Think Twice: A Human-like Two-stage Conversational Agent for Emotional Response Generation

Yushan Qian
College of Intelligence and Computing, Tianjin University
Tianjin, China
yushanqian@tju.edu.cn

Bo Wang
College of Intelligence and Computing, Tianjin University
Tianjin, China
bo_wang@tju.edu.cn

Shangzhao Ma
College of Intelligence and Computing, Tianjin University
Tianjin, China
shangzhaoma@tju.edu.cn

Wu Bin
Quesoar Co. Ltd.
Tianjin, China
wubin@quesoar.com

Shuo Zhang
Quesoar Co. Ltd.
Tianjin, China
s@quesoar.com

Dongming Zhao
Artificial Intelligence Laboratory, China Mobile Communication Group
Tianjin Co., Ltd.
Tianjin, China
waitman_840602@163.com

Kun Huang
Artificial Intelligence Laboratory, China Mobile Communication Group
Tianjin Co., Ltd.
Tianjin, China
hknzh@126.com

Yuexian Hou
College of Intelligence and Computing, Tianjin University
Tianjin, China
yxhou@tju.edu.cn

ABSTRACT
Towards human-like dialogue systems, current emotional dialogue approaches jointly model emotion and semantics with a unified neural network. This strategy tends to generate safe responses due to the mutual restriction between emotion and semantics, and requires the rare large-scale emotion-annotated dialogue corpus. Inspired by the “think twice” behavior in human intelligent dialogue, we propose a two-stage conversational agent for the generation of emotional dialogue. Firstly, a dialogue model trained without the emotion-annotated dialogue corpus generates a prototype response that meets the contextual semantics. Secondly, the first-stage prototype is modified by a controllable emotion refiner with the empathy hypothesis. Experimental results on the DailyDialog and EmpatheticDialogues datasets demonstrate that the proposed conversational agent outperforms the compared models in the emotion generation and maintains the semantic performance in the automatic and human evaluations.

KEYWORDS
Emotional Dialogue; Dialogue Systems; Human Interaction

1 INTRODUCTION
In the task of open-domain dialogue generation, emotional dialogue aims to generate responses involving the perception and expression of proper emotions. A large number of studies [29, 33, 38] have demonstrated that emotional dialogue can significantly improve users’ satisfaction in a human-machine conversation. Moreover, building a dialogue system with human emotions is one of the ultimate goals of artificial intelligence.

Towards emotional dialogue systems, in addition to the early methods of manually compiling rules by professionals [43], existing statistical approaches are mainly based on neural network models [1, 11, 20, 22, 24, 27, 44, 52–54]. With an end-to-end strategy, these neural network models jointly generate the semantics and emotions of the dialogue responses. However, current end-to-end emotional dialogue models still face several challenges. Firstly, in deep neural networks, the input emotion signals are often weakened through the complex learning process. Secondly, in the joint generation model, the design to enhance emotions often restricts the semantic performance of generated responses (e.g., safe responses). Thirdly, large-scale emotion-annotated dialogue corpora are rare for joint training of semantics and emotions with deep neural networks.

In response to the above challenges, we propose to generate emotional responses with the idea of human intelligent dialogue behavior. When humans respond in a dialogue, the simultaneous processing of emotion and semantics can not ensure satisfying results [7]. The intuitive emotion generated simultaneously with semantics is often arduous to ensure a response in the appropriate emotion. One source of the appropriate emotional response comes from an independent emotion selection after determining the semantics, i.e., thinking twice about appropriate emotions. In this
independent emotion selection, a paramount strategy for humans to

determine the appropriate emotion is the empathy strategy, which

makes the emotion of the response consistent with that of the

text [2, 24, 40]. As visualized in Figure 1, each response firstly has
a proper semantic to respond to the context. Then, by recognizing

the context’s emotional state, we can adjust the response emotion-
ally and achieve a certain degree of empathy by responding to the

partner’s emotion.

Therefore, we design a human-like two-stage conversational

agent for emotional response generation. Firstly, a prototype re-

sponse with proper semantics is generated with a pre-trained model

fine-tuned on dialogue corpus without emotion annotation. Then,

the contextual emotional state is recognized by a dialogue emotion

detector. According to the empathy hypothesis [24], the type of
generated emotion is consistent with the contextual emotional state.

Finally, the prototype is modified by a controllable emotion refiner
to generate a final response that is both semantically relevant and
emotionally appropriate.

Specifically, towards effective refining for an emotional response
in the second stage, we also refer to two human pragmatic strategies.
First, humans express the same information in different ways with
different vocabulary choices [37]. Therefore, we involve expected
emotional attributes in the response by replacing the original emo-
tional words or phrases instead of constructing a new sentence from
scratch, i.e., the “rewriting” strategy. Second, there are also some
implicit emotions reflected through the whole sentence instead of
specific words. Consequently, we also adjust the emotion by adding
extra sentences to the response, i.e., the “adding” strategy.

In summary, our contributions are:

• Inspired by human intelligent dialogue behavior, we propose
a human-like two-stage conversational agent for emotional

response generation. To the best of our knowledge, it is the

first two-stage model specifically for emotional dialogue.

• The proposed method effectively alleviates two problems
of existing emotional dialogue approaches, i.e., weakening
the emotion effect during the complex learning process and
restricting the semantic generation to meet the emotion

demand.

• The proposed two-stage conversational agent reduces the
demand for the sizeable emotion-annotated dialogue cor-

pus. The training of the prototype response generator in the

first stage only requires general dialogue corpora without
emotion annotation, and the controllable emotion dialogue
refiner is trained on non-dialogue and non-parallel emotion-
annotated corpora.

• The proposed method can be generalized to other existing
end-to-end emotion dialogue generation models as post-
processing for emotionalization. Even if some sentences have
poor emotional expressions, there is no need to retrain the
whole model and build new sentences from scratch.

2 METHODS

2.1 Preliminaries

Formally, in this paper, the dialogue context is alternate utterances
of two speakers, defined as $C = \{U_1, U_2, \ldots, U_n\}$, where n denotes
the number of utterances in a dialogue. The set of context emotions is
$E = \{e_1, e_2, \ldots, e_n\}$, which corresponds to the dialogue context C.

Our goal is to generate the next utterance U_{n+1}, which is coherent
to the context and contains the appropriate emotion.

As shown in Figure 2, our model consists of three parts: the
Prototype Utterance Generator G, the Dialogue Emotion Detector D,
and the Controllable Emotion Refiner R. The Controllable
Emotion Refiner R has two modules, named “Rewrite” and “Add”.

The Prototype Utterance Generator G takes the dialogue context
C as input and generates a prototype response U_m. The Dialogue
Emotion Detector D takes the dialogue context C as input and ob-
tains the emotion state set E, which dynamically determines the
response emotion e_{n+1}. The Controllable Emotion Refiner R refines
U_m according to e_{n+1} by rewriting U_m or adding extra sentences
into U_m with Rewrite Module and Add Module, respectively, and
generates the final response R_e, which is U_{n+1}.

2.2 Prototype Utterance Generator

We use DialoGPT [51] as the Prototype Utterance Generator to
generate relevant, diverse, and contextually consistent responses.
Large-scale pre-trained language models [5, 39, 51] have exten-
sively promoted the research progress of the open-domain dialogue
in recent years. The method of pre-training and fine-tuning can
avoid training models from scratch, save computing resources, and
achieve excellent results in downstream tasks.

DialoGPT has a 12-to-48 layer Transformer with layer normal-
ization like GPT-2 [39], which is trained on the 147M large-scale
dialogue dataset from Reddit. All utterances of the context are
spliced into a long sentence with “<|endoftext|>” as input. The
conditional distribution of the target prototype utterance U_m is the
product of a series of conditional probabilities:

\[P(U_m|C) = \prod_{i=S+1}^{S+s_m} P(t_i|t_1, t_2, ..., t_{i-1}), \]

where \(C = \{U_1, U_2, ..., U_n\} \), \(n \) is the number of utterances, \(U_i = \{t_1, t_2, ..., t_{s_i}\} \), \(t_i \) is each token in the utterance, \(s_i \) is the length of each utterance, \(S = s_1 + s_2 + \cdots + s_r \) represents the number of tokens in all utterances, \(s_m \) is the length of \(U_m \).

We use the maximum mutual information scoring function (MMI) and the top-k sampling [6] to reduce the generation of meaningless responses. The specific implementation is based on tools provided by Hugging Face\(^1\). We conduct fine-tuning on the training set for 3 epochs with the batch size of 8 and the learning rate of 0.00001. Emotional labels in the training set will not be used. During the decoding process, we use the top-k (k=100) sampling and nucleus sampling (p=0.7) [14].

2.3 Dialogue Emotion Detector

As an intuitive hypothesis of empathy, during emotional dialogues between two individuals, the listener usually tends to respond in a way that recognizes the speaker’s feelings [2, 24] and achieves a certain degree of empathy by calling the respondent’s emotions. In the dialogue scene of this work, there are not many turns in the dialogue context (<4), so we adopt this empathy hypothesis to determine the emotion of the response according to the emotion state of the context.

To this end, the goal of the Dialogue Emotion Detector \(D \) is to detect emotions in the dialogue context. According to the empathy hypothesis, \(D \) determines the expected emotion of the Controllable Emotion Refiner by the recognized emotion distribution in the dialogue context.

The Dialogue Emotion Detector \(D \) is developed based on DialogueGCN [10], which regards each utterance in the dialogue as a node of the graph network. There are directed edges between utterances, and the sequence order of utterances determines the direction of each edge. These directed edges can model the emotional impact of what the speaker or the other person has said before. We use Glove embedding and CNN to extract features of utterances and get the embedding of each utterance \(U_i \), which is the vector of each node. There are \(b \) utterances before each utterance, and there are \(a \) utterances after it. The node of each utterance has edges with \(a+b+1 \) nodes (including itself). The weight \(a_{ij} \) of each edge is decided by the relationship between nodes as follows:

\[a_{ij} = \text{softmax}(U_i^TW_a[U_{i-b}, ..., U_{i+a}]), \]

for \(j = i - b, ..., i + a \).

Further details about DialogueGCN construction are available in [10]. Finally, the embedding from the sequence encoder \(s_q \) and the speaker-level encoder \(s_p \) are spliced together, and combined with the similarity-based attention mechanism to obtain the final embedding of the utterance node. Then we use a fully connected network to classify multiple emotion categories:

\[H = [h_1, h_2, ..., h_n], \]

\[h_i = \text{softmax}((s_q, s_p)^TW)H_i^T, \]

\[e_i = \text{argmax}((\text{softmax}(\text{FFN}(h_i)))), \]

We use L2 regularization classification cross-entropy loss as the loss function and Adam [18] as the optimizer. We classify emotions in the emotion state set \(S \) into two groups of negative emotions and positive emotions as in [27]. Following [2, 24], we assume that empathetic responses may mimic the user’s emotions to some extent. Therefore, the target emotion \(e_{n+1} \) that we finally pass to...
the Controllable Emotion Refiner R is defined as follows:

$$e_{n+1} = \text{positive},$$

if \(\text{Num}_{\text{pos}}(E) > \text{Num}_{\text{neg}}(E) \), (4)

otherwise \(e_{n+1} = \text{negative} \).

Where $E = \{e_1, e_2, \ldots, e_N\}$ is the set of emotions in each dialogue. Num_{pos} and Num_{neg} represent the number of positive emotions and negative emotions in E, respectively.

2.4 Controllable Emotion Refiner

The Controllable Emotion Refiner R takes the prototype response U_m and the target emotion e_{n+1} as input, and generates the final response R_e. The goal we need to learn is defined as:

$$P(R_e|U_m, e_{n+1}) \& \text{Stype}(R_e) = e_{n+1},$$ (5)

where “Stype” represents the emotion type.

The Controllable Emotion Refiner R consists of two modules, “Rewrite” and “Add”. The Rewrite Module transforms the emotion attribute of the U_m by replacing the original emotion symbols in the sentence with symbols that express the target emotion. The Add module adjusts the emotion type by adding extra sentences. We train the Controllable Emotion Refiner R by parts.

Rewrite Module

The Rewrite Module consists of two parts: the first one is the deletion part, which determines whether each token in the input is an emotion attribute word, learns the emotional part and non-emotional part in the input, and deletes the emotional part. We adopt the attention mechanism of Transformer to extract the attention score as the weight of each token [45]:

$$\alpha(t) = \text{softmax}(QK^T), \text{for } t \in U_m,$$ (6)

where Q and K carry the original connotations of query and key vectors in the Transformer.

The second is the generating part, which generates sentences with target emotion attributes. The generating part adopts the Transformer structure, based on the Hugging Face [49]. The input of generating part is the prototype response and the target emotion. The output is a sentence that conforms to the target emotion. Without requiring the parallel corpus, the training goal of generating part is to minimize the following reconstruction loss:

$$L(\theta) = \sum_{x,s_{src}\in D} \log p(x|c_x, s_{src}; \theta),$$ (7)

where D is the training dataset. Given a sentence x, the Rewrite Module model learns to reconstruct $y = x$ with c_x, s_{src}. c_x is the non-emotional content of x, and s_{src} is the original style of the sentence.

Add Module

The Add Module is developed based on the work of [4] to change the emotion polarity of the original sentence by adding extra sentences with the target emotion. Using Bayes’ theorem, we can use the model $p(x)$ and the model $p(a|x)$ to express the model $p(x|a)$:

$$p(x|a) \propto p(a|x)p(x).$$ (8)

In order to obtain the required $p(x|a)$ to generate the sentence based on attribute a, we already have a language model $p(x)$ that can generate fluent sentences. Furthermore, we build a classifier to determine whether the text x generated by the language model has a attribute, that is, $p(a|x)$, then $p(x|a)$ can be obtained.

The process of the Add Module has three steps:

1. First, a forward pass is performed through the language model to compute the likelihood of the desired attribute using an attribute model that predicts $p(a|x)$.
2. Second, a backward pass updates the internal latent representations of the language model, using gradients from the attribute model to increase the likelihood of the sentence having the desired attribute.
3. Third, re-sampling to generate a new word according to the obtained new output probability distribution.

To generate more diverse sentences that conform to the language model, two methods are adopted to ensure that the language model of the generated sentence is as close as possible to the original language model: Kullback–Leibler (KL) Divergence and Post-norm Geometric Mean Fusion. About the language model, we use GPT2. Regarding the specific attribute discriminator $p(a|x)$, we take the existing non-dialogue emotion-annotated corpus and pre-train a classifier.

Selector

A Selector is designed to determine whether the response is from the Rewrite Module or the Add Module is selected as the final output. The Selector uses GLEU [30] as a basis for judging the overall effect of responses, which compares with the prototype response. Sudhakar et al. [45] found that GLEU is more suitable for human score than BLEU score. The Selector selects the final response with a higher GLEU score.

3 EXPERIMENTS

In this section, we introduce the datasets, baselines and evaluation metrics. The proposed conversational agent is experimentally compared with baselines and the experimental results are discussed.

3.1 Datasets

We used the DailyDialog [23] and EmpatheticDialogues [40] datasets for the experiment. DailyDialog is a multi-round dialogue dataset.
for daily chat scenes. There are a total of 12,218 dialogues and 103,607 utterances. The topic and emotion in each utterance are labeled. There are seven types of emotion: anger, disgust, fear, happiness, sadness, surprise, and others. Refer to Majumder et al. [27], we divided the 7 emotion types into two groups containing 3 positive and 4 negative emotions, respectively, as listed in Table 1. EmpatheticDialogues is a widely-used benchmark dataset for empathetic response generation, which is a large-scale multi-turn dataset containing 25k empathetic dialogues between crowdsourcing workers. EmpatheticDialogues also provides an emotion label for each dialogue from 32 available emotions. Following Majumder et al. [27], we divided the 32 emotion types into two groups containing 13 positive and 19 negative emotions, respectively, as listed in Table 2. We focus on positive and negative emotions because the consistency of polarity level emotion is more popular in emotion study and robust in the application. Since our method and baselines are under the same assumption and processed in the same way during evaluation, the results are competitive and convincing.

Considering the limited running space and to unify the number of rounds in each dialogue, we segment the original dialogues into sub dialogues having 4 rounds. Finally, for the DailyDialog dataset, the dialogue numbers of the training/validation/test set are 54,299 / 5,109 / 4,782, respectively. For the EmpatheticDialogues dataset, the dialogue numbers of the training/validation/test set are 103,607 utterances. The topic and emotion in each utterance are labeled. There are seven types of emotion: anger, disgust, fear, happiness, sadness, surprise, and others. Refer to Sabour et al. [20]: An interactive adversarial model consists of a generator and a discriminator. The discriminator requires user feedback. Besides, the model exploits both the coarse-grained dialogue-level and fine-grained token-level emotions. Referring to Sabour et al. [41], we only apply the empathetic generator to ensure consistent input and output in the test set for a fair comparison with other baselines.

3.2 Compared Models

To the best of our knowledge, this is an early work in the two-stage generation of emotional dialogue. In view of the empathy hypothesis, we compare our approach with a range of models used in related tasks, including general dialogue, emotional dialogue, and empathetic dialogue.

- **Transformer** [48]: The standard Transformer model that is trained to optimize NLL loss.
- **Multi-TRS** [40]: A multi-task Transformer model jointly trained by predicting the emotion and generating the response.
- **Mojitalk** [54]: An encoder-decoder based CVAE model incorporated with emotion embedding.
- **MoEL** [24]: A Transformer-based model employs emotion-specific decoders whose outputs are aggregated and fed to a final decoder to generate the empathetic response.
- **MIME** [27]: A Transformer-based model that leverages emotion groups and emotion mimicry, which effectively blends emotions in positive and negative emotion groups and generates the empathetic response.
- **EmpDG** [20]: An interactive adversarial model consists of a generator and a discriminator. The discriminator requires user feedback. Besides, the model exploits both the coarse-grained dialogue-level and fine-grained token-level emotions. Referring to Sabour et al. [41], we only apply the empathetic generator to ensure consistent input and output in the test set for a fair comparison with other baselines.

3.3 Implementation Details

We use the official codes of all baselines, especially, EmpDG only applies the empathetic generator. We implement all the models using PyTorch except Mojitalk. All the baselines were trained on a V100 GPU with the batch size of 16 and the early stopping strategy. About the Adam optimizer, we set $\beta_1 = 0.9$ and $\beta_2 = 0.98$. For the emotion detection in the automatic evaluation, emotion pre-training model in Senta is "ernie_2.0_skep_large_en".

3.4 Evaluation Metrics

3.4.1 Automatic Evaluation

We apply the following evaluation metrics in the automatic evaluation:

- **BLEU**: Word-overlap scores with human responses [32]. We use BLEU-4, which is calculated with an NLG evaluation toolkit 2.
- **Diversity**: Dist-n measures the proportion of unique n-grams in the generated responses [25]. It is commonly used to evaluate whether the dialogue model can generate a diverse response as humans do. Low diversity often means the model tends to generate similar safe responses to different contexts. We refer to the work of [3] to calculate the Dist-1 and Dist-2 metrics.

- **Emotion Accuracy (Acc)**: The emotion accuracy is defined as the proportion of consistent emotion polarities between generated responses and the ground truth. We use the Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis (SKEP) model [46] proposed by Baidu as the emotion detector during the evaluation. SKEP is a state-of-the-art emotion detector in 14 typical Chinese and English sentiment analysis tasks. We use it to automatically detect the emotion polarity of the responses generated by our proposed conversational agent and baselines.

3.4.2 Human Evaluation

We randomly sampled 100 dialogues and generated responses with our proposed conversational agent and baselines. We employed three human annotators to evaluate each response based on four aspects:

- **Content(Con)**: Whether the response is appropriate for the context in the current dialogue. It is rated on a Likert scale (1: not at all, 3: somewhat, 5: very much).
- **Emotion(Emo)**: Whether the response is appropriate for the context in the emotion polarity. 1 indicates the response is appropriate, and 0 indicates the response is inappropriate.
- **Emotion-intensity(Int)**: What the emotion intensity of the response is. 0 represents no emotion, 1 represents slight intensity, and 2 represents strong intensity.
- **Fluency(Flu)**: Whether the response is readable and understandable. It is rated on a Likert scale (1: not at all, 3: somewhat, 5: very much).

3.5 Main Results

Both automatic and human evaluation results are shown in Table 3 and Table 4 on the DailyDialog and EmpatheticDialogues datasets, respectively.

For the performance of emotion generation, it can be observed that the proposed conversational agent outperforms baselines in **Acc** for the automatic evaluation and **Emo** for the human evaluation in two datasets, indicating the outstanding performance of our conversational agent in emotion generation. In addition, our conversational agent also achieves the best and second-best results.

1. https://github.com/Malunhua/nlg-eval
2. https://github.com/baidu/Senta
Table 3: Automatic and Human evaluations in the DailyDialog dataset (The significant improvement with p-value < 0.05 (t-test). Fleiss’s kappa for Human evaluation is 0.526, indicating “moderate agreement”).

<table>
<thead>
<tr>
<th>Model</th>
<th>Automatic Evaluation</th>
<th>Human Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BLEU-4</td>
<td>Dist-1</td>
</tr>
<tr>
<td>Transformer</td>
<td>0.44</td>
<td>1.10</td>
</tr>
<tr>
<td>Multi-TRS</td>
<td>0.58</td>
<td>1.17</td>
</tr>
<tr>
<td>Mojitalk</td>
<td>0.58</td>
<td>4.99</td>
</tr>
<tr>
<td>MoEL</td>
<td>0.46</td>
<td>1.51</td>
</tr>
<tr>
<td>MIME</td>
<td>0.54</td>
<td>0.48</td>
</tr>
<tr>
<td>EmpDG</td>
<td>0.57</td>
<td>1.12</td>
</tr>
<tr>
<td>Our</td>
<td>0.67</td>
<td>9.71</td>
</tr>
</tbody>
</table>

Table 4: Automatic and Human evaluations in the EmpatheticDialogues dataset (The significant improvement with p-value < 0.05 (t-test). Fleiss’s kappa for Human evaluation is 0.462, indicating “moderate agreement”).

<table>
<thead>
<tr>
<th>Model</th>
<th>Automatic Evaluation</th>
<th>Human Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BLEU-4</td>
<td>Dist-1</td>
</tr>
<tr>
<td>Transformer</td>
<td>0.35</td>
<td>0.64</td>
</tr>
<tr>
<td>Multi-TRS</td>
<td>0.35</td>
<td>0.73</td>
</tr>
<tr>
<td>Mojitalk</td>
<td>0.23</td>
<td>6.99</td>
</tr>
<tr>
<td>MoEL</td>
<td>0.34</td>
<td>1.15</td>
</tr>
<tr>
<td>MIME</td>
<td>0.37</td>
<td>0.89</td>
</tr>
<tr>
<td>EmpDG</td>
<td>0.39</td>
<td>0.75</td>
</tr>
<tr>
<td>Our</td>
<td>0.39</td>
<td>5.24</td>
</tr>
</tbody>
</table>

Table 5: Ablation Analysis.

<table>
<thead>
<tr>
<th>Model</th>
<th>DailyDialog</th>
<th>EmpatheticDialogues</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BLEU-4</td>
<td>Dist-1</td>
</tr>
<tr>
<td>Our</td>
<td>0.67</td>
<td>9.71</td>
</tr>
<tr>
<td>w/o Add</td>
<td>0.59</td>
<td>7.48</td>
</tr>
<tr>
<td>w/o Rewrite</td>
<td>0.49</td>
<td>7.93</td>
</tr>
<tr>
<td>w/o DED</td>
<td>0.63</td>
<td>8.77</td>
</tr>
</tbody>
</table>

in Int on the DailyDialog and EmpatheticDialogues datasets, respectively, which clearly verifies that the emotional effect of our model is more significant and sufficient compared with the SOTA end-to-end systems. This is because in the process of the two stages, the emotional effect of the response is separately determined and refined in the second stage without being influenced by the semantic generation in the first stage.

For the performance of semantic generation, the proposed conversational agent reaches the highest level in BLEU-4 and Con. In terms of Dist-1 and Dist-2, our conversational agent also scores moderately. These results confirm that the proposed conversational agent significantly improves emotional expression while maintaining appropriate semantics. We also note that our proposed conversational scores are ordinary in Flu, which is possibly due to the “adding” strategy increasing the sentence length and affecting the reading difficulty. This is a small limitation given that all models score above 4, which we will explore in the future.

For the performance of compared baselines, MoEL has a low BLEU-4 score and a high emotion accuracy score, which shows that this existing model loses semantic information when pursuing emotion features. Furthermore, all baselines except Mojitalk have low scores on diversity metrics, which indicates that there are a large number of safe responses in the generated responses. MoEL, Mojitalk, MIME, and EmpDG also have low scores in Con in the DailyDialog dataset, which is lower than Transformer. This may be primarily due to the mutual restriction of semantics and emotions, which reduces the output space.

Since there are 8 metrics (Automatic and Human Evaluation) evaluated, which are less than 30, we choose t-test. Specifically, we use “ttest_ind” in dodd`scipy.stats` package to calculate metric values of our method with the metric values of baselines. All p-values are less than 0.05, accept the assumption, which means it is statistically significant.

In Figure 3, for 100 human evaluation samples, we compared the correctness and significance of the emotion of the prototype response and the refined response generated by our proposed conversational agent. The red and blue columns indicate correct (i.e., coherent to the contextual emotion) and incorrect emotions, respectively. The length of the columns indicates the significance of the emotion. We can note that the number of red columns in the refined
responses is more, and the length is longer, which illustrates that the refined responses improve the correctness and significance of the emotion in the prototype response.

![Figure 3: Compare the prototype response and refined response with respect to the correctness and significance of the emotion. The left and right columns indicate prototype and refined responses, respectively. The red and blue columns indicate correct (i.e., coherent to the contextual emotion) and incorrect emotions, respectively. The length of the columns indicates the significance of the emotion.](image)

3.6 Human A/B Test

We conducted the human A/B test, which is shown in Table 7. We randomly sampled 100 response pairs and asked 3 annotators to choose the preferred response based on the dialogue context. A tie is allowed if both are good or bad. The inter-annotator agreement is measured by Fleiss’s kappa. One example needs to be judged six times. Pay about 43.12$ for every 100 examples. We can observe that responses generated by the proposed conversational agent are preferred by annotators over those generated by other models, which indicates that responses with appropriate emotions and diversity are more attractive to users.

3.7 Ablation Analysis

In order to verify the effectiveness of our proposed conversational agent, we also conducted ablation studies. 1) w/o Add: The Add module is removed in the Controllable Emotion Refiner. We only consider using “rewriting” to refine the prototype response; 2) w/o Rewrite: The Rewrite module is removed in the Controllable Emotion Refiner, and we consider using “adding” to refine the prototype response; 3) w/o DED: The Dialogue Emotion Detector is removed and replaced by emotion recognition of a single utterance. This is only conducted in the DailyDialog dataset because the emotion annotation of the EmpatheticDialogues dataset is dialogue-level.

As shown in Table 5, we can observe that removing the Add Module or the Rewrite Module both causes a drop in most metrics. This suggests that combining the “rewriting” and “adding” strategy is beneficial to generating appropriate responses in line with the human language characteristics of both explicit and implicit expression. However, the Selector of the second stage can be improved, such as selecting which module to use in advance based on the prototype response and emotion. How to refine the prototype response by the “Rewrite” or “Add” module more effectively and reasonably is a problem worth exploring. Moreover, the dialogue emotion detector also plays an important role in emotional response generation, which is superior to concatenating the context into a long sentence or identifying a single utterance.

3.8 Case Study

We sampled some generated responses from all models in Table 6. We can observe that responses generated by other baselines have emotional expressions, but the semantics are less appropriate in general. Although responses generated by Transformer are fluent, they often do not conform to the context. In contrast, the response of the proposed conversational agent not only inherits the contextual semantics but also involves rich and appropriate emotions at the same time. For example, the proposed conversational agent coherently transforms “It is a problem. I am not sure how to solve it.” to “It is a problem. I am not sure how to solve it. I feel very sorry.”

4 RELATED WORK

Dialogue Emotion Recognition. Different from the emotion recognition of independent sentences, emotions in dialogue should be recognized by the context. Used context typically includes historical utterances [56], history emotions [28] and mutual influence of speakers [13]. To model the context, utterances and speakers can be independently [13] or interactively [12] modeled by GRU. [10] uses GCN to solve the problem of context propagation in existing GRU-based methods. Commonsense knowledge [9], psychological knowledge [19], and cognitive theory of emotion [15] are also used to enhance dialogue emotion recognition.

Emotional Dialogue. Emotional dialogue aims to generate emotional responses with two main strategies. One strategy is to specify a target emotion in advance [22, 44, 53, 54]. The advantage of this strategy is that the generated emotions are flexible and controllable, and its disadvantage is that large-scale emotion-annotated dialogue corpora are required. The other strategy is to utilize the dialogue context to learn emotions by itself [1], which is close to empathetic dialogue [8, 20, 21, 24, 27, 42] supposing that listeners can infer speakers’ emotions [40]. The advantage of this strategy is that it can utilize the existing large-scale dialogue corpora, and its disadvantage is that the emotions of generated responses are challenging to control. Furthermore, a promising task emotional support dialogue [26] has recently emerged, which provides valuable assistance to people in need [34, 35, 47].

Controllable Text Generation. Controllable text generation aims to generate texts with controllable styles. Style is defined as tokens belonging to a specific category or label [37]. Typical processes include training a large-scale conditional generation model from scratch, fine-tuning from a pre-trained language model, and replacing the key n-tuple to adjust the style of the generated sentence [4]. As a kind of style, emotion has good practical significance for its controllable generation. Emotion controlled text generation is to redefine the text to contain the specific emotion without changing the contextual intention [16, 17, 31, 45, 50].
The differences between the proposed conversational agent and existing methods are:

1. As far as we know, we are the first to study a two-stage emotional response generation paradigm in the field of emotional dialogue specially.

2. We refine the response with dynamically recognized dialogue context emotions. However, current rewriting methods do not consider the dynamic acquisition of emotions.

5 CONCLUSIONS
This paper designed a two-stage conversational agent in the field of emotional dialogue that generates content-related and emotional responses. The proposed conversational agent generates a semantically coherent prototype response in the first stage and emotionally refines the prototype response in the second stage. Extensive automatic and human evaluations have demonstrated that the proposed conversational agent can generate high-quality emotional responses of appropriate semantics, and reduce the demand for the sizeable emotion-annotated dialogue corpus.

In the future, to improve the proposed conversational agent, we will explore the prediction of explicit and implicit expressions, and the flexible enhancement of other specific features besides the emotion of the dialogue system, such as domain and style adaptation.

Table 6: Examples of generated responses by our proposed conversational agent and baselines. The corresponding contexts did not appear in the training set. Bold tokens are the refined part.

<table>
<thead>
<tr>
<th>Context</th>
<th>Ground Truth Response</th>
<th>Models</th>
<th>Generated Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>No, honey, why didn’t you go to cram school last night? Dad, I don’t want to talk about it now. Honey, if you don’t want to go to cram school, you should tell me the reason why.</td>
<td>I’m sorry, dad. But I would rather stay at school than go to cram school.</td>
<td>Transformer</td>
<td>I do not think I can do that.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multi-TRS</td>
<td>Yeah, I know, but I am sure I will.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mojitalk</td>
<td>Well, I believe it’s a good point.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIME</td>
<td>I do not know. I want to go to school.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EmpDG</td>
<td>I am sorry. I cannot wait to get out of the internet.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ours</td>
<td>Sorry dad. I can’t do that again. I’m so busy.</td>
</tr>
<tr>
<td>I could have Suzy stay at my place. I don’t want to do that to you, Karen. Why not?</td>
<td>Your own kids would get Suzy’s cold. I think it would be better to have a good babysitter here.</td>
<td>Transformer</td>
<td>Yes, I think I would love to.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multi-TRS</td>
<td>I am sorry. I must have to give her a girl.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mojitalk</td>
<td>Well, I have a cold.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIME</td>
<td>I do not know. I would like to. You?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EmpDG</td>
<td>I am not sure. I am not sure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ours</td>
<td>I am sorry. But I just can’t. I’ve got nothing to lose.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I just want to make the best of what I have, and the best I can.</td>
</tr>
</tbody>
</table>

Table 7: Results of human A/B test. Fleiss’ kappa result for DailyDialog and EmpatheticDialogues is 0.612 and 0.496, indicating "substantial agreement" and "moderate agreement", respectively.

<table>
<thead>
<tr>
<th>Models</th>
<th>DailyDialog</th>
<th>EmpatheticDialogues</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Win</td>
<td>Lose</td>
</tr>
<tr>
<td>Our vs Transformer</td>
<td>45.0%</td>
<td>34.7%</td>
</tr>
<tr>
<td>Our vs Multi-TRS</td>
<td>46.0%</td>
<td>31.0%</td>
</tr>
<tr>
<td>Our vs Mojitalk</td>
<td>56.3%</td>
<td>26.0%</td>
</tr>
<tr>
<td>Our vs MoEL</td>
<td>44.7%</td>
<td>31.0%</td>
</tr>
<tr>
<td>Our vs MIME</td>
<td>49.0%</td>
<td>31.7%</td>
</tr>
<tr>
<td>Our vs EmpDG</td>
<td>42.0%</td>
<td>32.0%</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS
This work was supported by National Natural Science Foundation of China (62272340, 61876128, 61876129, 62761817, 61976154, 61402323), the Artificial Intelligence for Sustainable Development Goals (AI4SDGs) Research Program, State Key Laboratory of Communication Content Cognition (Grant No.A32003).

REFERENCES
[23] Qiong Li, Pijj Li, Zhaoshun Ren, Pengjie Ren, and Zhumin Chen. 2022. Knowl-

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom