Simple \(k \)-crashing Plan with a Good Approximation Ratio

Extended Abstract

Ruixi Luo
Shenzhen Campus of Sun Yat-sen
University, No. 66, Gongchang Road,
Guangming District
Shenzhen, China
luors@mail2.sysu.edu.cn

Kai Jin
Shenzhen Campus of Sun Yat-sen
University, No. 66, Gongchang Road,
Guangming District
Shenzhen, China
cscjnk@gmail.com

Zelin Ye
Shenzhen Campus of Sun Yat-sen
University, No. 66, Gongchang Road,
Guangming District
Shenzhen, China
zlrelay@outlook.com

ABSTRACT

A project is considered as an activity-on-edge network (AOE network, which is a directed acyclic graph) \(N \), where each activity / job of the project is an edge. Some jobs must be finished before others can be started, as described by the topology structure of \(N \).

It is known that job \(j_i \) in normal speed would take \(b_i \) days to be finished after it is started, and hence the (normal) duration of the project \(N \), denoted by \(d(N) \), is determined, which equals the length of the critical path (namely, the longest path) of \(N \).

To speed up the project, the manager can crash a few jobs (namely, reduce the length of the corresponding edges) by investing extra resources into that job. However, the time for completing \(j_i \) has a lower bound due to technological limits - it requires at least \(a_i \) days to be completed. Following the convention, assume that the time for completing \(j_i \) by \(d \) \((0 \leq d \leq b_i - a_i)\) days costs \(c_i \cdot d \) resources.

Given project \(N \) and an integer \(k \geq 1 \), the \(k \)-crashing problem asks the minimum cost to speed up the project by \(k \) days.

In this paper, we present a simple solution with the approximation ratio \(\frac{1}{k} + \ldots + \frac{1}{k} \). For simplicity, we focus on the linear case throughout the paper, but our proofs are still correct for the convex case, where shortening an edge becomes more difficult after a previous shortening.

KEYWORDS

Project duration; Network optimization; Greedy algorithm; Maximum flow; Critical path

ACM Reference Format:

1 RELATED WORK

The first solution to the \(k \)-crashing problem was given by Fulker-son [2] and by Kelley [5] respectively in 1961. The results in these two papers are independent, yet the approaches are essentially the same, as pointed out in [6]. In both of them, the problem is first formulated into a linear program problem, whose dual problem is a minimum-cost flow problem, which can then be solved efficiently.

Later in 1977, Phillips and Dessouky [6] reported another clever approach (denoted by Algorithm PD). Similar as the greedy algorithm mentioned above, Algorithm PD also consists of \(k \) steps, and each step it locates a minimal cut in a flow network derived from the original project network. This minimal cut is then utilized to identify the jobs which should be expedite or de-expedite in order to reduce the project reduction. It is however not clear whether this algorithm can always find an optimal solution. We have a tendency to believe the correctness, yet cannot find a proof in [6].

The greedy algorithm we considered is much simpler and easier to implement comparing to all the approaches above.

Other approaches for the problem are proposed by Siemens [7] and Goyal [4], but these are heuristic algorithms without any guarantee – approximation ratio are not proved in these papers.

Many variants of the \(k \)-crashing problem have been studied in the past decades; see [3], [1], and the references within.

2 ALGORITHM AND ANALYSIS

The greedy algorithm in the following (see Algorithm 1) finds a \(k \)-crashing plan efficiently. It finds the plan incrementally – each time it reduces the duration of the project by 1.

Algorithm 1 Greedy algorithm for finding a \(k \)-crashing plan.

\[G \leftarrow \emptyset; \]
\[\text{for } i = 1 \text{ to } k \text{ do} \]
\[\text{Find the optimum 1-crashing plan of } N(G), \text{ denoted by } A_1; \]
\[G \leftarrow G \cup A_1; \text{ (regard as multiset union)} \]
\[\text{end for} \]

Observe that \(G \) is an \(i \)-crashing plan of network \(N \) after the \(i \)-th iteration \(G \leftarrow G \cup A_i \), as the duration of \(N(G) \) is reduced by 1 at each iteration. Therefore, \(G \) is a \(k \)-crashing plan at the end.

In this paper, we mainly prove that...
Theorem 2.1. Let $G = A_1 \cup \ldots \cup A_k$ be the k-crashing plan found by Algorithm 1. Let OPT denote the optimal k-crashing plan. Then,

$$\text{cost}(G) \leq \sum_{i=1}^{k} \frac{1}{i} \text{cost}(\text{OPT}).$$

By applying the following Lemma 2.2 below in every step of the greedy algorithm, we can directly have the theorem.

Lemma 2.2. For any project N, its k-crashing plan (where $k \leq k_{\text{max}}$) costs at least k times the cost of the optimum 1-crashing plan.

2.1 Proof of Lemma 2.2

The critical graph of network H, denoted by H^*, is formed by all the critical edges of H; all the edges not critical are removed in H^*.

We first have

Proposition 2.3. A k-crashing plan X of N contains a cut of N^*.

In the following, suppose X is a k-crashing plan of N. We introduce a decomposition of X which is crucial to our proof.

First, define

$$\begin{cases}
N_1 &= N, \\
X_1 &= X, \\
C_1 &= \text{mincut}(N_1^*, X_1).
\end{cases}$$

Next, for $1 < i \leq k$, define

$$\begin{cases}
N_i &= N_{i-1}^*(C_{i-1}), \\
X_i &= X_{i-1} \setminus C_{i-1}, \\
C_i &= \text{mincut}(N_i^*, X_i).
\end{cases}$$

Note that $C_i = \text{mincut}(N_i^*, X_i)$ means C_i is this minimum cut of N_i^* from X_i.

The following lemma easily implies Lemma 2.2.

Lemma 2.4. $\text{cost}(C_i) \leq \text{cost}(C_{i+1})$ for any i ($1 \leq i < k$).

We show how to prove Lemma 2.2 in the following. The proof of Lemma 2.4 will be shown in the next subsection.

Proof of Lemma 2.2. Suppose X is k-crashing to N.

By Lemma 2.4, we know $\text{cost}(C_i) \leq \text{cost}(C_{i+1})$ (1 $\leq i \leq k$).

Further since $\bigcup_{i=1}^{k} C_i \subseteq X$,

$$k \cdot \text{cost}(C_1) \leq \text{cost} \left(\bigcup_{i=1}^{k} C_i \right) \leq \text{cost}(X).$$

Because C_1 is the minimum cut of N^* that is contained in X, whereas A_1 is the minimum cut of N^* among all $\text{cost}(A_1) \leq \text{cost}(C_1)$.

To sum up, we have $k \cdot \text{cost}(A_1) \leq \text{cost}(X)$. \hfill \Box

2.2 Proof of Lemma 2.4

Assume i (1 $\leq i < k$) is fixed. In the following we prove that $\text{cost}(C_i) \leq \text{cost}(C_{i+1})$, as stated in Lemma 2.4, which is a core result.

Assume the cut C_i of N_i^* divides the vertices of N_i^* into two parts, U_i, W_i, where $s \in U_i$ and $t \in W_i$. The edges of N_i^* are divided into four parts: 1. S_i - the edges within U_i; 2. T_i - the edges within W_i; 3. C_i - the edges from U_i to W_i; 4. R_i - the edges from W_i to U_i.

We can prove that

Figure 1: Key notation used in the proof of Lemma 2.4.

Note that $C_i^0 = C_{i+1}^0$, we can prove that

Proposition 2.6.

1. $C_i^+ \cup C_i^0 \cup C_i^+$ contains a cut of N_i^*.
2. $C_i^+ \cup C_i^0 \cup C_i^-$ contains a cut of N_i^*.

We are ready to prove Lemma 2.4. By Proposition 2.6 and $C_i = \text{mincut}(N_i^*, X_i)$, we derive that

$$\text{cost}(C_i) = \text{cost}(C_i^+ \cup C_i^0 \cup C_i^- \cup C_i^+) \leq \text{cost}(C_i^0 \cup C_i^0 \cup C_i^-)$$

$$\text{cost}(C_i) = \text{cost}(C_i^+ \cup C_i^0 \cup C_i^- \cup C_i^R) \leq \text{cost}(C_i^0 \cup C_i^0 \cup C_i^-)$$

By adding the inequalities above, we obtain Lemma 2.4 \text{cost}(C_i) \leq \text{cost}(C_{i+1})$, completing the proof.

3 SUMMARY & FUTURE WORK

We have shown that simple greedy algorithms achieve pretty small approximation ratio in k-crashing problems. And the analysis is non-trivial.

Hopefully, the techniques developed in this paper can be used for analyzing greedy algorithms of other related problems.

We would like to end up this paper with one challenging problem: Can we prove a constant approximation ratio for Algorithm 1?
REFERENCES

