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ABSTRACT
To increase crop yield while minimizing environmental impact,
we present an intelligent crop management system that optimizes
nitrogen fertilization and irrigation simultaneously via reinforce-
ment learning (RL), imitation learning (IL), and crop simulations
using DSSAT. We first use deep RL to train management policies
that require a large number of state variables from the simulator
as observations (denoted as full observation). We then invoke IL
to train management policies that only need a limited number of
variables that are measurable in the real world (denoted as partial
observation) by mimicking the actions of the RL-trained policies un-
der full observation. Simulation experiments using maize in Florida
demonstrate that our trained policies under both full and partial
observations achieve better outcomes than a baseline policy. Most
importantly, the IL-trained management policies are directly de-
ployable in the real world as they use readily available information.
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1 INTRODUCTION
Nitrogen (N) fertilization and irrigation are two crop management
practices that affect the crop yield and environment most [4]. Based
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Figure 1: Framework of the intelligent crop management
system using RL and IL

on empirical experience and existing agricultural studies, local best
management practices exist among farmers. However, it remains to
be seen whether the current management practices are optimal and
whether these strategies perform well in the presence of changes
in climate and market conditions.

Here, we present an intelligent crop management system, de-
picted in Figure 1, that generates deployable and adaptable man-
agement policies based on reinforcement learning (RL), imitation
learning (IL), and crop simulations via Decision Support System for
Agrotechnology Transfer (DSSAT). Compared with the previous
studies [9], [6], and [1], we advance the state of the art by increasing
the action space to include both N fertilization and irrigation and
testing the RL-based crop management architecture with different
reward functions. More importantly, we leverage IL as a new tool
to train policies that require only state variables measurable in the
real world for decision-making, which paves the way for real-world
deployment of our framework. More details of this paper can be
found in [7].

2 METHODS
The N fertilization and irrigation management is formulated as a
finite Markov decision processes (MDP) here. On each day 𝑡 , the
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Table 1: Evaluation results of trained policies under full observation and the baseline policy. Trained Policy x indicates the
training result of the RL agent using reward function (RF) x. For each RF, the largest cumulative reward value is shown in bold.

N Input
(kg/ha)

Irrigation
(L/m2)

𝑁𝑙

(kg/ha)
Yield
(kg/ha) RF 1 RF 2 RF 3 RF 4 RF 5

Baseline Policy 360 394 213 10772 984 1417 1269 700 338
Trained Policy 1 200 120 36 10852 1425 1557 1538 1267 1673
Trained Policy 2 200 732 59 11244 813 1619 971 655 1020
Trained Policy 3 19920 108 6205 10865 -1.4e4 -1.4e4 1598 -3.0e4 -4.9e4
Trained Policy 4 160 102 35 10358 1398 1510 1524 1272 1635
Trained Policy 5 200 138 39 10926 1417 1568 1575 1259 1651

Table 2: Performance comparison between the RL-trained policies (experts) and their corresponding IL-trained policies

N Input
(kg/ha)

Irrigation
(L/m2)

𝑁𝑙

(kg/ha)
Yield
(kg/ha) RF 1 RF 5

Baseline Policy 360 393.7 212.6 10771.5 984.4 337.6
RL-Trained Policy 1 (Full) 200 120 35.5 10852.4 1424.7 N/A
IL-Trained Policy 1 (Partial) 200 138 37 10870.0 1407.7 N/A
RL-Trained Policy 5 (Full) 200 138 39.2 10926.1 N/A 1651.0
IL-Trained Policy 5 (Partial) 200 138 39.2 10926.1 N/A 1651.0

agent receives the state of the environment, 𝑠𝑡 , and chooses the
action 𝑎𝑡 , which consists of N fertilization amount 𝑁𝑡 and irrigation
amount𝑊𝑡 . Given 𝑠𝑡 and 𝑎𝑡 , the reward 𝑟𝑡 (𝑠𝑡 , 𝑎𝑡 ) is defined as:

𝑟𝑡 (𝑠𝑡 , 𝑎𝑡 )=
{
𝑤1𝑌−𝑤2𝑁𝑡 −𝑤3𝑊𝑡 −𝑤4𝑁𝑙,𝑡 if harvest at 𝑡 ,
−𝑤2𝑁𝑡 −𝑤3𝑊𝑡 −𝑤4𝑁𝑙,𝑡 otherwise, (1)

where𝑤𝑖 (𝑖 = 1, 2, 3, 4) are weights to balance the input, yield𝑌 , and
nitrate leaching 𝑁𝑙,𝑡 . The goal of the RL agent is to find the optimal
policy 𝜋 (𝑠𝑡 , \𝑡 ) that maximizes the future discounted return, which
is defined as 𝑅𝑡 =

∑𝑇
𝜏=𝑡 𝛾

𝜏−𝑡𝑟𝜏 with 𝛾 ∈ (0, 1] being a discount
factor.

With recently developed Gym-DSSAT [5], we achieve daily in-
teraction between the crop environment simulated via DSSAT and
the agent, which enables the RL-based management policy training.

Imitation learning (IL) trains the agent to perform a task by
mimicking the behavior of an expert [3]. For the crop management
problem, not all state variables from the simulator can be observed
or measured by farmers. Management policies should only utilize
state variables accessible to farmers for real-world deployment.
Given any state 𝑠 , denote 𝑠𝑜 as the observable state which contains
variables from 𝑠 that are measurable in the real world. For the
IL-based training under partial observation, on each day 𝑡 , the
agent receives 𝑠𝑜𝑡 and aims to learn an optimal policy 𝜋 (𝑠𝑜𝑡 , \ ) that
generates an action 𝑎𝑜𝑡 that is the same as 𝑎𝑡 , where 𝑎𝑡 is the action
determined by the expert given an observation of 𝑠𝑡 . The RL-trained
policies under full observation are used as the expert during IL
training.

3 EXPERIMENTS AND RESULTS
Experiments were conducted using the simulation of the maize
crop in Florida in 1982. For comparison with the trained policies,
we used a baseline policy that follows a Florida corn production
guide written by domain experts [8]. For RL-based training, we
used Deep Q-network [2] and tested with five different reward

Table 3: Weights used in each reward function defined by (1)

𝑤1
(𝑌 )

𝑤2
(𝑁𝑡 )

𝑤3
(𝑊𝑡 )

𝑤4
(𝑁𝑙,𝑡 )

Note

RF 1 0.158 0.79 1.1 0 Economic profit
RF 2 0.158 0.79 0 0 Free water
RF 3 0.158 0 1.1 0 Free N fertilizer
RF 4 0.158 1.58 1.1 0 Doubled N price
RF 5 0.2 1 1 5 With N Leaching

functions (RFs) to demonstrate the adaptability of our framework
to different targets. The details of the RF design are given in Table 3,
where both economic and environmental factors were considered
in the RF design. The training results can be found in Table 1, and
we achieved five trained policies using five RFs. The results show
that given an RF to compute the cumulative rewards of different
trained policies, the largest reward is always achieved by the policy
trained with this particular RF (e.g., Trained Policy 1 achieves the
highest cumulative reward with RF 1), except for the case of RF 5,
where Trained Policy 5 still achieves a much larger reward than
the baseline policy. Thus, given a specific target represented by a
corresponding RF, we can always apply RL-based training to find
an optimal management policy.

For the IL-based training, we used RL-Trained Policy 1 and RL-
Trained Policy 5 as experts. The results are shown in Table 2. The
IL-Trained Policy 1 under partial observation achieves a cumula-
tive reward of 1407.7 with only a negligible decrease of 1.4% in
the cumulative reward compared with the RL-Trained Policy 1. In
addition, the IL-Trained Policy 5 achieves exactly the same results
as the RL-Trained Policy 5. In conclusion, IL can help find crop man-
agement policies that behave very closely to RL-trained policies
but require much fewer state variables.
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