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ABSTRACT
We propose a multi-agent protocol for distributed learning of causal
networks, aimed both at (i) reducing the complexity of learning
large causal networks and (ii) letting agents in a MAS cooperate
to unveil causal relationships that individuals could not reveal by
themselves, due to partial observability.
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1 INTRODUCTION
Causal networks aim at modelling cause-effect relationships be-
tween variables of a domain of interest. For agents, learning the
causal model of the environment in which they operate is funda-
mental to properly decide plans of actions and being able to explain
such decisions [6]. Learning causal network, though, is typically
out of reach for statistical machine learning models [11], which rely
on purely observational data and ignore the notion of interventions.

Interventions are the fundamental mechanisms to check whether
two variables are linked in a cause-effect relationship and not by
a mere correlation [10]. Intuitively, an intervention deliberately
changes the value of a variable, all others being untouched, to
see whether it affects others. The intervention operation has been
formalized with the introduction of the do-calculus by Pearl [9]:
𝑑𝑜 (𝐶 = 𝑐) means that the controlled variable 𝐶 is forced to take
value 𝑐 by an environment action. As an example, by assuming to
be able to control (i.e., intervene on) the air conditioning system
(A/C), the following simple causal network can be learnt: A/C →
Temperature. Calling P(𝑋 ) the probability distribution of variable
𝑋 , in fact, we would have:

P(Temperature) ≠ P(Temperature | do(A/C=on)) (1)
P(A/C) = P(A/C | do(Temperature=t)) (2)

where 𝑡 is any temperature value. That is, the status of the tem-
perature does not affect the status of the A/C, but the other way
around (as the causal network expresses). The intervention opera-
tion clearly cannot apply to uncontrolled variables, yet techniques
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Figure 1: Multiple agents with partial observability over a
shared environment want to learn their causal networks.

have been identified to be able to learn causal relationships from
merely observational data [3, 13].

The process of learning causal networks, in most existing pro-
posals, assumes a centralized setting, with a single learner/agent
having full observability and control over the environment vari-
ables, or with a central site aggregating distributed observations or
merging local models [2–4, 13]. This makes such proposals hardly
scalable. In addition, the centralized assumption can rarely hold
for MAS, where multiple agents are typically deployed in different
regions of an environment [7, 8]. Take as reference the situation in
Figure 1, where multiple agents have partial observability (U, i.e.
sensors) and control (C, i.e. actuators) over the variables of a shared
environments. The need for agent collaboration in causal learning
is readily explained: agent 𝑖 cannot fully explain the values it sees
for variable𝑈2, as it is influenced (also) by variable𝑈3 that agent 𝑖 is
not even aware of. Or, agent 𝑘 is not fully aware of the implications
of its operations on variable C5, as it influences variable C4 that
agent 𝑘 is not aware of.

Against this background, we developed a protocol that let agents
interact in order to each build a complete view of their underlying
causal network.

2 MULTI-AGENT LEARNING PROTOCOL
Consider 𝑁 agentsA = {A𝑖 }, 𝑖 = 1, . . . , 𝑁 willing to learn a causal
network𝑀𝑖 of the relationships between 𝑉 environment variables,
partitioned into two (possibly, empty) sets, one of controlled vari-
ables C (i.e. corresponding to actuators, where interventions are
possible) and one of uncontrolled variables 𝑈 (i.e. sensors, where
agents cannot intervene), such that 𝑉 = C ∪𝑈 . Each agent knows
an algorithm – it does not matter which specific one, but for our
implementation we chose ref. [1] – for independently learning its
own local causal network L𝑖 , that is, the one learnt by relying
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solely on its own known variables 𝑃𝑖 (i.e. without our multi-agent
protocol). Each agent also has partial observability of the environ-
ment, that is, is aware of only 𝑃𝑖 out of the 𝑉 variables. Formally:
𝑃𝑖 = C𝑖 ∪𝑈𝑖 , 𝑃𝑖 ⊂ 𝑉 ⇒ C𝑖 ⊂ C,𝑈𝑖 ⊂ 𝑈 . However, no variable in
𝑉 can be unknown to every agents, that is: 𝑉 =

⋃𝑁
𝑖=1 𝑃𝑖—note that

an overlap between the different 𝑃𝑖 is admitted.
Main protocol. The main protocol unfolds as follows, where

agents are assumed to exploit multiple threads to carry out interac-
tions with others in parallel:

Thread 1 whenever an agent, let’s sayA𝑖 , recognizes that its own
locally learnt causal network L𝑖 is not correct and complete

(1) it asks for help by communicating to other agents, let’s say
A 𝑗 , 𝑗 ≠ 𝑖 , the set of variables it suspects to have missing
links—that we call its “frontier” (𝐹𝑖 );

(2) then collects replies as they come in, and re-starts the
single-agent learning algorithm with the newly acquired
information (e.g. past observations of the variables);

Thread 2 in parallel, agent A𝑖 (as well as every other agent A 𝑗≠𝑖 ,
in turn), replies to incoming help requests, if any, by consid-
ering each received variable 𝑓 ∈ 𝐹 𝑗

(1) if it is known to A𝑖 (i.e. 𝑓 ∈ 𝑃𝑖 ), it replies to the help re-
quest with what it knows about 𝑓 , that is, the sub-network
L𝑓 ⊆ L𝑖 with its links to variables in 𝑃𝑖 ;

(2) if it is not known to A𝑖 (i.e. 𝑓 ∉ 𝑃𝑖 ), the intervention-
observation sub-protocol, formalized in the following, starts.

Intervention-observation sub-protocol.This unfolds as follows:

(1) if the unknown variable 𝑓 , received by A𝑖 as part of a help
request by, let’s say, A 𝑗 , is controlled by A 𝑗 , then A 𝑗 does
the interventions on 𝑓 while A𝑖 observes its P(𝑃𝑖 );

(2) if, instead, 𝑓 is not controlled by A 𝑗 , then
(a) for each 𝑐 ∈ C𝑖 , it is A𝑖 that does the interventions on 𝑐

while A 𝑗 observes changes in its P(𝑃 𝑗 );
(b) for each 𝑢 ∈ 𝑈𝑖 , A𝑖 sends a batch B𝑖 of its past data, that

is, its observed values for that variable 𝑢, to A 𝑗 .

In either case, when interventions are concluded, both agents can
correct/complete their own local model L.

It is worth to emphasize here that, since in the real world oper-
ating on actuators may require time, and observing the results of
actions on sensors’ readings may incur delays, to correctly carry
out the intervention-observation sub-protocol the agents need to
agree on an “intervention time window”. During such time, agents
need to monitor both controlled and uncontrolled variables, while
a single agent in the whole MAS carries out a single intervention. As
a consequence, and due to the very definition of interventions, the
intervention sub-protocol is a critical section calling for distributed
mutual exclusion among the agents participating in the protocol
[12]. In our current implementation, tested on a simulated smart
home scenario, we adopted the token ring protocol.

The following coordination aspects have also to be addressed:

• let agents become aware of who to ask for help to, in refin-
ing the local causal network L. Gossiping and the notion of
sphere of influence, while assuming an externally imposed
communication topology with no partitions (e.g. from de-
ployment constraints), for instance, can serve the purpose;

UNION OF SINGLE-AGENT RESULTS UNION OF MULTI-AGENT RESULTS

Figure 2: Merge of independently learnt causal networks U
(left) vs. merge of networks refined with multi-agent learn-
ing 𝑅 (right).

• establishingwho deserves the attention of other agents when
multiple help requests can simultaneously exist. Here, dis-
tributed leader election algorithms serve the purpose.

3 PRELIMINARY ASSESSMENT
We implemented the proposed multi-agent protocol for causal net-
works learning, and tested it in a smart home scenario with 2 agents,
simulated by adopting the iCasa simulation platform [5]. The simu-
lated smart home enabled both to generate observational data and
to perform interventions. The codebase for the learning algorithms,
both the single-agent and the multi-agent protocol, is available at
https://github.com/smarianimore/multiagent_algorithm, whereas
the source code for the iCasa simulation environment is available
at https://github.com/smarianimore/iCasa.

The key results of our experiments can be summarized as follows:
• learning accuracy is always better with multi-agent learn-
ing than with single-agent learning. We measured it with a
variation of structural Hamming distance (SHD) [14] account-
ing for “unknown edges”, that is, edges missing from the
network because they involve variables not known by the
learning agent. Formally, SHD = unknown edges + false pos-
itives (correlation mistaken for causation) + false negatives
(missed causation);

• learning performance is always better in the multi-agent case,
to an extent increasing as the causal network size and com-
plexity increases (e.g. number of edges and indirect causal
paths length). We measured it as “wall clock” time taken by
the multi-agent and the single-agent computations.

Figure 2 exemplifies what can be achieved through multi-agent
cooperation. NetworkU (left side) is the union of two single-agent
networks (dotted line expresses partial observability): as the fron-
tier variables causally connecting sub-network L2 (top) with L1
(bottom) are not shared by agents, the three arrows connecting L2
with L1 are all red, denoting missed causal connections. On the
contrary, network 𝑅 is connected, and only one causal relationships
is missing, 𝑂 → 𝑇 . In fact, 𝑅 also improved accuracy over U, as
𝑆𝐻𝐷 (𝑅) = 1 < 𝑆𝐻𝐷 (U) = 4.

Our ongoing and future work will refine the proof-of-concept
implementation, add a comparative evaluation of different single-
agent algorithms plugged into our multi-agent protocol, and add a
more extensive evaluation of performances (accuracy and scalabil-
ity) for increasing networks sizes and number of agents.
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