame Attribution

ACM Reference Format:

1 MOTIVATION
Multi-Agent Path Finding (MAPF) is a problem of finding non-conflicting paths for a group of agents from a set of starting points to a set of goal points [20, 21]. Notable real-world MAPF instances occur in automated warehousing [22] and automated parking [26]. Finding high-quality solutions to MAPF problems is NP-Hard or worse [14, 15], yet modern MAPF algorithms can plan paths for hundreds of agents.

The execution of such Multi-Agent Plans (MAP) rarely goes smoothly and often deviates from the plan. Such deviations may occur as a result of internal reasons (jammed wheel), external reasons (obstacles), or due to imprecise assumptions about the world [4, 12, 13]. Such deviations may lead to unacceptable degradation in overall system throughput. As an example, consider an automatic warehouse where worker robots are tasked to move items from the factory output to a fleet of trucks. A delay in one of the robots may cause it to interfere with another robot which in turn will interfere later with other robots, and so on. Eventually, this can cause a significant and unacceptable delay in loading the truck.

An important question to ask when a multi-agent system fails is “what is the root cause of the failure?” Prior work proposed diagnosis algorithms for multi-agent systems [8, 9] were designed to answer this question and localize the responsible faulty events. In this work we ask the complementing question: “how much did each faulty event contribute to the system failure?” Answering this question is also known as blame attribution. To motivate answering the blame attribution question, consider an accident (a system failure) in a multi-agent system of autonomous vehicles. Diagnosis algorithms may infer which defective vehicles are to blame for the accident, but will not determine how much each vehicle contributed to it. This is important in order to fairly decide how to split the compensation costs between the defective vehicles owners. In an autonomous warehouse setting, blame attribution can also be used to focus the efforts of warehouse maintenance teams.

2 CONTRIBUTION
The first contribution of our paper is to formally define the blame attribution problem in the context of MAPF execution failures. We call this the Blame Attribution for Multi-Agent Pathfinding Execution Failures (BAMPEF). There may be multiple ways to attribute blame, but in this work we propose to use the well-known Shapley values [18, 19]. Shapley values are used in moral philosophy [11, 24], law [3], politics [2, 7], and other areas [5, 6, 10]. Informally, the goal of Shapley values calculation is to determine the division of power among a group of members. The approach for calculating this division is by using the marginal contribution of each member to the various subsets of the member group. A formal definition can be found in many forms in the literature [17, 23, 25]. Calculating Shapley values is computationally costly, as the calculation must consider all the possible subsets of a given set of faults, which is exponential. The second contribution of this paper is a fast method to approximate the Shapley value that we call Diagnosis-Directed Blame Attribution (DDBA). DDBA uses concepts from the field of Model-Based Diagnosis [16] to identify which subsets of fault events are sufficient to consider to obtain an effective approximation for the Shapley Value. Limiting the Shapley calculation only to consider these subsets of faulty events significantly reduces the run-time. For instance, in an example of 13 fault events it took 1.62 seconds on average, while calculating the full Shapley values for that example took 36.2 seconds.

3 METHODOLOGY
In this work, we use Shapley values to distribute blame among the faults. To that end, we look at an execution of a MAP as a game where the set of members is the set of accelerations or delays that occurred in the plan execution, which we denote as Fault Events (E). Such execution will result in a degree of degradation in the system’s performance. We assume a value function v, that given E, calculates the value of system degradation. This allows us to use Shapley values to determine the division of blame of the system degradation among the Fault Events E. Formally,

\[v(E) = \sum_{i=1}^{n} \Delta v_i \]

where \(\Delta v_i \) is the contribution of the i-th fault to the overall degradation.
Definition 1 (Shapley Values for BAMPEF). Given a set E of n Fault Events and a value function $v : 2^E \to \mathbb{R}$, the Shapley Value for Fault Event e is:

$$\phi_e(v) = \sum_{E' \subseteq E \setminus \{e\}} \frac{|E'|!(n-|E'|-1)!}{n!} \left[v(E \setminus (E' \cup \{e\})) - v(E \setminus E') \right]$$

Using Shapley values requires to process the entire power set of E. This may lead to exponential computational time. To address this, we improve Shapley values calculation using diagnosis concepts. Diagnosis processes aim to identify the root cause of a failure in a system. In our domain, the root cause is the Fault Event(s) that caused the degradation in the system’s performance. To this end, we define first the concept of Useful Repair. A Useful Repair is a subset of the Fault Events set, that improves the system performance when the system is simulated without having those faults. Formally:

Definition 2 (Useful Repair). Given a set E of n Fault Events and a value function $v : 2^E \to \mathbb{R}$, the set of Useful Repairs is $\Omega = \{ E' \subseteq E : v(E \setminus E') < v(E) \}$. Once the set Ω is calculated, we calculate the Shapley values of the Fault Events with respect to each $e \in \Omega$. In that way, for every Useful Repair we calculate how much every participating Fault Event contributed to the system repair. We call this approach Diagnosis Directed Blame Attribution (DDBA). We extend the definition of Shapley value to consider the set ω:

Definition 3 (Shapley Value for BAMPEF w.r.t ω). Given a set $\omega \subseteq E$ of n Fault Events and a value function $v : 2^E \to \mathbb{R}$, the Shapley value $\phi_\omega(v)$ for Fault Event e is defined as follows:

$$\phi_\omega^\omega(v) = \sum_{\omega' \subseteq \omega \setminus \{e\}} \frac{|\omega'|!(n-|\omega'|-1)!}{n!} \left[v(E \setminus (\omega' \cup \{e\})) - v(E \setminus \omega') \right]$$

Once the Shapley values of the Fault Events have been calculated with respect to each ω, we aggregate them to receive the final values.

At this point Ω may still be big - there may be a lot of Useful Repair sets. Shapley would run on all $\omega \in \Omega$, and this might lead to long run-times. In order to reduce this run-time, we propose to decrease the size of Ω by considering only $\omega \in \Omega$ with cardinality up to a number k. We denote the resulting smaller set as Ω'. To that end, we iterate over the different cardinalities $i \in \{1, \ldots, k\}$, and for each cardinality we compute Shapley values of $\omega \in \Omega'$ with cardinality i. Finally, we aggregate those values over all the Fault Events in Ω' to achieve an approximation to the Shapley value.

4 EVALUATION

For experiments, we generated instances with ranging number of plan lengths $y \in \{8, 10, 12\}$, agents $x \in \{8, 10, 12\}$, faulty agents $f \in \{3, 4, 5\}$, fault probabilities $p \in \{0.5, 0.7, 0.9\}$. We compared our algorithm (denoted DDBA) with the traditional Shapley values calculation (denoted Gold), and an existing random sampling algorithm [1], where the subsets of the Fault Events for the shapley calculation are selected randomly (denoted Random). As a comparison metric, we use Euclidean Distance to measure the distance between the Shapley values of the approximate approaches and the Shapley gold standard (denoted error). In addition, we measure the run-time (in seconds) of the methods.

<table>
<thead>
<tr>
<th>Fault Events</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Error</td>
<td>0.146</td>
<td>0.128</td>
<td>0.116</td>
<td>0.108</td>
<td>0.096</td>
<td>0.089</td>
<td>0.076</td>
<td>0.069</td>
</tr>
</tbody>
</table>

Table 1: Error of Random and DDBA, with the increase of the useful repair cardinality (k).

<table>
<thead>
<tr>
<th>Fault Events</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Error</td>
<td>0.147</td>
<td>0.146</td>
<td>0.148</td>
<td>0.149</td>
<td>0.153</td>
<td>0.134</td>
<td>0.133</td>
<td>0.146</td>
</tr>
<tr>
<td>Runtime (Seconds)</td>
<td>1.074</td>
<td>1.074</td>
<td>1.074</td>
<td>1.074</td>
<td>1.074</td>
<td>1.074</td>
<td>1.074</td>
<td>1.074</td>
</tr>
</tbody>
</table>

Table 2: Average runtime and error of Random and DDBA with the increase in the useful repair cardinality.

Table 3: Results for different number of faulty events.

Table 1 shows the error of DDBA for Useful Repair cardinality of $k = 1, \ldots, 8$, for BAMPEF instances with 12 agents, plans of length 12, 5 faulty agents, 0.9 fault probability and 10 Fault Events. The error decreases fairly fast until $k = 5$, and then decreases significantly slower. Since increasing k means higher runtime, we limited k to be at most 5 in the remaining experiments.

Table 2 shows the runtime and error for DDBA, Random, and Gold. As expected, DDBA is much faster than Gold. We also observe that DDBA is faster than Random for $k \leq 4$. The error of DDBA is higher than Random for $k < 4$, and lower when $k \geq 4$. Thus, our results confirm the expected trade-off provided by the Useful Repair cardinality k between runtime and error. In our experiments, however, setting $k = 4$ provides an effective middle-ground between runtime and error. Hence, in the next results, we fixed k to 4.

Table 3 presents the results of DDBA, Random, and Gold for varying number of faulty events (fe). First, the runtime of Gold increases exponentially with fe. The runtime of Random also increases, but at a much lower rate than Gold, while the runtime of DDBA is even lower. For instance, while considering $fe = 13$, DDBA runs 2 times faster than Random on average, and 50 times faster than Gold. This shows the efficiency of DDBA when considering high fe. Second, the error of both Random and DDBA increases very slightly with fe, which suggests that Random and DDBA are not influenced much by fe. This means that DDBA is scalable for larger amounts of faulty events. In addition, the error of DDBA is lower than the error of Random. Specifically, this difference is higher when considering low fe. This suggests that for small systems, DDBA is preferable over Random. Third, the runtime of DDBA is strongly affected by the number of useful repairs it considers. To highlight this, Table 3 also shows the number of useful repairs considered by DDBA for a different fe. Indeed, the runtime of DDBA is correlated with the number of useful repairs, which increases with fe. For example, for $fe = 8$, with cardinality up to $k = 4$, the empirical number of useful repairs is $\binom{3}{2} \cdot 2^4 = 1120$, while the actual number is 92.37 on average. This gap is because many subsets of the fault events are not useful repairs.
ACKNOWLEDGMENTS

This research was funded by ISF grant No. 1716/17, and by the ministry of science grant No. 3-6078.

REFERENCES