ABSTRACT

Significant challenges exist in robustly interacting and communicating with a diverse array of agents, especially in intricate settings like autonomous driving where AI agents and humans coexist. This work approaches these challenges from three perspectives: generalization of agent policies, development of communication-supporting representations, and interactions between humans and AI agents using natural language. We provide an overview of preliminary achievements in each area and outline proposed research focusing on enhancing cooperative driving through natural language communication, aiming to comprehensively address these complex multi-agent interaction challenges.

KEYWORDS
Communication; Generalization; Human-AI Interaction; LLMs

1 INTRODUCTION

Future AI is not alone. Artificial Intelligence (AI) has been intensively developed in the single-agent setting such as playing Atari games and generating artistic pieces. It is relatively under-explored in scenarios where decision-making AI agents coexist with humans and other agents. For instance, there is a potential for autonomous vehicles to be able to work together to improve traffic safety and cooperate with human drivers to reduce traffic congestion [11].

The learning dynamics in multi-agent decision-making scenarios present a significant challenge. When the other agents are viewed as a part of the environment, the environment is non-stationary. Game theory offers some analytical tools to solve multi-agent games, but struggles with high game complexity and handling multi-modal (in formats like videos, sounds, HDMaps, Metadata, etc.) input for policies. Multi-agent Reinforcement Learning (MARL), which optimizes expected individual or team return using Reinforcement Learning (RL), provides promising scalability for complex inputs and long-horizon decisions. Techniques in MARL like population-based training, empirical game-theoretic analysis, and centralized training decentralized execution (CTDE), have achieved significant success in games like Go [9], StarCraft [12], and Diplomacy [1].

Despite MARL’s ability to formulate strong policies that yield high expected returns, two specific aspects are yet to be extensively examined in the context of deep learning. The first aspect is the generalization of a policy to emergent teammates or opponents that do not appear during the training phase, herein referred to as unseen agents. The cooperative counter-part of the problem is referred to as Ad-Hoc Teamwork (AHT) [10] or Zero-Shot Coordination (ZSC) [6]. This concern is crucial since AI may frequently encounter novel partners, such as humans or other AI agents. These partners might exhibit diverse policy styles or coordination conventions. Typically, the generalization of a policy is attained by either calculating conservative policies such as Nash Equilibria or by training with a diverse population of agents.

The second aspect involves communication in multi-agent learning. Most training frameworks assume either entirely centralized information sharing or fully decentralized observation. However, real-world scenarios often permit communication, albeit with limitations in bandwidth. These restrictions complicate multi-agent learning, raising critical questions about when and whom to communicate with, what information to share, and how to handle the received information. Among communication protocols, when interacting with humans, natural language is the most suitable. It is well-structured and can be understood by almost all humans, perhaps with proper translation.

Where these two dimensions intersect, formulating a universally applicable policy that accommodates a range of policies, along with communication mechanisms, holds practical relevance in real-life applications such as autonomous driving. Consider a scenario where a vehicle, due to a brake failure, is about to run a red light and broadcasts its intention to nearby vehicles as a cautionary measure. A vehicle intending to cross at the green light could receive the message and decelerate accordingly. Note that if one of the cars is controlled by a human driver, the message may need to be in natural language, or some other human-interpretable modality.

With this motivation in mind, this work navigates the complexities of multi-agent learning, addressing the critical question:

How can a decision-making agent efficiently communicate with and create generalizable policies for novel AI or human teammates or opponents in simulated real-world scenarios?

This work will explore and answer the question along the following three dimensions:

1. Generalization. Such generalization pertains to interacting with diverse partners or opponents without the need for additional fine-tuning during interactions. Ensuring a high degree of policy population diversity during the training phase prepares the agents to handle a broad spectrum of policy styles and coordination conventions.
In the evolving landscape of traffic systems, autonomous vehicles (AVs) must interact not only with human drivers but also with other AVs from various manufacturers, each potentially adhering to different driving policies. Thus, autonomous vehicles being able to communicate and form emergent coordination with novel partners through a generalizable communication language (e.g., natural language) is one promising future direction in traffic systems.

Natural language serves as a well-structured and universally comprehensible communication protocol among humans, adaptable with appropriate translation. By equipping AVs with a language module, they can communicate their intentions or observations to humans, as well as respond to instructions received in natural language. For instance, an AV experiencing brake failure and consequently running a red light can broadcast its predicament to nearby vehicles. A vehicle preparing to cross the intersection on a green light, upon receiving this message, can then slow down to avoid a potential collision. Different from the generated representations in COOPERNAUT, the natural languages are more interpretable. Furthermore, the integration of large language models (LLMs) enhances the capabilities of these autonomous agents. LLMs enable AVs to perform common-sense analysis based on messages received and engage in meaningful dialogues with multiple vehicles, thus enriching the context and decision-making process in driving.

Addressing policy diversity in autonomous driving is another critical aspect of this project. Different driving styles, such as risk-seeking or risk-averse policies, significantly impact decision-making in scenarios like overtaking. A risk-seeking AV might prioritize reducing travel time at the risk of increased collision potential, whereas a risk-averse AV might opt for safety but risk getting stuck in a deadlock. We plan to have vehicles negotiate about their plans to reach local Ad Hoc coordination for improved traffic efficiency.

This proposed project is dedicated to achieving significant advancements in the domain of autonomous vehicle communication and coordination. Our goals, leveraging the utility of natural language, are multifaceted and aim to enhance the interaction dynamics within diverse traffic scenarios. These goals include:

1. Let AVs articulate their intentions and critical observations to other vehicles effectively. In scenarios where conflicts may arise, we aim to enable vehicles to negotiate and collaboratively formulate driving plans to avoid conflicts.
2. Integrate LLMs in AVs to interpret received messages and pivotal driving-related information to generate language instructions for driving decisions for AVs to follow.
3. Equip agents with the ability to interact seamlessly with a range of driving styles and policies, including behaviors of human drivers, ensuring that AVs can operate safely and efficiently in a mixed-autonomy traffic environment.
4. Refine driving policies of AVs to achieve a balance of high driving efficiency, a low rate of collisions, and rapid adaptability to varying driving policies.

ACKNOWLEDGMENTS
I would like to express my deepest gratitude to Prof. Peter Stone for his invaluable supervision, guidance, and support throughout this thesis research.
REFERENCES


