Ask and You Shall be Served: Representing & Solving Multi-agent Optimization Problems with Service Requesters and Providers

Maya Lavie
Ben-Gurion University of the Negev
Be’er Sheva, Israel
laviem@post.bgu.ac.il

Omer Lev
Ben-Gurion University of the Negev
Be’er Sheva, Israel
omerlev@bgu.ac.il

Tehila Caspi
Ben-Gurion University of the Negev
Be’er Sheva, Israel
caspite@post.bgu.ac.il

Roie Zivan
Ben-Gurion University of the Negev
Be’er Sheva, Israel
zivanr@bgu.ac.il

ABSTRACT
In scenarios with numerous emergencies that arise and require the assistance of various rescue units (e.g., medical, fire, & police forces), the rescue units would ideally be allocated quickly and distributedly while aiming to minimize casualties. This is one of many examples of distributed settings with service providers (the rescue units) and service requesters (the emergencies) which we term service oriented settings. Allocating the service providers in a distributed manner while aiming for a global optimum is hard to model, let alone achieve, using the existing Distributed Constraint Optimization Problem (DCOP) framework. Hence, the need for a novel approach and corresponding algorithms.

We present the Service Oriented Multi-Agent Optimization Problem (SOMAOP), a new framework to overcome DCOP’s shortcomings in service oriented settings. We evaluate the framework using algorithms based on auctions and matching (e.g., Gale Shapely). We empirically show that algorithms based on repeated auctions converge to a high quality solution very fast, while repeated matching problems converge slower, but produce higher quality solutions. We demonstrate the advantages of our approach over standard incomplete DCOP algorithms and a greedy centralized algorithm.

KEYWORDS
Multi-Agent System; Multi-Agent Optimization; Distributed Problem Solving; Distributed Constraint Optimization Problems

ACM Reference Format:

1 INTRODUCTION
Advances in computation and communication have resulted in realistic distributed applications in which people interact with technology to reach and optimize mutual goals, such as saving lives in disaster response [26] and maximizing user satisfaction while minimizing energy usage in smart homes [12, 28]. Thus, there is a growing need for optimization methods to support decentralized decision making in complex multi-agent systems. Many of these systems share the underlying structure of a service oriented system, which includes two sets of agents: one set of agents that can provide services and the other of agents that require services to be provided.

Consider, for example, a disaster rescue scenario, where rescue units (medical personnel, firefighters, police, etc.) need to coordinate their actions to save as many people as possible from numerous disaster sites. This coordination problem is particularly challenging due to the following characteristics:

1) **Optimization of a Global Objective**: the various rescue units need to work together as a team towards a common goal (e.g., saving as many victims as possible).
2) **Decentralized Coordination**: often there is no centralized entity that coordinates agents, but rather a diverse set of agents (e.g., medical personnel, firefighters and disaster site coordinators) making personal coordination decisions. While we use the disaster rescue scenario as a motivating setting throughout this paper, these factors are present in a much larger class of multi-agent coordination problems.

A common approach to solve these types of problems is to model them as distributed constraint optimization problems (DCOPs), where decision makers are modeled as cooperative agents that assign values to their variables [11, 20, 27, 30]. The goal in a DCOP is to optimize a global objective in a decentralized manner. The global objective is decomposed into constraints that define the utility agents derive (or costs they incur) from combinations of assignments to variables [4, 6, 15]. This model captures how a rescue unit (an agent) with a schedule (a variable) is assigned a disaster site (possibly) different number of victims will be saved (the utility).

In DCOP algorithms, agents exchange messages, communicating selected value assignments or their estimated utilities. The information received by an agent is used to adjust its variable assignments. The local quality of the assignments they select is measured according to the constraints they are subject to.

If we examine the properties of the service oriented systems described above, it is apparent that the DCOP model does not naturally apply to them. On the contrary, in many of them, the constraints are defined by entities (e.g., disaster site coordinators) different from the agents making the decisions (e.g., rescue units).
These entities require a service to be performed, but they do not assign variables. Rather, they are affected by the consequences of the decisions made by the agents performing the actions. Thus, while the solution is determined by the set of the “original” DCOP agents (the ones assigning variables, e.g., rescue units), the quality of the solution (i.e., the global utility derived from it) is measured according to the satisfaction of the service requiring agents (e.g., disaster site coordinators) from the services provided to them.

In our disaster response example, consider the ambulances that are required to evacuate casualties from disaster sites to hospitals. The number of casualties and the severity of their wounds in each disaster site determines the utility derived from evacuating them to hospitals (e.g., not much utility in evacuating people with very minor wounds). To use the standard DCOP model for solving this problem, we would have the ambulances hold complete and coherent information regarding all disaster sites they can drive to and exchange messages with all rescue units (e.g., ambulances, police units and fire fighters) that can attend to casualties from the same sites (neighboring units). Moreover, to calculate the utility that they would derive from each decision they make, the ambulances would require knowledge of all assignments made by neighboring units and the utility (or cost) of all constraints representing the outcome of each possible combination of their assignments. Such a modelling requires agents to have detailed knowledge on almost all other agents, defeating the purpose of a distributed setting.

The fact that the dominant model used to represent and solve multi-agent optimization problems seems deficient for so many distributed realistic applications is what motivates this work. We propose an alternative abstract model, Service Oriented Multi-Agent Optimization Problem (SOMAOP). In contrast to standard DCOP, SOMAOP offers a paradigm for multi-agent optimization that can handle service oriented settings. In this model, agents are divided into two sets: service requesters (SRs) and service providers (SPs). This approach allows us to adopt (and adapt) existing AI and OR centralized methods for assigning service providers to service requesters. Thus, in this paper we:

1. Present the SOMAOP model.
2. Propose algorithms based on auctions and matching algorithms for solving SOMAOPs.
3. Conduct empirical comparison between various SOMAOP algorithms, and empirically show that algorithms based on repeated auctions converge to a high quality solution very fast, while repeated matching problems converge slower, but produce higher quality solutions.
4. Compare SOMAOP algorithms to DCOP algorithms in solving service oriented problems.

Our results demonstrate that the SOMAOP model allows the use of algorithms that converge quickly to high quality solutions while maintaining the problem’s distributed structure and without requiring complete and coherent information to be held by the service providing agents.

2 SERVICE ORIENTED MULTI-AGENT OPTIMIZATION

The Service Oriented Multi-Agent Optimization Problem (SOMAOP) is a multi-agent problem in which there is a clear distinction between two disjoint sets of agents: service requesting agents (SRs) and service providing agents (SPs). We create a bipartite graph with the SRs and SPs as the nodes. Each service providing agent (SP) is connected by an edge to SR nodes that require services that it can perform. Each service requesting agent (SR) is similarly connected by an edge to SP nodes that can provide the services that it requires. Each agent can communicate solely with agents that are connected to it by an edge.

The variables of the problem are held by the SPs, with assignments to the variables reflecting the actions (services) that they will perform. A solution to the problem will include an assignment to each of the variables. The solution’s quality will be determined by the satisfaction of the SRs from the actions chosen by the SPs (the services assigned to be provided to them) and will be reflected in a global utility, which the agents aim to maximize. Thus, one set of agents (SPs) selects the actions that are performed, while the other set (SRs) evaluates the outcome of these actions.

Formally, a SOMAOP is a tuple \((S, P, S_R, S_P, X, D, U)\), where \(S = \{S_1, S_2, \ldots, S_n\}\) is a set of \(n\) service providing agents and \(S_R = \{S_{R_1}, S_{R_2}, \ldots, S_{R_m}\}\) is a set of \(m\) service requesting agents.

The capabilities provided and requested as services are formalized as skills. The set of all skills is \(S = \{S_1, S_2, \ldots, S_k\}\). Each \(S_j \in S\) has a set of provable skills, \(P_j \subseteq S\). For each \(S_j \in P_j\), the SP has a workload \(w^j_S\) that defines the amount of the skill it can provide as a service. For example, an ambulance can evacuate a limited number of casualties. For each skill \(S_j \in P_j\), the SP also has a work function \(t^j_S(\omega)\) that defines the time it takes to complete \(w\) workload of this skill. The workload of a provable skill \(S_j\) decreases when the SP schedules the skill to be provided as a service to an SR (providable skill \(S_j\) is depleted when \(w^j_S = 0\)).

On the other hand, each \(SR_j \in S_R\) has a set of requested skills, \(R_{SR_j} \subseteq S\). For each requested skill \(S_j \in R_{SR_j}\), the SR has a workload \(w^j_{SR}\) that defines the amount of service required of the skill it requests. The workload of a requested skill \(S_j\) decreases when an SP schedules to provide the service as a service to the SR (requested skill \(S_j\) is no longer required when \(w^j_{SR} = 0\)). For each of its requested skills \(S_j \in R_{SR_j}\), there is an optimal team size for performance capability, \(q^j_{SR}\), defining the number of SPs that are requested to cooperate simultaneously when performing the service (e.g., if a requested skill \(S_j\) with \(w^j_{SR} = 2\) has \(q^j_{SR} = 2\), \(SR_j\) will prefer two SPs to each schedule to provide half of the requested workload of \(S_j\) simultaneously rather than a single SP to provide the full requested workload). Additionally, each requested skill \(S_j\) has a maximal utility \(u^j_{SR}\), defining how much utility could be derived if the full service is completed immediately, with \(q^j_{SR}\) SPs sharing the workload of the service simultaneously. Lastly, each requested skill \(S_j\) has a latest completion time \(t^d_{SR_j}\), after which the service is no longer required.

\[X = \{X_1, X_2, \ldots, X_n\} \] includes sets of variables for each SP, i.e., for each service provider \(S_{P_i}\), \(1 \leq i \leq n\), \(X_i\) includes the set of variables \(x_{i_1}, x_{i_2}, \ldots, x_{i_{k_i}}\) representing the services that \(S_{P_i}\) will provide; \(k_i\) is the maximal number of services that it can perform. An assignment to \(S_{P_i}\)’s variable \(x_{i_{\ell}}\) is a service tuple \((S_{R_{\alpha}}, r_{\alpha}, a_{\alpha}, t_{\alpha})\) representing the SR that the service will be provided to, the skill provided, the workload provided and the expected start time for performing the service, respectively. The order of the variables defines the order in
which the agent will execute the services, i.e., \(\text{SP}_i \) will first perform
the service assigned to \(x_{i_1} \), then the service assigned to \(x_{i_2} \), etc.
\(\mathcal{D} = \{D_1, D_2, \ldots, D_n \} \) includes sets of variable domains such that
\(D_1, 1 \leq i \leq n, \) includes the set of domains \(d_{i_1}, d_{i_2}, \ldots, d_{i_n} \), which include
the values that can be assigned to variables \(x_{i_1}, x_{i_2}, \ldots, x_{i_n} \) of \(\text{SP}_i \) respectively (i.e., \(d_i \) contains all of the service tuples that
\(\text{SP}_i \) can schedule to provide first). The domains can also include
a non-service assignment in cases where a SP is purposefully not
assigned to a service e.g., in cases when SPs need time to recharge.

A solution \(\sigma \) to the SOMAOP is an assignment to each of the
variables held by the set of SPs, of a value from its domain. The
utility derived by a service requesting agent \(\text{SR}_j \) from solution \(\sigma \)
is denoted by \(U_j(\sigma) \). It is calculated as a function of the utility \(\text{SR}_j \)
will derive from the services scheduled for each requested skill
\(s \in \mathcal{RS}_j \) as specified by \(\sigma \), denoted \(u^s_j(\sigma) \). \(u^s_j(\sigma) \) is bounded by
\(u^s_{\max} \) and is affected by three factors: 1) The time the SP
will spend awaiting service for \(s \); the utility to be derived from the service
will decrease with a latency penalty function, corresponding to the
time the SR awaits service. 2) The amount of workload scheduled
to be performed and its timing. 3) The performance capability of
the SPs providing the service: the performance capability of \(\text{SR}_j \)’s
requested skill \(s \) is affected by the number of SPs that provide
the workload of the service simultaneously [1]. This is denoted by the
capability function, \(\text{Cap}_j^s(q) \). The function can represent minimum
required or maximum allowed numbers of agents setting the
capability to 0 for fewer agents, or by not increasing the capability
when more than the maximum number of required agents share a
service, respectively. \(\text{Cap}_j^s(q) \) will reach its maxima at \(q = q^s_{\max} \). We
assume \(\text{Cap}_j^s(q) \) is weakly monotonically increasing in \(q \).

\(U(\sigma) \) defines the global utility derived from solution \(\sigma \) and is a
function of the utilities received by each of the SRs, i.e.,
\(U(\sigma) = F(U_1(\sigma), U_2(\sigma), \ldots, U_m(\sigma)) \). The goal of the agents in SOMAOP is
to maximize the global utility function \(U \).

3 ALGORITHMS FOR SOLVING SOMAOP

The general approach we take is to design iterative distributed algo-
rithms in which the building blocks are existing methods for assign-
ing service providers to services, used in the Operation Research
literature, which we adapt to a distributed environment. Specifi-
cally, we will focus on two approaches: auctions [5, 16, 17, 24] and
matching [3, 13, 14].

3.1 Repeated Parallel Auctions (RPA)

The RPA algorithm creates allocations of SPs to SRs by using a
repeated auction process [16, 19, 21]. In each of the algorithm’s
iterations (a predefined number), an auction occurs between the
SPs (sellers that offer provable skills) and the SRs (the buyers
who offer bids on the skills they require). The auction begins with each
SP sending a service proposal to its neighboring SRs for each of their
joint skills (skills that the SP can provide and the SR requests). A
service proposal from \(\text{SP}_i \) to \(\text{SR}_j \) for provable skill \(s \) is composed
of \(\text{SP}_i \)’s proposed workload for \(s \) and the proposed service start
at which \(\text{SP}_i \) proposes to begin providing \(s \) to \(\text{SR}_j \).

Upon receiving service proposals from its SP neighbors, each SR
responds by sending service requests to the SPs that it would most
want to provide it each of its requested skills. A service request from

\begin{algorithm}
\caption{RPA: Service Provider \(i \)}
\begin{algorithmic}[1]
 \STATE for fixed number of iterations do
 \STATE Reset \(w^r \) \(\forall s \in \mathcal{P}_i \), \(t_{\text{request}}^{\text{earliest}} = 0 \)
 \STATE requests \(\leftarrow \) requests received from SRs in previous iteration, ordered by highest bid value
 \STATE for \(r \in \text{requests} \) do
 \STATE \(t_{\text{request}}^{\text{earliest}} \leftarrow \) earliest time after \(t_{\text{request}}^{\text{earliest}} \) that \(\text{SP}_i \) can begin serving \(r \)
 \STATE if \(t_{\text{request}}^{\text{earliest}} \leq t_{\text{start}}(r) \) and \(w^s_i(r) \geq w(r) \) then
 \STATE send proposal(SR(r), s(r), w^s_i(r), t_{\text{request}}^{\text{earliest}})
 \STATE schedule(r)
 \STATE Update \(w^s_i(r), t_{\text{request}}^{\text{earliest}} \)
 \STATE end if
 \STATE \STATE \end for
 \STATE end for
 \STATE SR_j to \(\text{SP}_i \) for requested skill \(s \) is composed of a \(\text{SR}_j \)’s requested
 \STATE workload for \(s \), a requested start time for \(\text{SP}_i \) to begin to provide \(s \) to \(\text{SR}_j \) and a bid value that expresses the utility it could derive from
 \STATE receiving \(s \) with the workload requested at the start time requested.

 Once all service requests for the iteration are sent, the SPs will at-
 attempt to create a schedule (each SP starts with an empty schedule
 in each iteration). The SP attempts to schedule the service requests in
descending order of bid value. A schedule attempt for request \(r \) suc-
ceds if the completion time of the last scheduled request is earlier
than the requested start time of \(r \) and if the SP has enough workload
left to provide it, given the services needed to fulfill the already-
scheduled requests. The SP will continue to attempt to schedule
requests until an attempt fails. The SP responds to a scheduled
request with a service proposal to provide the service as requested.

The SP responds to an unscheduled request with an updated ser-
vice proposal including its updated remaining provable skills and
workloads (the original skills and workloads, minus those needed
for the scheduled requests) and its updated proposed service start
time (the next time possible after the scheduled requests). This
begins the next auction (iteration), and the process occurs again.

Algorithm 1 depicts the main procedure of the SPs. Initially, a
SP will propo...
We will denote by T_S the set of provided service requests, the algorithm converges. We will further indicate that the change in following iterations (the set can only grow as the algorithm converges) is bounded by two iterations between each increment to the size of set T_S. The proof for Proposition 3.2 will only need a fixed number of times. The proof for Proposition 3.2 will only need a fixed amount.

Observation 1
In iteration $k+1$, h^k_{SP} of h^k_{SR} will be the first service that is not in T_S on h^k_{SR}’s schedule.

This is because SPs order services according to their bid sizes.

Observation 2
The only way that h^{k+1} can be smaller than h^k is when the service that h^k corresponds to was added to T_S.

As Observation 1 notes, the highest bid would be the first one (apart from those in T_S) handled by SPs. If h^k is not the highest bid in iteration $k+1$, it can only be if it was added to T_S or if there is a larger bid sent in iteration $k+1$.

Lemma 3.1
The number of consecutive iterations in which T_S does not grow is bounded by $2|SP| \cdot |S|$.

Proof
Under a given T_S set, the highest possible bid not yet in T_S will be added to T_S (since it is not surpassed, the SP agent getting the bid will always give it a high priority, and the requesting agent gets it as soon as possible (otherwise, it would have given a higher bid). Thus, when discussing changes to T_S we can focus on looking at the highest possible bid that is not in T_S yet.

Initially T_S is empty. After the first iteration of the algorithm, h^1_{SP} schedules the corresponding request as a service. Since all SRs in the first iteration considered the earliest possible arrival time of each SP, this bid will remain the highest and will not change. Thus, this scheduled service is added to T_S.

In each of the following iterations, each SP has a schedule that was determined according to the bids it received in the previous iteration. According to Observation 1, following iteration k, in iteration $k+1$, h^k_{SP} will be scheduled first among all services not yet in T_S by h^k_{SP}. Thus, either h^{k+1} is the same as h^k, or, according to Observation 2, it was replaced by a higher bid. In both cases, h^{k+1}_{SP} will never submit an earlier arrival time to h^k_{SP} than the one it submitted at iteration $k+1$ and therefore, it will never receive a bid for this service that is higher than the one it got for it in this iteration. Thus, the maximal number of different highest bids between consecutive additions to T_S is bounded by two iterations for each SP on each skill, i.e., $2|SP| \cdot |S|$. That is, after that number of iterations, it is guaranteed that one of those bids was the maximal possible one, and thus, would be added to T_S.

Proposition 3.2
RPA converges within $2|SP|^2 \cdot |S|^2$ iterations.

Proof
According to our assumption, each SP serves an SR on a skill only once, i.e., the number of services that are added to T_S is bounded by $|SP| \cdot |S|$. From Lemma 3.1, the maximal number of iterations between each increment to the size of set T_S is bounded by $2|SP| \cdot |S|$. Thus, the maximal number of iterations before the algorithm converges is bounded by $2|SP|^2 \cdot |S|^2$.

Our assumption that each SP will serve a SR agent with skill s at most once can easily be relaxed to serving the SR agent with some fixed number of times. The proof for Proposition 3.2 will only need to be slightly changed, multiplying our convergence bound by a fixed amount.
3.2 Distributed Simulated Repeated Matching Algorithm (DSRM)

The DSRM algorithm creates allocations of SPs to SRs by repeatedly simulating the outcome of a matching algorithm over time. Each agent (SP as well as SR) has an internal clock that begins at \(t = 0 \) and progresses throughout the DSRM algorithm. Each iteration considers a simulated time \(t \) at which the agents execute an iterative Gale Shapley inspired many-to-one matching algorithm [13] to match SPs with SRs. The outcome of the matching algorithm is translated to service tuples by the SRs and scheduled by the SPs.

Once a SP is matched to a service to a SR, it can determine when it will finish providing the service, by calculating how long it will take to complete its assigned workload (using \(t_i^p(w) \)). This way it can also know what its remaining workload will be at a future time.

At each iteration, we simulate as though the previous allocations already happened, which means that the provided services and workload are updated as well as the internal clock of each agent (an explanation on how to distributively synchronize the internal clocks to the next relevant start time in each iteration follows). In each iteration we want to make a decision for the next allocation at this time. This simulated matching process will end when there are no more SRs with remaining requested skills or no more SPs with remaining provicable skills. The final schedule is the solution to the problem and will include the assignments that were "executed" during the simulated process in the order that they were simulated.

The iterative Gale Shapley inspired many-to-one matching algorithm is performed as follows. In each iteration, the SR calculates a bid value for each of its requested skills, for each neighboring SP that can provide the service. This bid value expresses the utility it could derive from receiving the service from the SP. The SRs share the bids with the SPs. Then, a distributed version of the Gale Shapley college admissions algorithm (DGS) [3] is executed to create a many-to-one matching. Each SR acts separately and simultaneously for each of its requested skills. Both the SPs and the SRs' requested skills rank one another according to the bid values. The SPs that have been matched will not take part in the next iteration. The SRs will take part in the next iteration if they have at least one requested skill \(s \) that has not been matched with \(q_j^s \) SPs (defined by \(\min(q_j^s, \text{number of SP neighbors with } s \in PS_i) \)), and there is at least one neighboring SP to provide the skill. The iterative matching algorithm ends when there are no SPs or SRs left to match. Note that the algorithm does not aim to allocate just enough SPs to provide the workload requested but rather \(q_j^s \) SPs for each skill.

Algorithm 3 depicts the main procedure of the SPs. A SP initializes the times \(t, t_{last} \) to 0 and its assignment \(t \) to empty (line 1). The algorithm ends when the SP no longer has SRs to provide services to or no service left to provide (line 21). At each simulated time \(t \), the SP updates its neighboring SRs regarding its provicable skills by sending service proposals for each skill (lines 3-6) and receives bids from the SRs in response (line 9). These bids are used to rank the SRs in the DGS algorithm. Then, the DGS algorithm is performed iteratively until the SP has been matched or there are no SRs left to match with (lines 11-13). Thereafter, the SP will receive an allocation from its matched SR (if one exists) (line 15). Lastly, the simulation time is updated, the SP assigns the completed portion of the service to its schedule according to the elapsed time \(t = t_{last} \), and its remaining provicable skills are updated (lines 17-20).

Algorithm 4 depicts the main procedure of the SRs. At first, similarly to the SPs, a SR initializes the times \(t, t_{last} \) to 0 and its allocation for time \(t \) as empty (line 1). The algorithm will end when the SR has no more requested skills or when the SR no longer has SPs that can provide its requested skills (line 25). At each time \(t \) in which the simulation is performed, the SR receives the SP’s service proposals (line 3), calculates bids (as described in the following sub-section) for each of its neighbors per skill they have that the SR requires and sends service requests to the SPs (lines 5-8). The calculated bids are used to rank the SPs in the DGS algorithm. Then, the DGS algorithm is performed iteratively for each of the requested skills simultaneously, until each skill \(s \in RS_j \) has been matched with \(q_j^s \) SPs (defined by \(\min(q_j^s, \text{number of SP neighbors with } s \in PS_i) \)), or there are no SPs left to match with (lines 11-16). The SR allocates services to be performed by the SPs by dispersing the load evenly across the SPs' schedules.
between the matched SPs, considering their available providable skills (line 18). Lastly, the simulation time is updated and the SR’s remaining requested skills are updated according to the workload that has been completed in the elapsed time \(t - t_{\text{last}} \) (lines 20-23).

To find the minimal next simulation time (line 17 in algorithm 3, line 20 in algorithm 4), we use a simple distributed algorithm (inspired by [8]). Each agent (whether a SP or SR) holds a minimal time (for a SP it will be initialized as the completion time of its allocation; for a SR it will be initialized as the earliest completion time of its allocated SPs) and sends this time to its neighbors. Each agent receives its neighbors’ messages and saves the minimal time. When the minimal time of an agent is revised, it is sent to its neighbors. This algorithm (that finds the next minimal simulation time) will converge in \(O(d) \) iterations (\(d \) being the diameter of the communication graph), as agent \(a \) that has the true minimal time will surely never change it. Therefore, at most, the message will have to reach the furthest agent from \(a \) in the graph.

3.2.1 DSRM Properties

In order to establish the following property we first assume that there is a minimal amount of workload that an SP will perform when assigned to apply some skill, serving some SR. We note this minimal fraction of workload by \(\varepsilon \).

Proposition 3.3. DSRM converges to a solution in a pseudo-polynomial number of iterations.

Proof. According to our assumption, the number of possible assignments to apply a skill for some SR is bounded by the number of SRs \((m) \) times the number of skills \((k) \) times the maximal number of fractions of workload \((\frac{w}{\varepsilon}) \), where \(w \) is the maximal workload requested for any skill. Since in every iteration of the algorithm at least one SP is assigned to perform some skill in order to serve some SR, and this assignment is not changed in later iterations, the number of iterations is bounded by: \(n \cdot m \cdot k \cdot \frac{w}{\varepsilon} \). Thus, the number of iterations before the algorithm converges is pseudo polynomial. \(\square \)

Proposition 3.4. The quality of the solutions found by DSRM as a function of the number of iterations is monotonically increasing.

Proof. The solution is incrementally built. After beginning empty, at each iteration, at least one assignment of a SP to perform a skill for an SR is added to the partial solution. Each such assignment has positive utility. Therefore the quality of the solution (which is the sum of the utilities derived for each such assignment) is increasing with each iteration. \(\square \)

3.2.2 Calculating DSRM Algorithm Bids

We propose two functions for calculating bidding values:

Simple assigns each SP neighbor a bid value for each of its \(s \in RS_j \) that represents the utility the SR would derive if the SP was to provide as much of \(s \) as possible to the SR disregarding other SPs’ abilities and the Cap function.

Truncated assigns positive values only to a number of SPs for each of its \(s \in RS_j \). The number of SPs that will receive positive bids is equal to \(|q_j^s| \). The SR chooses the \(|q_j^s| \) SPs with the earliest expected start times and assigns to each of them a value that represents the marginal utility it should receive, taking into account the SPs that could arrive before it as well as the effect of the Cap function (more details can be found in the supplementary material).

4 EXPERIMENTAL EVALUATION

To evaluate the proposed algorithms’ performance, we created two different simulators. The first simulates the coordination between SPs and SRs of an abstract SOMAOP, with an objective of maximizing the global utility function. The second simulates a specific and realistic instance of SOMAOP, the coordination between medical units (SPs) and disaster sites (SRs) in a Mass Casualty Incident (MCI) setting with an objective of minimizing the number of casualties with a low survival probability [23].

All results presented are averages of solving attempts of the 50 simulated problems, by the algorithms. Figure 1 and 2 present the global utility as a function of Non-Concurrent Logic Operations (NCLOs) [18, 22, 32] for four scenarios in the abstract simulator and the MCI simulator, respectively. Each scenario has a different magnitude, or ratio of SP size to SR size. The scenarios in our experiments had 40 and 20 SPs and a magnitude of 4 : 1 and 2 : 1. In each scenario we compared five algorithms: RPA, DSRM using the simple bid function, DSRM using the truncated bid function, the Distributed Gale Shapley College Admissions algorithm (DGS) as a one-shot schedule and a centralized greedy algorithm.
centralized greedy algorithm pairs of SP and a requested skill of an SR are selected and scheduled sequentially, ordered according to the maximal utility per workload. The algorithm continues until there are no more SRs with remaining requested skills that can be served by the SPs.

4.1 Comparing SOMAOP Algorithms

The results presented in Figure 1 show a clear and consistent advantage of the version of DSRM that uses the truncated bid function. In comparison to DSRM, RPA converges earlier, but to solutions with a lower global utility. The GS algorithm converges fastest, since it only performs a single shot schedule. The DSRM version that uses a simple bid function produced solutions with a lower utility on average than the results produced by the version that used truncated bid. Moreover, its runtime was longer due to the larger number of iterations it performs in each execution of the Distributed Gale Shapley algorithm. As the amount of SPs increases, the runtime of DSRM increases (regardless of the type of utility being used). In contrast, in RPA the convergence time is faster than DSRM regardless of the amount of SPs. The solutions that DGS produces have lower utility than the utility of solutions produced by DSRM with a simple bid function when there are 20 SPs and higher when there are 40. It seems that this is the effect of DSRM’s readjustment each time SPs are planning to end a service. When there are many SPs, such adjustments occur often. This results in SPs abandoning their services for higher bidders, meaning their time is wasted and thus, the utility decreases. In these cases, DGS performs better despite creating a single-SR-schedule for the SPs, as the scheduled services are completed at the earliest available time with no delay. DSRM with a truncated bid is not fazed by the amount of SPs as the bids are calculated in a way that is less sensitive to changes. The centralized greedy algorithm is shown as a horizontal line describing the average final utility of the algorithm (as opposed to utility over NCLOs). This approach produced lower utility results in all of the problem sizes shown.

Figure 2 presents similar results of the algorithms solving MCI problems. Again, DSRM using truncated bid yields the highest quality results, and RPA converges fast regardless of the amount of SPs. However, DSRM with simple bid converges much faster on this simulator. The reason is that there are strict ordering constraints between skills applied by SPs in this simulator, e.g., medical treatment must be given before evacuation to the hospital. Thus, optional outcomes are ruled out and the size of the solution space is much smaller than that of the abstract simulator. This is also the reason for the clear difference between the results of DSRM with a simple bid function and the results of DGS.

4.2 Comparing SOMAOP and DCOP Algorithms

To compare SOMAOP algorithms with DCOP algorithms, we need to describe how an instance of SOMAOP is modeled as a DCOP (similar to how multi agent task allocation problems were modeled as DCOPs in [2]). First, we note that in a DCOP there is only one type of agents, i.e., the DCOP agents are the SPs and there are no agents representing the SRs. Thus, in DCOP, each of the SP agents must be able to communicate with the other SP agents. A SP agent neighbors another SP agent if they can both provide the same skill to a SR. Additionally, besides holding variables and variable domains as they do in SOMAOP, the SPs must also hold the constraint information (the utility derived from different combinations of decisions regarding service providing). Moreover, many DCOP algorithms require the SP to correctly calculate the utility from an assignment to its variables, thus, it must also know the assignments of its neighboring SPs.

Information coherence of a DCOP as the extent to which each agent is aware of the characteristics of the DCOP (i.e., other agents’ assignments or the constraints of the problem). High coherence is associated with the agents having a more complete and intelligible awareness of the state of other agents in the DCOP and the constraints among them. Low coherence is associated with the agents having an incomplete and unintelligible awareness of the DCOP elements. One possible reason for low coherence is the attempt to preserve agents’ privacy. Low coherence may also be associated with imperfect communication [25, 34]. We distinguish two types of coherence, inspired by [9]’s definitions of privacy guarantees in DCOPs:

1) Assignment coherence: The extent to which an agent is aware of the assignments chosen by other agents to their variables.
2) Constraint coherence: The extent to which an agent is aware of the cost incurred by the constraints in the problem.

The separation of the responsibilities between the two sets of agents in SOMAOP such that only the SRs need to be able to evaluate possible solutions and be aware only of the utility calculation regarding their own set of requested skills, allows the SPs to focus only on their own current state. All the SPs need to know is the information regarding the utility derived from its own choice of assignments. This information is delivered to the SP by its neighboring SRs in SOMAOP. Thus, the required information coherence in SOMAOP is negligible for both forms of coherence defined.

In DCOP algorithms, in order for the agents to be able to evaluate the quality of their value assignments, they must know all the constraints they are involved in. Thus, the required constraint coherence of standard DCOP algorithms is high. In terms of assignment coherence, the SOMAOP model eliminates the need for the SPs to know of other SPs’ assignments as SRs are the only ones that must see the “bigger picture” of assignments in the system. Therefore, the SOMAOP algorithms do not require assignment coherence.
coherence for the SPs. DCOP algorithms, on the other hand, requires the agents to know all its neighbor’s assignments, i.e., the assignment coherence requirement in DCOP is also high.

The high requirement for the coherence of the information held by the SP agents in DCOP violates the essential distributed properties, which are preserved in SOMAOP. If each SP has access to all constraints regarding each of the neighboring SRs as well as access to all of the other SPs’ assignments, perhaps a centralized approach is equivalently appropriate.

Using the same scenarios as in the experiments presented above, we compare the SOMAOP algorithms – RPA and DSRM – to DCOP’s DSA [31] and Max-Sum [10, 33]. We begin with DSA: we used DSA-C with a probability \(p = 0.7 \) for replacing a value assignment. In each iteration each agent selected a random variable \(x_i \) to which it considered whether to replace its assignment to the best alternative. To evaluate the relation between information coherence and the quality of solutions reported by DSA, we limited the information coherence of the agents performing the algorithm and compared the results to the outcomes of the SOMAOP algorithms.

To limit information coherence we define \(p_c, p_a \in [0, 1] \), which determine the amount of information an agent knows regarding its neighbors’ constraints and assignments respectively. For example, \(p_c = 0.5 \) translates to a 50% chance of an agent being aware of the cost incurred by a specific constraint in the problem.

Figures 3 and 4 present the results for constraint coherence, and assignment coherence, respectively. We varied only one parameter, thus, in the experiments presented in Figure 3, \(p_a \) was set to 1 and in the experiments presented in Figure 4, \(p_c = 1 \). The results in Figure 3 show that for problems with a 4:1 ratio between SPs and SRs respectively, DSA outperforms DSRM with a truncated bid function when the constraint coherence \((p_c) \) is above 0.75. In problems with a 2:1 ratio, even with \(p_c = 1 \), our algorithms provide a better average final global utility. The results presented in Figure 4 show similar outcomes. For problems with a 4:1 ratio between SPs and SRs respectively, DSA outperforms DSRM with a truncated bid function only when the assignment coherence \((p_a) \) is above 0.75 when there are 20 SPs, and above 0.5 for 40 SPs. In problems with a 2:1 ratio, even with \(p_a = 1 \), our algorithms provide a better average final global utility. Similar results were also shown in the MCI simulator see appendix in the full version for more details).

The results show that although the DCOP framework can be used to solve SOMAOPs, it requires a high information coherence from the agents in order to achieve similar (or worse) results than those of SOMAOP algorithms.

The Max-Sum algorithm operates on a bipartite factor graph [10, 33]. This characteristic makes Max-Sum seem like a natural choice for solving service-oriented multi-agent problems. However, when used to solve problems whose inherent structure is of a bipartite graph (including service providers and service requesting agents), the algorithm fails to overcome its inherent symmetry and performs poorly [7, 29]. Additionally, since the constraints held by SRs in SOMAOP can involve a large number of SPs, i.e., they are constraints with high arity, the function-nodes in Max-Sum must use exponential runtime in order to generate messages.

To see how well Max-Sum can handle instances of SOMAOP, the algorithm was implemented on the abstract simulator and compared with our proposed algorithms. Here too, we implemented an iterative approach (which significantly outperformed a single shot approach) in which the solution was built incrementally by performing Max-Sum in each iteration in order to allow the SPs to select their next action.

Figure 5 presents the average quality of the solutions produced by the algorithms, solving 30 problems, with 20 SPs and 5 SRs. The exponential runtime of Max-sum prevented us from experimenting with larger problems. The results indicate that Max-sum produces solutions with far lower quality than the SOMAOP algorithms.

5 CONCLUSIONS

Many realistic distributed problems include service requesters and service providers. In the last two decades, distributed optimization problems have been represented and solved using the DCOP model and algorithms, which are not suitable for representing the two types of agents in service oriented multi agent optimization problems. Additionally, they require high information coherence, which is often unwanted or simply unrealistic in the environments of real-life problems. We proposed SOMAOP, a novel model for representing such problems and algorithms for solving them. The algorithms use well studied allocation methods as building blocks, and update the agents’ estimations (bids) of the utility they will derive from the services available following each iteration. Our empirical results demonstrate the advantages of the proposed iterative processes for solving this type of problem.
ACKNOWLEDGMENTS

This work was supported in part by Israel Science Fund (ISF) grants 1965/20 and 3152/20, as well as the Bi-national Science Foundation (BSF) grant 2018081 and 2021659.

REFERENCES

