Time-Constrained Restless Multi-Armed Bandits with Applications to City Service Scheduling

Extended Abstract

Yi Mao
The Ohio State University
Columbus, United States
mao.496@osu.edu

Andrew Perrault
The Ohio State University
Columbus, United States
perrault.17@osu.edu

ABSTRACT

Municipalities maintain critical infrastructure through inspections, both proactive and in response to complaints. For example, the Chicago Department of Public Health (CDPH) periodically inspects 7000 food establishments to maintain the safety of food bought, sold, or prepared for public consumption. Restless multi-armed bandits (RMABs) appear to be a useful tool for optimizing the scheduling of inspections, as the schedule aims to keep as many establishments in the “passing” state subject to an action limit per period. However, a key challenge arises: satisfying timing and frequency constraints. Municipal agencies often provide an inspection window to each establishment (e.g., a two-week period where an inspection will occur) and guarantee the minimum frequency of inspection (e.g., once per year). We develop an extension to Whittle index-based systems for RMABs that can guarantee both action window constraints and minimum frequencies. Briefly, we take a Whittle index-based view, enforcing window constraints by integrating the window structure into individual MDPs, and frequency constraints through a higher-level scheduling algorithm that aims to maximize the Whittle index. We demonstrate our methods’ performance and scalability in experiments using synthetic and real data (with 7000 establishments inspected per year). Not only does our approach enforce constraints more effectively than naive methods, but it also achieves higher rewards, up to 20%.

KEYWORDS

Restless Multi-Arm Bandits, Scheduling with Constraints

2 PROBLEM STATEMENT AND SOLUTIONS

2.1 Motivation Inspection RMAB

Motivated by the food establishment setting, we define a model RMAB with action constraints. Due to unobserved binary states (good or bad), each food establishment is described as a partially observed Markov decision process (POMDP) [2], which we can rewrite as a fully observed belief state MDP. Such an RMAB can be viewed as a collapsing bandit [8] or a resetting bandit [6], both with indexability guarantees. For each underlying MDP, we have binary state passive transitions $P_i^{(0)}$ and active transitions $P_i^{(1)}$. Converting this POMDP to a belief-state MDP yields a set of belief states that are reachable from the passing state $b_1 = [0, 1]$ (as a column vector), i.e., $(P_i^{(0)})^t b_1$, where t is any non-negative integer. In practice, the number of belief states of one MDP depends on the rate of MDP mixing.

2.2 Action Windows and MDP Encoding

Action windows are introduced here as an exemplar for the family constraints where the constraint can be directly encoded into the RMAB structure, then we can apply whatever existing state-of-the-art algorithms directly. In the food inspection domains in our work,
we add 2 pieces of information to the states in addition to the belief $b \in [0, 1]$, then modify the transitions to remove impacts of actions out of the window:

- t: the current timestamp. It will always increase by one after one passive or active transition.
- m: a counter for the number of inspections remaining in the window. An active transition decrements m by 1.

This encoding increases the number of states in the MDP by a factor of $O(LM)$, where L is the number of all timestamps needed to track and M is the total number of allowed actions during the window.

2.3 Whittle Index and Lookahead

For RMBAs, the most state-of-the-art solution is the Whittle Index under a technical condition called indexability.

We are not aware of an existing class of indexable RMBAs that includes the action window MDPs with counters that we define in this section. We empirically check for indexability by tracking the set of passive states as the subsidy changes and find no violations.

Though editing the MDPs enforces the maximum action limits, it is not possible to guarantee the minimums. Therefore, we replace the Whittle Index heuristic with a sequential planning that aims to maximize the sum of Whittle Indices of pulled arms over a lookahead window via an Integer Programming technique. We seek to maximize $\sum_{i=1}^{N} \sum_{t=1}^{T} a_{i,t} w_{i,t}$, subject to some constraints on $a_{i,t}(\text{e.g., } \sum_{t=1}^{T} a_{i,t} = 1)$, then minimum or exact number of actions constraints are fulfilled. This lookahead problem is reducible into a variant of weighted b-matching problem [11], which can be solved in polynomial time $O(|V|^2 \max_b b(x))$ [10].

3 EXPERIMENTS AND RESULTS

We compare our policies with other 3 policies: RP is the random policy for the baseline; RFP is the risk-first policy which prioritizes arms with the worst beliefs; WIP is the Whittle Index Policy without our MDP encoding; TCB is the time-constrained RMAb policies without minimum constraints; IP is the integer programming policy to fulfill minimum action constraints. We generate synthetic transitions and windows for all MDPs and run in 60 timestamps. The total reward improvement compared with RP in percentage is shown in Table 2, and coverage constraints are checked in Table 1. The TCB and IP can improve the total rewards by as much as 20%. What’s more, IP lookahead substantially increases coverage without sacrificing rewards. Once the budget is high enough to make the problem feasible, full coverage is increased to full, and reward is not decreased by enforcing this constraint.

4 CONCLUSION

To the best of our knowledge, we present the first RMAb study to optimize scheduling problems under timing and frequency constraints. Synthetic data results suggest that our methods for explicitly modeling constraints are critical for RMAbs to have an impact in this setting. We hope our work paves the way for applying RMAbs to other critical infrastructure maintenance and public service problems under constraints.

REFERENCES

