
Off-Beat Multi-Agent Reinforcement Learning
Extended Abstract

Wei Qiu
Nanyang Technological University

Singapore
qiuw0008@e.ntu.edu.sg

Weixun Wang
Tianjin University
Tianjin, China

wxwang@tju.edu.cn

Rundong Wang
Nanyang Technological University

Singapore
rundong001@e.ntu.edu.sg

Bo An
Nanyang Technological University

Singapore
boan@ntu.edu.sg

Yujing Hu
NetEase Fuxi AI Lab
Hangzhou, China

huyujing@corp.netease.com

Svetlana Obraztsova
Nanyang Technological University

Singapore
lana@ntu.edu.sg

Zinovi Rabinovich
Nanyang Technological University

Singapore
zinovi@ntu.edu.sg

Jianye Hao
Tianjin University
Tianjin, China

jianye.hao@tju.edu.cn

Yingfeng Chen
NetEase Fuxi AI Lab
Hangzhou, China

chenyingfeng1@corp.netease.com

Changjie Fan
NetEase Fuxi AI Lab
Hangzhou, China

fanchangjie@corp.netease.com

ABSTRACT
We investigate cooperative multi-agent reinforcement learning in
environments with off-beat actions, i.e., all actions have execution
durations. During execution durations, the environmental changes
are not synchronised with action executions. To learn efficient
multi-agent coordination in environments with off-beat actions,
we propose a novel reward redistribution method built on our
novel graph-based episodic memory. We name our solution method
as LeGEM. Empirical results on stag-hunter game show that it
significantly boosts multi-agent coordination.

KEYWORDS
multi-agent coordination; multi-agent reinforcement learning
ACM Reference Format:
WeiQiu,WeixunWang, RundongWang, BoAn, YujingHu, SvetlanaObraztsova,
Zinovi Rabinovich, Jianye Hao, Yingfeng Chen, and Changjie Fan. 2023.
Off-Beat Multi-Agent Reinforcement Learning: Extended Abstract. In Proc.
of the 22nd International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2023), London, United Kingdom, May 29 – June 2, 2023,
IFAAMAS, 3 pages.

1 INTRODUCTION
Despite the recent successes of multi-agent reinforcement learning
(MARL) in autonomous systems [1, 12] and real-time strategy (RTS)
video games [10], learning effective multi-agent coordination in
environments with off-beat actions remains challenging for MARL.
Many cooperative MARL methods [3, 4, 6, 7] fail to learn efficient
multi-agent coordination in environments where action durations

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

are caused by off-beat actions. The main reason is TD-learning [8]
fails when displaced rewards caused by action durations are used
in training. To this end, we propose a novel reward redistribution
method built on our novel graph-based episodic memory. We name
our method as LeGEM. Empirical results on stag-hunter game show
that it significantly boosts multi-agent coordination in environ-
ments with off-beat actions and achieves leading performance.

2 PRELIMINARIES
MARL aims to learn optimal policies for all the agents in the team.
With TD-learning and a global Q value proxy 𝑄 tot for the optimal
𝑄∗, {𝑄𝑖 }𝑁𝑖=1 are optimized via minimizing the loss [2, 11]: 𝜃∗ =

arg min𝜃 ∗ L(𝜃 ) := E𝐷 ′∼D [(𝑦tot𝑡 − 𝑄 tot
𝜃

(𝒔𝑡 , 𝒖𝑡 ))2], where 𝑦tot
𝑡 =

𝑟𝑡 + 𝛾 max𝒖′ 𝑄 tot
𝜃

(𝒔𝑡+1, 𝒖′) and 𝜃 is the parameters of the agents. 𝜃
is the parameter of the target 𝑄 tot and is periodically copied from
𝜃 . 𝐷′ is a sample from the replay buffer D.

3 METHODOLOGY
3.1 Temporal Recency Reward Redistribution
To learning efficient multi-agent coordination in environment with
off-beat actions for MARL methods. We redistribute rewards to
agents’ pivot timesteps (we will introduce the method for searching
agent’s povit timesteps in the following subsection). The pivot
timestep of each agent is the timestep when the off-beat action was
executed and later triggered the reward.

The timestep to which the reward should be distributed is called
the final pivot timestep.We denote the final pivot timestep at timestep
𝑡 as 𝑒𝑡 . For a shared reward at timestep 𝑡 , each agent’s pivot timestep

Poster Session I
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2424



hunter 0

hunter 1

stag hunter 0

hunter 1

stag

Hunters shoot arrows at
different timesteps.
(hunter 0: 𝑡 = 0, hunter 1: 𝑡 = 5)

Arrows hit the stag
at the same timestep.
(hunter 0 and 1: 𝑡 = 9)

takes 9 timesteps to hit the stag
takes 4 timesteps to hit the stag

Hunter 0:
Hunter 1:

Action durations

Figure 1: An illustrative scenario: two-agent stag-hunter game, where two agents (hunters) have only partial observations, different durations of the shoot
action, and cannot communicate. The goal is to catch the stag and they are rewarded when their shots hit the stag at the same time. Both agents can see the stag. As
the shoot action durations of the two agents are different, to catch the stag, the two agents should shoot the arrow at different timesteps given the distances. For
hunter 0, the timestep to shoot the arrow is 0, while for hunter 1, it is 5. At timestep 9, the two arrows will hit the stag and all hunters will receive a positive shared
reward. Though the scenario is easy for human beings, it is hard for MARL agents due to the action duration. Experiment results: in this scenario, the optimal
policy for agent 0 is to shoot the arrow at timestep 0 while the optimal policy for agent 1 is to shoot the arrow at timestep 5. Such an asynchronous property of
OBMAS motivates agents to learn tacit policies. The curves show that VDN and IQL fail to learn coordination policies even in this simple scenario. With our LeGEM,
MARL methods gain enhanced performance as well as improved sample efficiency.

0 1 2 3 4 5 6

hunter 0

Actions:
Rewards:

7 8 9

hunter 1

t

Stag is caught

𝑡 = 9, 𝑒!" = 0, 𝑒!# = 5

0 0 0 0 0 0 0 0 0 15
𝑒! = argmin$!" 9 − 0,9 − 5 = 5

𝑟! = 0	 𝑟% = 15	 𝑟" = 0

TD-learning

Redistribute rewards

Figure 2: Reward redistribution for the example in Fig. 1.

𝑒𝑖𝑡 can be different. We can get 𝑒𝑡 via proximity:

𝑒𝑡 = arg min
𝑒𝑖𝑡

{𝑡 − 𝑒𝑖𝑡 }𝑁𝑖=1 (1)

In the example of Fig. 1, the final pivot timestep 𝑒9 for timestep 9
is 𝑒𝑡=9 = 5. Then, we can utilize it to update the reward in each
transition (𝒔𝑒𝑡 , �̃�𝑒𝑡 , 𝑟𝑒𝑡 , 𝒔𝑒𝑡+1):

𝑟𝑒𝑡 = 1(𝑒𝑡 ≥ 𝑡) · 𝑟𝑒𝑡 + 1(𝑒𝑡 < 𝑡) · 𝑟𝑡 , (2)

where 1(·) is the indicator function. 𝑟𝑒𝑡 is replaced with 𝑟𝑒𝑡 . This
update rule is conducted iteratively from 𝑡 = 0 to 𝑡 = 𝑇 − 1. To
stabilize learning and circumvent the overestimation of the TD
target, 𝑟𝑡 is also updated after Eqn. 2 via (1−1(𝑒𝑡 < 𝑡) · (1− 𝛽)) ·𝑟𝑡 .
Therefore, we can utilize updated transitions with newly replaced
rewards for MARL training. We also present an example in Fig. 2
to illustrate the workflow of our reward redistribution method.

3.2 Episodic Memory and Searching Method
The reward redistribution method introduced in Sec. 3.1 relies on
certain structures to searching the pivot timestep 𝑒𝑖𝑡 for agent 𝑖 . We
propose our novel episodic memory (EM). During training, each
agent 𝑖 collects its individual trajectories 𝜏𝑖 . We then define 𝜏𝑖 of
agent 𝑖 as 𝜏𝑖 = [(𝑜0

𝑖
, �̃�0

𝑖
, 𝑟0), · · · , (𝑜𝑇−1

𝑖
, �̃�𝑇−1

𝑖
, 𝑟𝑇−1)], where𝑇 is the

length of the trajectory and the triplet (𝑜𝑡
𝑖
, �̃�𝑡

𝑖
, 𝑟𝑡 ) represents the

observation, action and reward of timestep 𝑡 . 𝑟𝑡 is globally shared
between agents.

Graphs and Sub-Graph. Each agent’s episodic memory (EM)
has 𝑇 graphs categorized by the length of the episode. Each graph

consists of many sub-graphs that are categorized by the episode
return. We define the graph of agent 𝑖’s EM as a directed graph
𝜙𝑡
𝑖
∈ Φ𝑖 where Φ𝑖 is the set of graphs of agent 𝑖 and 𝜙𝑡𝑖 is the 𝑡-th

graph of Φ𝑖 , 𝑡 ∈ {0, · · · ,𝑇 − 1}. To model an agent’s behaviour
explicitly and make the trajectories easy to represent, we create
𝑇 graphs for each agent and let Φ𝑖 = {𝜙𝑡

𝑖
}𝑇−1
𝑡=0 where 𝑇 is the

maximum depth of all graphs and the maximum length of the
episode as well. The maximum level of𝜙𝑡

𝑖
is 𝑡 +1. The graph consists

of nodes that are connected by edges. Each node contains key, visit
count and pointers connecting the precursors (nodes at the previous
level) and the successors (nodes at the next level). Besides the 𝜙𝑡

𝑖
,

we define the sub-graph set of 𝜙𝑡
𝑖
as Φ𝑡,Ω

𝑖
= {𝜙𝑡,𝜔

𝑖
}Ω−1
𝜔=0 by using the

discretized episode return and there are Ω sub-graphs. 𝜙𝑡,𝜔
𝑖

is the𝜔-
th sub-graph whose episode return is the 𝜔-th item in [0, · · · , 𝒓𝑡,𝑖 ]
where 𝒓𝑡,𝑖 is the maximum discretized episode return of 𝜙𝑡

𝑖
. We

define the key (𝑜𝑡
𝑖
, �̃�𝑡

𝑖
) using agent 𝑖’s 𝑜𝑡

𝑖
and �̃�𝑡

𝑖
at timestep 𝑡 . The

visit count of the node indicates the total number of visits made by
agent 𝑖 to the node. The initial value of the visit count is 1.

Updating Graphs. Given 𝜏𝑖 of length𝑇 , if the node is already in
the graph at level 𝑡 , we then increase the visit count by 1. Otherwise,
we create a new node for level 𝑡 of the graph and update its pointers.
Meanwhile, sub-graphs will be also created and updated.

Searching method. We propose our search schemes for our
reward redistribution method. For agent 𝑖 , given 𝜏𝑖 , the correspond-
ing graph is 𝜙𝑙

𝑖
= Φ𝑖[𝑙] (𝑙 = length(𝜏𝑖)-1) and 𝜙

𝑙,𝜔
𝑖

= Φ𝑙,Ω
𝑖

[𝜔],
and episode return is 𝒓𝑙,𝑖 . Agent 𝑖 searches from the node (the key
is (𝑜𝑡

𝑖
, �̃�𝑡

𝑖
) and 𝑜𝑡

𝑖
∈ 𝜏𝑖 , 𝑢𝑡𝑖 ∈ 𝜏𝑖 ) at level 𝑡 in sub-graph 𝜙

𝑙,𝜔
𝑖

to find
the pivot timestep 𝑒𝑖𝑡 for 𝑟

𝑡 . Searching ends when the pattern of
decreasing or increasing visit count ends and the corresponding
level is the candidate pivot timestep.

4 EXPERIMENTS AND CONCLUSION
We conduct experiments on stag-hunt game as shown in Fig. 1. We
select QMIX [4], VDN [7], IQL [9] and Qtran [6] as baselines. We
implement our method on PyMARL [5] and use 10 random seeds
to train each method on the testbed. Results show that with our
method LeGEM, MARL methods gain enhanced performance.

Poster Session I
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2425



REFERENCES
[1] Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. 2012. An overview

of recent progress in the study of distributed multi-agent coordination. IEEE
Transactions on Industrial Informatics 9, 1 (2012), 427–438.

[2] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529–533.

[3] Frans A Oliehoek, Christopher Amato, et al. 2016. A Concise Introduction to
Decentralized POMDPs. Vol. 1. Springer.

[4] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. 2018. QMIX: Monotonic value function factori-
sation for deep multi-agent reinforcement learning. In International Conference
on Machine Learning. 4295–4304.

[5] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Far-
quhar, Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr,
Jakob Foerster, and ShimonWhiteson. 2019. The StarCraft Multi-Agent Challenge.
CoRR abs/1902.04043 (2019).

[6] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung
Yi. 2019. QTRAN: Learning to Factorize with Transformation for Cooperative

Multi-Agent Reinforcement Learning. In International Conference on Machine
Learning. 5887–5896.

[7] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-
cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl
Tuyls, et al. 2017. Value-decomposition networks for cooperative multi-agent
learning. arXiv preprint arXiv:1706.05296 (2017).

[8] Richard Stuart Sutton. 1984. Temporal credit assignment in reinforcement learning.
Ph.D. Dissertation. University of Massachusetts Amherst.

[9] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Kor-
jus, Juhan Aru, Jaan Aru, and Raul Vicente. 2017. Multiagent cooperation and
competition with deep reinforcement learning. PLoS ONE 12, 4 (2017).

[10] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, An-
drew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds,
Petko Georgiev, et al. 2019. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature 575, 7782 (2019), 350–354.

[11] Christopher JCH Watkins and Peter Dayan. 1992. Q-Learning. Machine Learning
8, 3-4 (1992), 279–292.

[12] Ming Zhou, Jun Luo, Julian Villella, Yaodong Yang, David Rusu, Jiayu Miao,
Weinan Zhang, Montgomery Alban, Iman Fadakar, Zheng Chen, et al. 2020.
Smarts: Scalable multi-agent reinforcement learning training school for au-
tonomous driving. arXiv preprint arXiv:2010.09776 (2020).

Poster Session I
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2426


	Abstract
	1 Introduction
	2 Preliminaries
	3 Methodology
	3.1 Temporal Recency Reward Redistribution
	3.2 Episodic Memory and Searching Method

	4 Experiments and Conclusion
	References



