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ABSTRACT
Individuals in social systems are embedded in collective decision-
making hierarchies, such as households, neighborhoods, commu-
nities, organizations, etc. The locus of agency in such systems is
dispersed across the system, and can variously be viewed as indi-
vidual, distributed, and shared agency. Here we propose a general
notion of network agency that subsumes these descriptions and
also allows for integrating related notions, such as peer influence.
In our view, the social system can be seen as a multi-layer net-
work, where each layer corresponds to different aggregations of
the underlying units, representing different kinds of perception
and decision-making. We illustrate this general framework with an
agent-based model of the ongoing forced migration from Ukraine.
In our model, individuals perceive hazards (conflict events), but
decisions to migrate are taken at the household level, where peer
influence from other households in the neighborhood is also taken
into account. We present this model in detail to elucidate our con-
cept of network agency. We also calibrate the model with data on
daily refugee flows and show that our model is able to estimate
the scale of the daily refugee flow from Ukraine for the first two
months with a Root Mean Squared Percentage Error (RMSPE) of
0.24, outperforming state-of-the-art, which had an RMSPE of 0.77.
Moreover, our model also captures the daily trend of outflow with
a Pearson Correlation Coefficient (PCC) of 0.98. We also perform
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sensitivity analysis of the model and analyze the significant param-
eters of the model, which in turn tells us how different agencies are
significant in different contexts.
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1 INTRODUCTION
Agency refers to the capacity of individuals to plan and act effec-
tively, given their environmental and social context. Depending
on the structural context of these agents in the overall larger so-
cial network and the loci of the decision-making task, different
forms of agencies emerge. When decision-making is performed by
a single individual based on their own perception of the events,
it is known as individual agency [41]. However, sometimes indi-
viduals perform decision-making based on their own perception
as well as that of other agents related to them through some so-
cial relationship. For example, when someone is performing in a
team play, they have to perceive their stage presence and memorize
lines as well as synchronize with others’ acts. Actions generated
from such shared intention can be attributed to shared agency [11].
Alternatively, during evacuation or migration situations, agents
often migrate as a single household unit [40]. So, here decision-
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making happens through households instead of single individuals.
Nevertheless, when making such decisions households also account
for the individuals associated with that household. Such a form of
agency can be attributed to distributed agency [26].

With regard to these various forms of agents and agencies in
different contexts, a unified approach is necessary that allows one to
integrate the notion of agents and agencies at any layer of the larger
hierarchical social structure [24]. This translates to the necessity
of a computational framework that allows for designing an agent-
based model from the perspective of agents and their corresponding
actions along with related notions. However, such a framework
is absent from the literature. In this work, we present a practical
framework for agent-based modeling, based on the idea of network
agency, which subsumes individual, group, and shared agency, and
also integrates peer influence.

To demonstrate the efficacy of this framework, we develop an
agent-based model (ABM) in the context of the ongoing crisis of
forced migration caused by the Russian invasion of Ukraine. As of
September 2023, Around 5.8 million people have taken refuge in dif-
ferent European countries and another 5.09 million have migrated
to different parts of Ukraine as internally displaced persons (IDP).
As assessed by UNOCHA, almost 17.6 million people are in need of
some form of assistance from humanitarian groups [57].

1.1 Summary of contributions and significance
In this paper, we propose a framework using the notion of net-
work agency, which captures the hierarchical relationship structure
between different forms of agents, interaction across these hier-
archies, and network influence across agents. The notion of net-
work agency is prevalent in social science that studies the decision-
making of agents not only from an individualistic perspective but
also their structural position in the complex multi-layered social
network [17, 30, 35, 37]. Our framework conceptualizes the social
system as amulti-layer network, where each layer represents agents
of some aggregated form of their descendant layer agents. Moreover,
agents in the same layer are connected to one another, which allows
for the incorporation of peer-influenced decision-making. Conse-
quently, this framework enables defining perception and action at
different layers, allowing for different forms of agencies.

Case study. Our ABM utilizes a synthetic population containing
synthetic individuals and their household information to create a
two-layered representation of the social structure of agents. We
calibrate our model using real-world data and observe that the
model outperforms current state-of-the-art methods in capturing
different aspects of migration dynamics. We also perform a counter-
factual scenario study where the model estimates migration under
events of varying intensity. The study reveals that although initially
the migration is event-driven, later on it becomes more peer-driven.
We also perform sensitivity analysis of the model to demonstrate
the significant parameters, and consequently, the significance of
different components of the proposed network agency framework.

2 NETWORK AGENCY
Formal conceptions of social action that are aligned with the BDI
framework [10, 12] have been established for a while [15, 28]. These
early works laid the foundation for modeling distributed and shared

Figure 1: Proposed framework of Network Agency. A con-
ceptual four-layered hierarchical representation of social
structure where individuals form households, households
form communities and communities form neighborhoods.
The nature of agency will depend on where the loci of per-
ception and the loci of action reside.

agency by articulating the basic principles of coordinated, contex-
tualized hierarchical social action [28] and the predicates or prim-
itives, such as Goal Delegation and Goal Adoption, needed for a
computational formalization [15].

However, there are multiple important aspects of agency in or-
ganized social systems that are still debated, or even largely unad-
dressed. One important example in this regard is the notion of a
group agent. What makes a group a group agent? Lewis-Martin
identifies individuality, interactional asymmetry, and normativity
as three necessary conditions, in addition to the existence of group
goals [39]. He particularly emphasizes individuality (meaning dis-
creteness of a group), but this conception is not fully congruent
with notions of distributed agency, e.g., as described by Gasser [28].

Other important aspects of social agency, which have also re-
ceived limited attention, as shown by recent surveys [3, 21], have to
do with the role of network structure and information flow. These
aspects have empirical support, but not a proper computational
formalization in a theory of agency yet. For example, Landis et
al. [37] studied agency from the context of brokerage opportunity.
Through a role-based study they found that participants tend to
relay information through the network more if they perceive them-
selves to be structurally relevant in the overall network. Clement
et al. [17] studied agents in the form of network hubs, and found
that these hubs can exert either positive or negative influence more
significantly than other nodes. This reveals that not only the struc-
tural position of (human) agents matters in the network, but also
they are aware of this and their behavior is affected accordingly.

On the other hand, alternative conceptions of agency from social
science have emphasized the primary role of relations between
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agents [13, 25]. This relational perspective shows that crucial as-
pects of agency, largely unaddressed by the BDI model, such as
social perception and goal selection, depend on network structure
and information flow. Our goal here is to take the first steps to-
wards reconciling and combining these formulations by taking a
“network-first” perspective. The benefit of this approach is that it
doesn’t get bogged down in definitions of group or shared agency.
The focus is on how individuals are connected in a hierarchical
social network and how state updates (including constraints and
commitments) and information flow occur in this network. This
also allows us to naturally bring in peer influence, known to be a
very important factor in social decision-making, but has not tradi-
tionally been included in discussions of agency or social action. It
should be noted that althoughWe have used peer influence as a sim-
ple example to demonstrate this network effect, but our framework
is general enough to include any other kinds of network influences.
This leads to a blurring of the traditional dichotomy of agency and
structure, which is why we have chosen a network-first approach.

Additionally, we acknowledge the existence of discussion sur-
rounding agency-structure distinction and metamodels in literature
in different forms. Recursive agents [23, 60] require a payoff matrix
with possible actions for each agent, which is not feasible in most
social simulations. The agentified group [46] framework describes
relationships between agents and their roles and how different col-
lections of agent-role combinations form groups to perform tasks
as a collective. However, there is no clear specification of how ex-
ternal events or peer influence can affect the dynamics. Holonic
agents [1, 29] describe how agents can work both as collectives and
individuals in different contexts. In network agency, we capture this
notion in social context, since a single agent can act individually or
as a collective in an upper hierarchy, while also incorporating their
perceptions of external events and peer influence.

2.1 Proposed Framework
Our proposed framework assumes a multi-layered network of social
structure, where agents in adjacent layers are connected. Consider
the example structure shown in Figure 1. Group of individuals at
the bottom-most layer may be part of a single household. Actions
arising from the level of household in the form of distributed agency
will also affect the individuals associated with it. The decision of
households is constrained by the associated individuals, and simul-
taneously, the individuals are committed to complying with the
decision of the households. Consequently, households and com-
munity may another level of similar relational structure. In this
way, the notion of constraints and commitments exists across the
consecutive layers of the agents [14, 53]. We also assume that there
are connections between agents within the same layer. These con-
nections drive peer influence and are an essential part of network
agency, which dictates that decision-making is often affected by
local information in the network; a construct that also arises in
many social theories of human behavior [5, 7].

In order to develop a model with this framework, one needs to
define the following steps:
Define the hierarchy: The first step is to consider how many
hierarchies of agents should exist in the model and the nature of
the relationship between agents across different hierarchies.

Define the loci: Second, one needs to define the loci of perception
and action. It can exist across the same layer or different layers.
Define the peer network: To capture the peer influence, one needs
to define the peer networks at different hierarchies.
Define the functions: There are generally four kinds of functions
one needs to define. First, the perception function through which
agents interact with the events. Second, the representation function
through which the transfer of information happens across different
hierarchies of agents. Third, the peer influence function through
which agents gather local information from their peers and adjust
their actions accordingly. Fourth, the action function through which
the agents at the loci of action carries out their actions.

Taken together, these steps constitute a practical recipe for the
design of agent-based models guided by the novel unifying perspec-
tive of network agency. In Section 3, we demonstrate how these
steps are instantiated in an ABM of forced migration from Ukraine.

2.2 Related Work on Forced Migration
There have been multiple ABM efforts to study forced migration
due to conflict events. Nelson et al. [45] studied how Somalian
shepherds migrate due to civil war. They found that the agents
consider access to vegetation as a key factor in choosing their
destination. Hebert et al. [33] proposed an ABM to study migration
from Syria using a simple method of using the death toll as an
indicator of how dangerous a conflict zone is. Collins et al. [18]
studied group formation and deformation amongst refugees under
different urgency situations using an ABM. Suleimenova et al. [54]
developed FLEE, a generalized ABM simulation model to estimate
migration destination from a conflict-induced region assuming out-
migration from the conflict-induced migration is given as input.
Pandey et al. [47] studied forced migration from Ukraine in the
context of how the migration situation contributes to the disease
dynamics in the destination countries using ABM. They proposed
a model where agents decide to migrate based on the number and
spatial proximity of the events. However, in all these models, the
hierarchical nature of decision-making is not considered, nor do
the agents consider peer influence.

3 ABM OF FORCED MIGRATION
As stated in the previous section, the development of a model based
on our proposed framework requires four steps. We describe the
four steps below in the context of our ABM.

Hierarchy: Assuming a two-layered hierarchy of agents with in-
dividuals in the bottom layer and their household at the top layer,
our framework assumes the following inputs.

(1) 𝐴 = {𝑎1, 𝑎2, ..., 𝑎𝑖 , ...}: Set of individual agents, where 𝑎𝑖 rep-
resents the 𝑖𝑡ℎ individual agent.

(2) 𝐻 = {ℎ1, ℎ2, ....ℎ𝑘 , ...}: Set of household agents, where ℎ𝑘
represents the 𝑘𝑡ℎ household agent.

(3) 𝜂 : 𝐴 → 𝐻 : Mapping, where 𝜂 (𝑎𝑖 ) = ℎ𝑘 means that 𝑎𝑖 lives
in house ℎ𝑘 .

(4) C = {𝑐1, 𝑐2, ..., 𝑐 𝑗 , ...}: Conflict events in the conflict induced
region. We assume that each event 𝑐 𝑗 is associated with a
severity 𝑠 𝑗 , and a location 𝑦 𝑗 . Also, let 𝐶 (𝑡) ⊆ C, be the
subset of events observed at time 𝑡 .
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Figure 2: The dynamics of our ABM based on the Network
agency framework. Individuals interact with events using
perception function. Households compute intention based
on individuals’ perception through representation function.
Final decision after gathering local information of other
households through the peer influence function.

Loci of perception and action:Ourmodel assumes that migration
is a household-level phenomenon, following prior literature [8, 52].
This means that when a household migrates, all associated individ-
uals of that house migrate. However, perception of events happens
at the individual level [48]. Following this, the loci of perception is
the individual layer but the loci of action is the household layer.

Throughout the perception-action loop, we assume the following
states are updated for the agents at each timestep 𝑡 . Each individual
agent 𝑎𝑖 is associated with a fear level 𝐹𝑖 (𝑡) ∈ R (𝐹𝑖 (𝑡) > 0), rep-
resentative of their perception of the events. Subsequently, each
household agent ℎ𝑘 is associated with two different states. First is
a migration state,𝑀𝑘 (𝑡) ∈ {0, 1} (0 = Not migrated, 1 = migrated).
The other is intention, 𝑃𝑘 (𝑡) ∈ [0, 1], denoting the intention of
household ℎ𝑘 to migrate when 𝑀𝑘 (𝑡) = 0. It has to be noted that
the difference between 𝑃𝑘 (𝑡) and 𝑀𝑘 (𝑡) is that, 𝑃𝑘 (𝑡) does not
account for peer influence while𝑀𝑘 (𝑡) does. Therefore, the final
decision or action is generated from𝑀𝑘 (𝑡).
Network: In order to capture the peer influence of network agency,
we construct a network between the agents. While peer influence
can also exist at the loci of perception, we only consider a network at
the loci of action in ourmodel. Since The households are geospatially
located entities, we use a variant of Kleinberg’s Small World Model
(KSW) [36] to generate our model. We start by creating a ball of
radius 𝑟 around each household. Among the household pairs within
this ball, we add edges between each household if their distance
is below a short-edge threshold 𝑝 . Among other pairs, we add at
most𝑄 edges from household 𝑢 with probability 𝑑𝑖𝑠 (𝑢, 𝑣)−𝛼 where
𝑑𝑖𝑠 (𝑢, 𝑣) is the distance between household ℎ𝑢 and ℎ𝑣 and 𝛼 is
an exponent (𝛼 > 0). The ball of radius 𝑟 imposes an additional
constraint on the distance of the long edges in the network, to put
a threshold on the longest communication distance during wartime.
The algorithm is outlined in the Supplementary material1.

1Supplementary material available at https://github.com/dmehrab06/Network_agency

Function definition: In this section, we define the perception, rep-
resentation and peer influence functions. While there could be many
forms of functions for capturing these concepts, our functional
forms are mostly motivated by social theories, since they have a
solid foundation to capture the dynamics of human behavior.
Perception function: The push-pull theory [22] is a prevalent theory
in the study of migration. In the context of forced migration, push
factors become significantly more important than pull factors [59].
The perception function essentially captures this push factor by cal-
culating their fear value at each timestep. We propose the following
functional form for updating 𝐹𝑖 (𝑡).

𝐹𝑖 (𝑡) =


𝑡∑̂

𝑡=0
𝑓 (𝑡 − 𝑡) 𝑔(𝐶 (𝑡), 𝑎𝑖 ) if𝑀𝑘 (𝑡) = 0

𝐹𝑖 (𝑡 − 1) otherwise
(1)

The functional form is known as the function of discounted
utility. It describes total utility as a result of perceived weights (e.g.
rewards, risks) at different points of time from the standpoint of
current timestep and has been used in ABM [16, 27]. Here, 𝑓 (𝑡 − 𝑡)
is the discount function which should have a negative first-order
derivative, and 𝑔(𝑎𝑖 ,𝐶 (𝑡)) is the risk consumption of agent 𝑎𝑖 at
time 𝑡 from the events 𝐶 (𝑡). For our model, we choose exponential
discounting as the discount function. Thus, the discount function
𝑓 (𝑡 − 𝑡 ′) = 𝜃𝑡−𝑡

′ , where 𝜃 is the discounting factor (0 < 𝜃 < 1).
As for the choice of the risk function, we consider the following

factors in guiding our choice for a function. First, Spatiality, since
events in close proximity are likely to affect the agents more. Sec-
ond, Severity, where perception depends on the nature and impact
of the event. Finally, perception of the same event varies across
individuals owing to various personality and other factors (e.g. de-
mography, economy) [19]. This notion is also stated in the Theory
of Planned Behavior theory [5], a popular social theory of human
behavior. We assume that each agent is associated with its own risk-
perceivedness 𝑏𝑖 which we take into consideration in this function.
With these considerations in mind, our risk function is as follows:

𝑔(𝐶 (𝑡), 𝑎𝑖 ) =
∑︁

𝑐 𝑗 ∈𝐶 (𝑡 )
𝛽

𝑠 𝑗 × 𝑏𝑖

𝑑𝑖𝑠 (𝑦 𝑗 , 𝑥𝑡𝑖 )𝛿
(2)

The function is motivated by the Gravity Model [61] which takes
distance into account in calculating the attraction between two
objects. In order to account for the other factors, we put the severity
of the event 𝑠 𝑗 and the risk-perceivedness 𝑏𝑖 of the agent in the
nominator. Here, 𝑥𝑡

𝑖
is the location of agent 𝑎𝑖 at time 𝑡 , 𝛿 is the

distance decay parameter (𝛿 > 1) and 𝛽 is a fear-scaling parameter.
Representation function: The representation function computes 𝑃𝑘 (𝑡)
for each household, and their intention to migrate based on the
perception of the associated individual agents. The model does so
through the following functional form.

𝑃𝑘 (𝑡) =


I
𝑎𝑖 ∈𝜂−1 (ℎ𝑘 )

{𝜎 (𝐹𝑖 (𝑡))} if𝑀𝑘 (𝑡) = 0

0 otherwise
(3)

Here, the activation function 𝜎 (·) takes the fear level and trans-
forms it into a probabilistic form. Second, the aggregation function
I aggregates a set of values into one single representativemigration
intention probability of the household. We propose this functional
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form because it provides a straightforward way to transfer infor-
mation between two hierarchies of agents, similar to how neural
networks often capture representations of values at lower layers
into the upper layers [38].

In our model, we use Average as the aggregation function I. As
our choice of activation function, we choose the sigmoid function
(S) of the form 𝜎 (𝑥) = (1+𝑄𝑒−𝜏𝑥 )−1. Here,𝑄 is the No-fear control
parameter, which essentially controls the intention probability of
an agent when they have a fear of 0. On the other hand 𝜏 is the
growth rate parameter.

Note that, one could have defined the action at this locus, where
the household agents would migrate based solely on their inten-
tion. However, in that case, it would be more similar to distributed
agency. In network agency, we go one step further and take into
consideration the peer-influence before taking the final decision.
Peer influence function: The effect of peer influence on human be-
havior is prevalent in both Herd Behavior and the Theory of Planned
Behavior. Based on these theories, intention might change depend-
ing on how the peer is acting. In our context, the peer influence
function dictates whether household will retain their intention state
or update them due to peer pressure.

The peer influence function is defined over G(𝐻, 𝐸), the net-
work of households constructed by the network generation model
described previously. An edge (ℎ𝑢 , ℎ𝑣) ∈ 𝐸 denotes that ℎ𝑢 and
ℎ𝑣 are neighbor households. Let N𝑘 denote the neighborhood of
household ℎ𝑘 . We employ a threshold function [32, 49, 58] over G
to capture peer influence as follows.
(i) Inside Peer Influence: Let𝜓1

𝑢 (𝑡 − 1) ∈ [0, 1] be the fraction of
ℎ𝑢 ’s neighbor intending to migrate at time 𝑡 − 1. This can be
obtained from the average 𝑃𝑘 (𝑡 − 1) values (ℎ𝑘 ∈ N𝑢 ).

(ii) Outside Peer influence: Let𝜓2
𝑢 (𝑡 − 1) ∈ [0, 1] be the fraction of

ℎ𝑢 ’s neighbors who have migrated upto time 𝑡 − 1. This can
be obtained from the average𝑀𝑘 (𝑡 − 1) values (ℎ𝑘 ∈ N𝑢 ).

Based on this, each household ℎ𝑢 updates its migration decision
based on the threshold function as follows:

𝑀𝑢 (𝑡 ) =


1 if𝑀𝑢 (𝑡 − 1) = 1
1 if𝑀𝑢 (𝑡 − 1) = 0 and 𝜆𝜓 1

𝑢 (𝑡 − 1) + (1 − 𝜆)𝜓 2
𝑢 (𝑡 − 1) ≥ 𝜋

0 otherwise
(4)

Essentially, this function denotes that a household agent would
migrate only under the conditions that a certain threshold of their
peer is also considering migration or has already migrated. This
function is computed synchronously for all household agents. Here,
𝜆 is a parameter that controls how much weight is given to in-
side peer influence compared to outside peer influence and 𝜋 is
the threshold parameter. This function essentially considers the
structural position of the household agent and by gathering local
information from peers before taking the final decision, it brings
the essence of network agency to a full circle.
Action function: The action function is somewhat straightforward
and integrated into the migration state value. If 𝑀𝑘 (𝑡) = 1, the
household agent migrates and if 𝑀𝑘 (𝑡) = 0, the household stays
and goes through the perception-action loop for another round. Note
that, although an agent who has migrated does not participate in
the perception-action loop, they still exert outside peer influence on
the agents who did not migrate.

Table 1: Summary of ABM

Layer Social Theories Function choices Parameters

Individual
Push-pull theory,
Perceived Behavior
Control

Discounted Utility as
perception function

Discounting factor 𝜃
Distance decay 𝛿
Fear scaling 𝛽

Household Herd Behavior,
Subjective Norm

Aggregated activation as
representation function

No fear control 𝑄
Growth rate 𝜏

Threshold model as
peer influence function

Peer threshold 𝜋
In Peer weight 𝜆

One additional layer we account for in the action phase is as
follows. Among the agents forcibly displaced, a portion of them be-
comes refugee, while other becomes internally displaced (IDP) [47].
Following this, the household agents employ the following actions
based on their𝑀𝑘 (𝑡) value at timestep 𝑡 .

• If𝑀𝑘 (𝑡) = 0, the agent stays in the conflict-induced region.
• If𝑀𝑘 (𝑡) = 1, the agent becomes refugee with 𝛾 probability
or becomes IDP with probability 1 − 𝜆

The dynamics of the ABM is conceptualized in Figure 2 and
the functions along with associated parameters are tabulated in
Table 1. The pseudocode is given in the Supplementary material.
One key point about our ABM is that there are other alternatives
for the different kinds of functions defined for the network agency
framework. However, our proposed functional forms are motivated
by social and economic models of human behavior. Thus, these
functions are suited to be good representations of modeling and
simulating how societies evolve under such phenomena.

3.1 Implementation
In this section, we outline dataset collection and some other adjust-
ments we made in our implementation of the ABM. For agent data,
we use the synthetic population of Ukraine developed by the Bio-
complexity Institute [44] containing information about synthetic
individuals (e.g. age, gender) and their corresponding households
(e.g. location). For simplicity, we assume the location of the indi-
viduals to be the same as their household for Equation 2. Based
on age and gender, we consider four different demographic groups
of agents, each having a unique value of 𝑏𝑖 for Equation 2. The
corresponding values are given in the Supplementary material.

As for the conflict data, we utilize the dataset from Armed Con-
flict Location & Event Data Project (ACLED) [2]. This dataset con-
tains various information about the different types of conflict events.
It specifies the time of the event at a daily resolution. Considering
each timestep of our simulation corresponding to one day, this al-
lows us to specify𝐶 (𝑡) for each simulation timestep 𝑡 . The locations
are also provided as geographical coordinates, allowing us to use
that information directly in Equation 2. The severity of each event
is calculated based on the fatality and the type of the event. For
details, please refer to Supplementary material.

Ukraine is divided into 27 oblasts (Administrative level 1 regions)
and 139 Raions (Administrative level 2 regions). For fast and scalable
simulation, we parallelized the ABM model by partitioning agents
and events by Raion. During the network generation, we choose
𝑝 = 40 meter, 𝛼 = 2.3, and 𝑞 = 16, motivated by literature [31].
We empirically selected 𝑟 = 1km. We also created a 10 km buffer
around each Raion so that they are exposed to surrounding conflict
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Figure 3: Daily refugee estimation comparison of twomodels.

Table 2: Comparison of %IDP origin estimation.

% IDPs origin per Macro-Region
Macro-Region IOM Report ABM-NA ABM-IA
Center 3.4 3.7 5.4
East 36.2 38.1 47.4
Kyiv 29.9 25.7 12.3
North 20.1 19.2 18.7
South 7.5 9.6 11.2
West 2.9 3.8 4.9

events beyond their border. Finally, we chose 𝛾 to be normally
distributed with a mean of 0.33 and a standard deviation of 0.05
based on historical data from UNHCR [56] on conflict-induced
displacement. This estimation coincides with previous work [47].
The pipeline was implemented with Python 3.7 and executed in an
HPC cluster with 40 computing nodes and 384 GB memory using
SLURM scheduler2.

3.2 Calibration
Calibration of the ABMparameters (outlined in Table 1) is necessary
so that the model can behave realistically. Utilizing the daily border
crossing data from Humanitarian Data Exchange [34] as observa-
tion, we use the Bayesian Optimization strategy [43] for calibration
of the model. Let us assume that 𝑧 (𝑡) and 𝑧 (𝑡) are the estimated
refugee and the observed refugee, respectively. Let𝑇𝑆 = {𝑡1, 𝑡2, ...𝑡𝑆 }
be the sample of several timesteps. With this, our objective func-
tion in Bayesian Optimization is to minimize the mean squared
error (MSE) between the refugee estimation of the model and the
observed data along the samples. The dataset used for calibration
contains reports of border crossing for 90 days. To avoid overfitting
and separate some data for validation purposes, we used 15 data
points for calibration.

4 EVALUATION
We now demonstrate the performance of the ABM extended from
the proposed framework in the context of migration from Ukraine
due to conflict events. Since the ABM perceives at the individual
level and takes action at the household level, it is able to produce
various estimates at very fine resolution. However, real data to
validate all these different estimates are usually difficult to obtain.
Here, we choose two data sources to compare our ABM with the
state-of-the-art (SofA) method [47] which proposes an agent-event

2Scripts available at https://github.com/dmehrab06/Network_agency/

(a) Effect of Discounting Factor Parameter 𝜃

(b) Effect of Distance Decay Parameter 𝛿 .

Figure 4: Local sensitivity analysis of two parameters associ-
ated with the perception function.

interaction model. Since their model does not consider any peer
effect, we accommodate their model across the individual layer
where agents decide to migrate or not solely based on their percep-
tion of the events. We refer to this SofA as ABM-Individual Agency
or ABM-IA for short since the loci of action is at the individual level.
We refer to our model as ABM-Network Agency or ABM-NA.
Daily Refugee Estimation: The first data source we used to com-
pare the performance of our model is the daily border-crossing data
from Humanitarian Data Exchange (HDX). We consider the time
interval from February 24, 2022, to May 15, 2022 as this date range
encompasses the shock period of the war. However, the models
can also estimate migration for future timesteps. Estimates over
longer time horizons will likely suffer greater error without con-
sidering return migration and other uncertainty factors. Therefore,
estimation over the shorter period represents a conservative esti-
mation strategy. Additionally, the conflict shock period represents
a period of greatest uncertainty from a policy-making standpoint
since policymakers will lack reliable estimates of the dynamics and
intensity of conflict-induced refugee flows over this period. We
leave estimation of displacement over longer time horizons which
incorporates return migration for future research.
In Figure 3, we show the daily refugee estimations from the two
models, smoothed by a rolling average of seven days to correct for
noises inherent in the observed data. Visually, ABM-NA captures
both the scale and temporal pattern of the daily refugee flow very
precisely. On the other hand, ABM-IA overestimates the refugee
flow initially and underestimates afterward. The underestimation
can be attributed to the quick depletion of potential migrants within
conflict-induced regions due to the initial overestimation as well as
the incapability to migrate other individuals through peer influence.
Quantitatively, the Root Mean Squared Percentage Error (RMSPE)
of ABM-NA is 23% compared to the 77% RMSPE of ABM-IA. Both
methods are comparable in terms of capturing the daily trend based
on the Pearson Correlation Coefficients (PCC) values.
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Figure 5: p-values of model parameters on different outputs
of interest obtained from global sensitivity analysis.

IDP Estimation: As an alternative source of validation, we collect
the Round 1 general survey report conducted by the International
Organization of Migration (IOM). Among other statistics, it includes
the percentage of Internally Displaced Persons (IDPs) based on their
origins across six different Macro-regions of Ukraine (North, South,
East, West, Center, Kyiv). The first round contains these estimates
up to March 16, 2022. We report the median estimated percent of
IDPs from each macro-region origin for both models in Table 2.
Results indicate that the percentage estimates of ABM-NA more
closely map to the IOM reported values than ABM-IA, demonstrat-
ing ABM-NA model’s capacity to accurately identify the spatial
geography of internal displacement in response to armed violence.
Access to high-quality internal displacement data represents a great
challenge for political leadership and humanitarian organizations in
conflict zones [51] and this accuracy therefore underscores the pol-
icy value of ABM-NA. Maps corresponding to the tabulated results
are provided in the Supplementary material.

4.1 Sensitivity Analysis
In order to understand the significance of the parameters associated
with the ABM, which consequently can reveal important informa-
tion about the different kinds of functions employed throughout the
network agency framework, we conduct a sensitivity analysis of our
model. We follow the six-phase protocol suggested by Borgonovo et
al. [9] to conduct the sensitivity analysis in our context as follows.
Output of Interest: Our model is calibrated against the daily
border-crossing data. However, comparison between such daily
curves is challenging during sensitivity analysis [6]. Therefore, we
choose the following summary outputs as the outputs of interest:
total refugee (ALL), total refugee in March (MAR), total refugee
in April (APR), and maximum refugee in one day (MAX). Aside
from ALL, MAX is also important from a policy standpoint since it
reveals when a surge in refugee inflow can be expected in different
destination countries. Moreover, MAR and APR will provide better
insight to the seasonal significance of the parameters.
Goal: Our goal is twofold. First, relative importance of the parame-
ters across various outputs of interest (Factor prioritization) and
Second, variation of outputs by varying different parameters (Di-
rection of Change).
Elements: Apart from the model parameters, other elements of
the model can be varied. For example, the choice of the network
generation model is a design principle that can essentially affect

the outputs of interest. However, for this study, we focus only on
the ABM parameters as the elements to examine.
Analysis Method: For factor prioritization, we conduct the partial
rank correlation coefficient (PRCC) analysis leveraging the Latin
Hypercube Design sampling (LHS) method [42]. To understand the
direction of change, we use the One Factor at a Time (OFAT) analysis
technique [55]. Following Ten et al. [55], we first perform OFAT
since it is less computationally extensive and PRCC afterwards.
Assignment of Values: For each parameter, we fix a range of
values within which they can be varied. During OFAT, we fix each
value to their nominal settings obtained after calibration and change
one parameter within that range. The nominal value for each pa-
rameter is given in the Supplementary material. Afterward, we
sample the parameter space defined by the ranges using LHS.
Result visualization: Following Alam et al. [6], visualization of
the sensitivity of the parameters is captured with main effect plots
(for local sensitivity analysis) and heatmap (for global sensitivity
analysis). We describe the results next

4.1.1 Local Sensitivity Analysis. Figure 4 shows main effect plots
for two outputs of interest for two parameters. Main effect plots for
other parameters are present in the Supplementary material. Fig-
ure 4a shows the monotonic increment of the outputs 𝜃 is increased.
This is intuitive since a higher discounting factor (lower discount
rate) makes agents perceive less recent events with more weight, ac-
cumulating greater fear as time progresses. This causes people to be
more inclined towards migration. Moreover, the monotonic nature
of the main effect plots tells us that the model is likely to be sensi-
tive to the parameter [6]. While figure 4b also reveals a monotonic
nature, the effect is different across the two outputs. As 𝛿 increases,
perception of fear decreases. Therefore, naturally, the number of
migrants goes down in March. However, the opposite behavior
in the main effect plot for April is because when there are fewer
migrations in March, more people are left to be peer-influenced,
generating a higher total migration during April. In other words,
this main effect plot reveals the effect of peer influence indirectly.

4.1.2 Global Sensitivity Analysis. Figure 5 shows the 𝑝-values of
the partial correlation coefficients between each parameter-output
pair. From this figure, the discounting factor parameter 𝜃 is found
to be significant across all outputs of interest. The risk scaling pa-
rameter 𝛽 and the distance decay parameter 𝛿 are also significant
across a subset of the outputs. Note that, these parameters are asso-
ciated with the perception function. Interestingly, the parameters 𝑄
and 𝜏 , associated with representation function, did not prove to be
significantly correlated to any of these outputs. Further investiga-
tion is required regarding whether other choices of activation or
aggregation functions demonstrate similar behavior.

Among the remaining parameters, 𝜆 is significant across all the
outputs. In fact, it is the only parameter apart from 𝜃 , which is
significant across all output types and it would be the second most
significant parameter if we were to rank the parameters based on
their average p-values, as suggested by [6] as a ranking method.
Another key observation is that 𝜆 is found to be significant in the
context of total migration during April. Apart from the discount-
ing factor 𝜃 , no other parameters were significant for this output
type. Therefore, at a constant discounting factor, peer influence is
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(a) Daily Trend (b) Monthly Migration

Figure 6: ABM estimation under different event intensity

significant in capturing migration after the initial wave has sub-
sided. While an individual’s own perception is certainly important,
once some form of migration has happened, peer influence starts
becoming more important in driving subsequent migration.

4.2 What-If Scenario
This section presents one counterfactual analysis wherewe estimate
the migration shift that would have been observed if the Russian
forces had invaded with more (or less) intensity. By scaling the fa-
tality of the events in the event dataset by different magnitudes, we
were able to observe interesting insights. Figure 6a presents daily
refugee flows estimated using conflict events scaled across four
intensity levels with each scenario computed over 10 simulations
to allow for stochasticity. Interestingly, although the resulting shift
is quite noticeable in the early period, it diminishes over time con-
verging back to base-level estimates by April. Figure 6b compares
how the scale of conflict-intensity maps to the scale of cumulative
migration estimated by the model in March and April. In March, a
2x increase in event intensity corresponds to a 23.4% increase in
refugee flow (from 3.04 million to 3.71 million) while a 5x increase
results in a nearly 50% increase in refugees (from 3.04 million to
4.5 million). Refugee flows in response to conflict intensity shifts
in April result in smaller magnitude refugee flow increases of 25%
(14%) for the 5x (2x) conflict scenarios.
As event intensity increases, most people affected by the events
already migrate in the first month. However, since the spatial dis-
tribution of violence does not change, the increasing intensity does
not affect the remaining agents. Consequently, peer influence plays
a greater role in the migration choices of those leaving later. In fact,
in the lower-intensity conflict scenarios, refugee flows marginally
increased in April due to outflows of individuals who remained
after March due to the peer influence of their social networks. So-
cial science conflict scholarship has identified the role of social
networks to influence both the timing [20, 50] and migration deci-
sions [4] of individuals proximate to violence. These counterfactual
results map onto the micro foundations of migration choices identi-
fied by conflict scholars and therefore lend additional credibility to
the modeling approach. In summary, the what-if analysis demon-
strates the model’s capacity to capture the role of peer effects on
the timing of migration with the agent’s decisions to migrate being
event-driven at the beginning of hostilities but becoming peer-driven
as time progresses, in line with the observations we made from
sensitivity analysis. Future research can extend upon this by al-
lowing for variation in the spatial location of events in addition
to intensity to evaluate how informed variation in the location of

violence interacts with peer networks to drive downstream changes
in refugee flows in response to violence.

5 DISCUSSION AND CONCLUSION
We have developed a data-driven agent-based simulation of forced
migration from Ukraine not just as a demonstration of the idea
of network agency, but also because it is an important current
issue where ABM can be used to help understand refugee dynam-
ics. We have shown that our model reproduces refugee flow quite
accurately. We validated it using published estimates of counts of in-
ternally displaced persons. The sensitivity analysis suggests that the
dynamics of evacuation have shifted from being event-influenced
to peer-influenced. The model also allows studying policy-relevant
what-if scenarios, such as the effects of changes in event intensities.

The approach is general enough to be applied to other conflict
scenarios and highlights the need to develop a theoretical and
computational understanding of how agency functions in complex
hierarchical social systems where agency can be distributed and
shared and emerges through the interactions between individual
perceptions, information flow, social norms, and peer influence. As
a simple example, the model could potentially be used to identify
migration routes with different choices of functional forms. As
one possibility, instead of a binary decision of whether to migrate
or not, the action function should select from a set of possible
destinations and choose a route from possible routes toward that
destination. Currently, our approach serves as a practical recipe
for the development of agent-based models in a way that sidesteps
definitional questions of group and shared agency, while allowing
the modeler to account for these phenomena. Much work remains
to be done in formalizing the classes of functions that are valid agent
descriptors. This is an important direction for future research.

A formalization of this approach will also allow bringing to bear
network science to the understanding of agency. Network structure
can both constrain and facilitate information flow and decision-
making, potentially providing locational power to some agents over
others. This is especially important in modern contexts where much
social coordination happens over social networks and organizations
are often spatially distributed. We believe that the network agency
perspective will help in moving forward on the longstanding debate
in social science between agency and structure and in computer
science between distributed and group agency.

ACKNOWLEDGMENTS
This work was supported in part by NSF grant #2053013 Focused
CoPe: Building Capacity for Adaptation in Rural Coastal Communi-
ties, DTRA contract HDTRA1-19-D-0007, NSF grant OAC-1916805
CINES: A Scalable Cyberinfrastructure for Sustained Innovation
in Network Engineering and Science, NSF Expeditions in Comput-
ing grant CCF-1918656. We thank the reviewers for their careful
reading of our manuscript and their many insightful comments and
suggestions.

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1379



REFERENCES
[1] Monireh Abdoos, Nasser Mozayani, and Ana LC Bazzan. 2013. Holonic multi-

agent system for traffic signals control. Engineering Applications of Artificial
Intelligence 26, 5-6 (2013), 1575–1587.

[2] ACLED. 2010. Introducing ACLED-Armed Conflict Location and Event Data.
Journal of Peace Research 47, 5 (2010), 651–660.

[3] Carole Adam and Benoit Gaudou. 2016. BDI agents in social simulations: A
survey. The Knowledge Engineering Review 31, 3 (2016), 207–238. https://doi.org/
10.1017/S0269888916000096

[4] Prakash Adhikari. 2013. Conflict-Induced Displacement, Understanding the
Causes of Flight. American Journal of Political Science 57, 1 (2013), 82–89.

[5] Icek Ajzen. 1991. The theory of planned behavior. Organizational behavior and
human decision processes 50, 2 (1991), 179–211.

[6] Maksudul Alam et al. 2015. Sensitivity analysis of an ENteric Immunity SImulator
(ENISI)-based model of immune responses to Helicobacter pylori infection. PLoS
One 10, 9 (2015).

[7] Abhijit V Banerjee. 1992. A simple model of herd behavior. The quarterly journal
of economics 107, 3 (1992), 797–817.

[8] Siegfried Berninghaus and Hans G Seifert-Vogt. 1987. A game theoretical analysis
of household migration decisions in a static and deterministic world. Technical
Report. Diskussionsbeiträge-Serie II.

[9] Emanuele Borgonovo, Marco Pangallo, Jan Rivkin, Leonardo Rizzo, and Nicolaj
Siggelkow. 2022. Sensitivity analysis of agent-based models: a new protocol.
Computational and Mathematical Organization Theory 28, 1 (2022), 52–94.

[10] Michael Bratman. 1987. Intention, Plans, and Practical Reason. Cambridge, MA:
Harvard University Press, Cambridge.

[11] Michael Bratman. 2009. Shared agency. (2009).
[12] Michael E. Bratman, David J. Israel, and Martha E. Pollack. 1988. Plans and

Resource-bounded Practical Reasoning. Computational Intelligence (1988).
[13] Ian Burkitt. 2016. Relational agency: Relational sociology, agency and interaction.

European Journal of Social Theory 19, 3 (2016), 322–339. https://doi.org/10.1177/
1368431015591426

[14] Cristiano Castelfranchi. 1995. Commitments: From Individual Intentions to
Groups and Organizations.. In ICMAS, Vol. 95. 41–48.

[15] Cristiano Castelfranchi. 1998. Modelling social action for AI agents. Artificial
Intelligence (1998).

[16] Shu-Heng Chen and Umberto Gostoli. 2014. Behavioral macroeconomics and
agent-based macroeconomics. In Distributed Computing and Artificial Intelligence,
11th International Conference. Springer, 47–54.

[17] Julien Clement, Andrew Shipilov, and Charles Galunic. 2018. Brokerage as a
public good: The externalities of network hubs for different formal roles in
creative organizations. Administrative Science Quarterly 63, 2 (2018), 251–286.

[18] Andrew J Collins and Erika Frydenlund. 2016. Agent-basedmodeling and strategic
group formation: a refugee case study. In 2016 Winter Simulation Conference
(WSC). IEEE, 1289–1300.

[19] Nicole Dash andHughGladwin. 2007. Evacuation decisionmaking and behavioral
responses: Individual and household. Natural hazards review 8, 3 (2007), 69–77.

[20] Christian Davenport, Will Moore, and Steven Poe. 2003. Sometimes You Just
Have to Leave: Domestic Threats and Forced Migration, 1964-1989. International
Interactions 29, 1 (2003), 27–55.

[21] Lavindra de Silva, Felipe Meneguzzi, and Brian Logan. 2020. BDI Agent Archi-
tectures: A Survey. In Proc. IJCAI.

[22] Guido Dorigo and Waldo Tobler. 1983. Push-pull migration laws. Annals of the
Association of American Geographers 73, 1 (1983), 1–17.

[23] Prashant Doshi, Piotr Gmytrasiewicz, and Edmund Durfee. 2020. Recursively
modeling other agents for decision making: A research perspective. Artificial
Intelligence 279 (2020), 103202.

[24] Mustafa Emirbayer and Jeff Goodwin. 1994. Network analysis, culture, and the
problem of agency. American journal of sociology 99, 6 (1994), 1411–1454.

[25] Mustafa Emirbayer and Ann Mische. 1998. What is agency? American journal of
sociology 103, 4 (1998), 962–1023.

[26] Nick J Enfield. 2017. Distribution of agency. Distributed agency (2017), 9–14.
[27] William Fedus, Carles Gelada, Yoshua Bengio, Marc G Bellemare, and Hugo

Larochelle. 2019. Hyperbolic discounting and learning over multiple horizons.
arXiv preprint arXiv:1902.06865 (2019).

[28] Les Gasser. 1991. Social Conceptions of Knowledge and Action: DAI Foundations
and Open Systems Semantics. Artificial Intelligence 47 (1991), 107–138.

[29] Christian Gerber, Jörg Siekmann, and Gero Vierke. 1999. Holonic multi-agent
systems. (1999).

[30] Ranjay Gulati and Sameer B Srivastava. 2014. Bringing agency back into network
research: Constrained agency and network action. In Contemporary perspectives
on organizational social networks.

[31] Nafisa Halim et al. 2020. Two-mode threshold graph dynamical systems for mod-
eling evacuation decision-making during disaster events. In Proc. of COMPLEX
NETWORKS.

[32] Matthew Hancock, Nafisa Halim, Chris J Kuhlman, Achla Marathe, Pallab
Mozumder, SS Ravi, and Anil Vullikanti. 2022. Effect of peer influence and

looting concerns on evacuation behavior during natural disasters. In Proc. of
COMPLEX NETWORKS.

[33] Guillaume Arnoux Hébert, Liliana Perez, and Saeed Harati. 2018. An agent-based
model to identify migration pathways of refugees: the case of Syria. In Agent-
Based Models and Complexity Science in the Age of Geospatial Big Data: Selected
Papers from a workshop on Agent-Based Models and Complexity Science (GIScience
2016). Springer, 45–58.

[34] HUMDATA. 2022. The Humanitarian Data Exchange . https://data.humdata.org/.
[Online; accessed December 2, 2022].

[35] Charles Kirschbaum. 2019. Network analysis: emergence, criticism and recent
trends. RAUSP Management Journal 54 (2019), 533–547.

[36] Jon Kleinberg. 2000. The small-world phenomenon: An algorithmic perspective.
In Proceedings of the thirty-second annual ACM symposium on Theory of computing.
163–170.

[37] Blaine Landis, Martin Kilduff, Jochen I Menges, and Gavin J Kilduff. 2018. The
paradox of agency: Feeling powerful reduces brokerage opportunity recognition
yet increases willingness to broker. Journal of Applied Psychology (2018).

[38] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. 2009. Convo-
lutional deep belief networks for scalable unsupervised learning of hierarchical
representations. In Proceedings of the 26th annual international conference on
machine learning. 609–616.

[39] Jimmy Lewis-Martin. 2022. What kinds of groups are group agents? Synthese
200, 4 (jun 2022). https://doi.org/10.1007/s11229-022-03766-z

[40] Michael K Lindell, Jing-Chein Lu, and Carla S Prater. 2005. Household decision
making and evacuation in response to Hurricane Lili. Natural hazards review 6,
4 (2005), 171–179.

[41] Kirk Ludwig. 2016. From Individual to Plural Agency: Collective Action: Volume 1.
Vol. 1. Oxford University Press.

[42] Simeone Marino, Ian B Hogue, Christian J Ray, and Denise E Kirschner. 2008.
A methodology for performing global uncertainty and sensitivity analysis in
systems biology. Journal of theoretical biology 254, 1 (2008), 178–196.

[43] Jonas Mockus. 1989. The Bayesian approach to local optimization. Springer.
[44] Henning. S Mortveit, Abhijin Adiga, et al. 2020. Synthetic Populations and Inter-

action Networks for the U.S. Technical Report. University of Virginia. NSSAC
Technical Report: #2019-025.

[45] Erica L Nelson, Saira A Khan, Swapna Thorve, and P Gregg Greenough. 2020.
Modeling pastoralist movement in response to environmental variables and
conflict in Somaliland: Combining agent-based modeling and geospatial data.
Plos one 15, 12 (2020), e0244185.

[46] James Odell, Marian Nodine, and Renato Levy. 2004. A metamodel for agents,
roles, and groups. In International Workshop on Agent-Oriented Software Engi-
neering. Springer, 78–92.

[47] Abhishek Pandey, Chad R Wells, et al. 2023. Disease burden among Ukrainians
forcibly displaced by the 2022 Russian invasion. PNAS 120, 8 (2023).

[48] James R Pomerantz. 2006. Perception: overview. Encyclopedia of cognitive science
(2006).

[49] Zirou Qiu et al. 2022. Understanding the coevolution of mask wearing and
epidemics: A network perspective. PNAS 119, 26 (2022).

[50] Justin Schon. 2019. Motivation and opportunity for conflict-induced migration:
An analysis of Syrian migration timing. Journal of Peace Research 56, 1 (2019).

[51] Andrew Shaver, Benjamin Krick, Judy Blancaflor, Sarah Yein Ku, and Xavier
Liu. 2022. The Causes and Consequences of Refugee Flows: A Contemporary
Re-Analysis. Empirical Studies of Conflict Project (ESOC)Working Papers 29 (2022).

[52] Chandni Singh. 2019. Migration as a driver of changing household structures:
Implications for local livelihoods and adaptation. Migration and Development 8,
3 (2019), 301–319.

[53] Munindar P Singh. 1999. An ontology for commitments in multiagent systems.
Artificial intelligence and law 7 (1999), 97–113.

[54] Diana Suleimenova et al. 2017. A generalized simulation development approach
for predicting refugee destinations. Scientific reports 7, 1 (2017), 13377.

[55] Guus Ten Broeke, George Van Voorn, and Arend Ligtenberg. 2016. Which
sensitivity analysis method should I use for my agent-based model? Journal of
Artificial Societies and Social Simulation 19, 1 (2016), 5.

[56] UNHCR. 2022. Population Figures. Technical Report. United Nations. https:
//www.unhcr.org/refugee-statistics

[57] UNOCHA. 2023. UKRAINE HUMANITARIAN RESPONSE 2023. https://reports.
unocha.org/en/country/ukraine/. [Accessed May 29, 2023].

[58] Thomas W Valente. 1996. Social network thresholds in the diffusion of innova-
tions. Social networks 18, 1 (1996), 69–89.

[59] Paolo Verme and Paolo Verme. 2017. The economics of forced displacement: an
introduction. World Bank.

[60] José M Vidal and Edmund H Durfee. 1996. Using recursive agent models ef-
fectively. In Intelligent Agents II Agent Theories, Architectures, and Languages:
IJCAI’95 Workshop (ATAL) Montréal, Canada, August 19–20, 1995 Proceedings 2.
Springer, 171–186.

[61] George Kingsley Zipf. 1946. The P 1 P 2/D hypothesis: on the intercity movement
of persons. American sociological review 11, 6 (1946), 677–686.

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1380

https://doi.org/10.1017/S0269888916000096
https://doi.org/10.1017/S0269888916000096
https://doi.org/10.1177/1368431015591426
https://doi.org/10.1177/1368431015591426
https://data.humdata.org/
https://doi.org/10.1007/s11229-022-03766-z
https://www.unhcr.org/refugee-statistics
https://www.unhcr.org/refugee-statistics
https://reports.unocha.org/en/country/ukraine/
https://reports.unocha.org/en/country/ukraine/

	Abstract
	1 Introduction
	1.1 Summary of contributions and significance

	2 Network Agency
	2.1 Proposed Framework
	2.2 Related Work on Forced Migration

	3 ABM of Forced Migration
	3.1 Implementation
	3.2 Calibration

	4 Evaluation
	4.1 Sensitivity Analysis
	4.2 What-If Scenario

	5 Discussion and Conclusion
	Acknowledgments
	References



