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ABSTRACT
Multi-agent reinforcement learning (MARL) enables systems of

autonomous agents to solve complex tasks from jointly gathered

experiences of the environment. Many MARL algorithms perform

centralized training (CT), often in a simulated environment, where

at each time-step the critic makes use of a single sample of the

agents’ joint-action for training. Yet, as agents update their poli-

cies during training, these single samples may poorly represent

the agents’ joint-policy leading to high variance gradient estimates

that hinder learning. In this paper, we examine the effect on MARL

estimators of allowing the number of joint-action samples taken

at each time-step to be greater than 1 in training. Our theoretical

analysis shows that even modestly increasing the number of joint-

action samples shown to the critic leads to TD updates that closely

approximate the true expected value under the current joint-policy.

In particular, we prove this reduces variance in value estimates sim-

ilar to that of decentralized training while maintaining the learning

benefits of CT. We describe how such a protocol can be seamlessly

realized by sharing policy parameters between the agents during

training and apply the technique to induce lower variance in es-

timates in MARL methods within a general apparatus which we

call Performance Enhancing Reinforcement Learning Apparatus

(PERLA). Lastly, we demonstrate PERLA’s performance improve-

ments and estimator variance reduction capabilities in a range of

environments including Multi-agent Mujoco, and StarCraft II.
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1 Introduction
Multi-agent reinforcement learning (MARL) has emerged to be a

powerful tool to enable autonomous agents to jointly tackle dif-

ficult tasks such as complex games [7, 20], ride-sharing [28], and

swarm robotics [11, 14]. Nevertheless, a key impediment to these

algorithms is the high variance of the critic and policy gradient es-

timators. Reducing the variance of these estimators is critical since

high variance estimators can lead to low sample efficiency and poor

overall performance [6]. In multi-agent systems, the environment

reward function and state transition dynamics function depend on

the joint-action of all the agents in the system. As a result, for an

agent in a given state, different executions of a particular action

may return varying outcomes depending on the joint-actions of

other agents. As agents’ estimates are based on previous observa-

tions of joint actions, updates to the policies of other agents during

training may result in returns that significantly deviate from cur-

rent estimates. Consequently, key estimators for efficient learning

can have high variance severely impairing the learning process and

hence, the agents’ abilities to jointly maximise performance.

Centralized Training-Decentralized Execution (CT-DE) para-

digm is a popular MARL training framework in which agent’s

observe the joint behaviour of other agents during training. There-

fore, the CT-DE paradigm has at its core a (possibly shared) critic for

each agent that makes use of all available information generated by

the system, including the global state and the joint action [17]. This

added information can be exploited by the critic during training to
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promote greater levels of coordination between the agents, which

is often required to efficiently learn the optimal joint policies. More-

over, this added information can serve to reduce systemic variance.

CT-DE has been shown to be highly effective in promoting high

performance outcomes and thus serves as the foundation of many

popular MARL methods such as MAPPO, Q-DPP [25], QMIX [19],

SPOT-AC [12], and COMA [4].

In spite of these benefits, the CT-DE framework can be plagued

by high variance updates during training. Central to the learning

protocol of CT-DE algorithms are agent policy updates that are

based on a single sample of the joint-action executed from other

agents’ policies at a given state. This can produce value function

(VF) updates based on improbable events and result in inaccurate

estimates of expected returns. This, in turn often leads to high vari-

ance VF estimates and poor sample efficiency. This is exemplified

in a simple Coordination Game with the reward structure shown

in Figure 1. In this game, miscoordinated actions (i.e., (𝑙, 𝑟 ) or (𝑟, 𝑙))
are penalised, and there is a sub-optimal stable (Nash equilibrium

(NE)) joint strategy (𝑟, 𝑟 ), and the optimal joint strategy is (𝑙, 𝑙). In
this setting, random occurrences of (𝑙, 𝑙) are relatively improbable

which can induce convergence to the joint strategy (𝑟, 𝑟 ). To illus-

trate this, suppose the action (𝑟, 𝑟 ) is sampled. A TD update towards

this sample (with reward 0.5) may cause each agent to increase the

policy probability of sampling 𝑟 (and divert the agents to converge

to the sub-optimal NE). On the other hand, if the joint-action sam-

pled is (𝑟, 𝑙), due to the reward of −1, the agent may reduce the

policy probability of sampling 𝑟 . Thus, an update following a single

sample of this joint-action leads to an increase in probability weight

on 𝑟 , while the other decreases it producing the possibility of highly

variant updates.

To investigate how to mitigate this issue, we study the problem

of allowing MARL methods to make use of multiple samples of

the joint action at each time step during training. A key insight is

that by enabling the agents to share parameters of their individual

policies, and then increasing the number of joint action samples

taken during training, the variance of MARL critic estimators is

significantly reduced while more accurately representing the true

expected returns. Critically, in the paper we explore how this in-

duces a much faster training process than using only a single sample

of the joint action in the critic function. Additionally, we explain

that this procedure dramatically reduces the variance of the critic

since the critic estimate now closely approximates the expected
value under the current joint policy of the agents. Consequently, VF
updates are robust against improbable actions observed in single

samples. Often, MARL training occurs in a simulated environment

whereafter execution takes place in the environment. This allows

for relatively inexpensive sampling during training. Nevertheless,

additional joint-action sampling does incur greater computational

expense, therefore a key aspect of our analysis is to understand the

extent of the benefits as we vary the number of joint-action sam-

ples taken during training. We prove that employing this technique

induces a vast reduction of the variance of VF estimates (Theorem

1) and that it preserves policy gradient estimators (Theorem 3) en-

suring the consistency of its solution with the system objective. We

also prove that applying this technique to actor-critic algorithms

converges almost surely to a locally optimal joint policy profile

(Theorem 6).

To summarise our theoretical results, in this paper, we show the

following:

• The variance of Q-function constructed using the joint-action

sampling technique is smaller than that of the Q-function

and provides an exact characterisation of the difference (The-

orem 1).

• We introduce a new gradient estimator constructed using

the joint-action sampling technique and show that it is an

unbiased estimate of the policy gradient (Theorem 3) but

has a significantly lower variance than the standard CT-DE

estimator.

• We provide an exact quantification of the difference in vari-

ances between the decentralized and CT-DE estimators ad-

mits (Theorem 5).

• The method preserves convergence to local optima almost

surely (Theorem 6).

• We empirically demonstrate how this procedure can be ap-

plied to multi-agent policy gradient algorithms, which are

known to suffer from high variance.

We instantiate these ideas in a general technique which we

call Performance Enhancing Reinforcement Learning Apparatus

(PERLA), that is adaptable to any MARL method. The benefits of

PERLA can be readily observed in the Coordination Game in Fig. 1

where PERLA is applied to MAPPO [26], a leading MARL algorithm.

The line chart in Fig. 1 shows the probability of sampling action

‘Left’ averaged across both agents over 10 runs against training

steps in the Coordination game. As PERLA MAPPO consistently

induces lower variance through training, the policy monotonically

increases the probability of playing ‘Left.’ As an example, whenever

Agent 1 samples the action 𝑟 , the VF updates calculate the expected

value under the policy of Agent 2. The update is towards the ex-

pected value due to (𝑟, 𝜋2 (𝑙)) and (𝑟, 𝜋2 (𝑟 )) where 𝜋2 (𝑙) and 𝜋2 (𝑟 )
represent the probability of actions 𝑙 and 𝑟 respectively by Agent

2 under its policy. In this way, the return of Agent 1 of taking 𝑟

is computed more accurately, and the VF update lower variance.

This enables PERLA to produce consistent convergence of the un-

derlying MARL method MAPPO to the optimal strategy, despite

its less likely occurrence (relative to the miscoordinated joint ac-

tions) under stochastic policies. On the other hand, since vanilla

MAPPO is exposed to random occurrences of miscoordination, it

often converges to the sub-optimal stable point due to the penalties

of miscoordination. In this example, vanilla MAPPO converges to

the optimal NE in 6 of 10 runs while PERLA MAPPO converges to

the optimal NE in 10 out of 10 runs.

The PERLA technique imputes two key advantages: 1) PERLA

improves sample efficiency and convergence properties by factor-

ing the behaviour of other agents when querying the critic and

reducing variance. This enables efficient training while imposing

no restrictive VF constraints (validated empirically in Section 6.2).

2) The PERLA technique is easily incorporated into CT-DE based

Actor-Critic algorithms, and significantly boosts performance over

the base learners (validated empirically on MAPPO [26] in Sec-

tion 6.1).

Various actor-criticmethods have shown significant performance

improvements over previous MARL algorithms [10, 13, 26], and are

state-of-the-art in a range of MARL benchmarks. These actor-critic
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Figure 1: Top inset table: Payoffmatrix of CoordinationGame.
In this game the actions ((𝑙, 𝑟 ), (𝑟, 1)) are penalised. There is
also a sub-optimal Nash Equilibrium, (𝑟, 𝑟 ). The joint strategy
that maximizes the agents’ payoff (𝑙, 𝑙). Top: policy probabil-
ity of ‘Left.’ PERLA MAPPO learns the optimal policy and
features less variance. Bottom: percentage of runs converged
to optimal solution.

formalisms are natural candidates for PERLA as we can permit the

critic to sample the joint-policy, while leaving the actor (i.e., the pol-

icy) unchanged. Thus, PERLA maintains the setup of decentralized

execution (and centralised training).

2 Related Work
CT-DE MARL algorithms can be placed within two categories:

value-based or actor-critic methods. In value-based methods, cen-

tralised training is assured to generate policies that are consistent

with the desired system goal whenever the IGM principle [23]

is satisfied.
1
To realise the IGM principle in CT-DE, QMIX, and

VDN propose two sufficient conditions of IGM to factorise the joint

action-value function. Such decompositions are limited by the joint

action-value function class they can represent and can perform

badly in systems that do not adhere to these conditions [24].
2

Other value-based methods such as QPLEX [24] have been shown

to fail in simple tasks with non-monotonic VFs [18] or in the case

of QTRAN [23], scale poorly in complex MARL tasks such as the

StarCraft Multi-Agent Challenge (SMAC) [16]. On the other hand,

1
IGM imposes an equivalence between the joint greedy action and the collection of

individual greedy actions.

2
WQMIX [18] considers a weighted projection towards better performing joint actions

but does not guarantee IGM consistency.

actor-critic type methods represent some of the highest perform-

ing methods such as MAPPO [26] and are among state-of-the-art.

Indeed, recent work by Fu et al. [5] has shown that in particu-

lar MARL reward structures, actor-critic based CT methods are

dominant as the class of algorithms that produce optimal policies.

Further, empirical studies [2, 15] have shown the strength of actor-

critic based CT methods over competing approaches.[4] proposed

counter-factual baselines as a method to mitigate variance in MARL

actor-critic methods. Their method seeks to accurately assign credit

to agents for their contribution to the reward received following

execution of a joint-action. [10] propose a general baseline (for

the critic) applicable to all MARL actor-critic methods to mitigate

variance. Moreover, the authors show that MARL variance may be

dis-aggregated into the variance due to the state, the agent’s own

actions, and the actions of other agents. Unlike their method, which

is limited to mitigating the variance from the agent’s own action,

we take a step further to mitigate variance due to other agents in the

system which is a key impediment for MARL methods, especially

with larger numbers of agents.

3 Problem Setting
We formulate the MARL problem as a Markov game (MG) [22]

represented by a tuple𝔊 = ⟨N ,S, (A𝑖 )𝑖∈N := A, 𝑃, 𝑅𝑖 , 𝛾⟩. N ∈ N
is the number of agents in the system, S is a finite set of states,

A𝑖 is an action set for agent 𝑖 ∈ N , and 𝑅𝑖 : S × A → P(𝐷) is
the reward function that agent 𝑖 seeks to maximise (𝐷 is a com-

pact subset of R), and 𝑃 : S × A × S → [0, 1] is the probability
function describing the system dynamics We consider the fully

observable setting, in which the agent observes system state 𝑠𝑡 ∈ S.
To decide its actions, each agent 𝑖 ∈ N samples its actions from

a Markov policy 𝜋𝑖,𝜽𝑖 : S × A𝑖 → [0, 1], which is parameterised

by the vector 𝜽𝑖 ∈ R𝑑 . Throughout the paper, 𝜋𝑖,𝜽𝑖 is abbreviated
as 𝜋𝑖 . At each time 𝑡 ∈ 0, 1, . . . , the system is in state 𝑠𝑡 ∈ S and

each agent 𝑖 ∈ N takes an action 𝑎𝑡
𝑖
∈ A𝑖 , which together with

the actions of other agents 𝒂𝑡−𝑖 := (𝑎𝑡
1
, . . . , 𝑎𝑡

𝑖−1, 𝑎
𝑡
𝑖+1, . . . , 𝑎

𝑡
𝑁
), pro-

duces an immediate reward 𝑟𝑖 ∼ 𝑅(𝑠𝑡 , 𝒂𝑡
𝑖
) for agent 𝑖 ∈ N . The

system then transitions to a next state 𝑠𝑡+1 ∈ S with probabil-

ity 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝒂𝑡 ) where 𝒂𝑡 = (𝑎𝑡
1
, . . . , 𝑎𝑡

𝑁
) ∈ A is the joint action

which is sampled from the joint policy 𝝅 :=
∏𝑁
𝑖=1 𝜋𝑖 . The goal of

each agent 𝑖 is to maximise its expected returns measured by its VF

𝑣𝑖 (𝑠) = E
[∑∞

𝑡=0 𝛾
𝑡𝑅𝑖 (𝑠𝑡 , 𝒂𝑡 ) |𝑠0 = 𝑠

]
and the action-value function

for each agent 𝑖 ∈ N is given by 𝑄𝑖 (𝑠, 𝒂) = E[∑∞
𝑡=0 𝑅𝑖 (𝑠𝑡 , 𝒂𝑡 ) |𝒂0 =

𝒂], where −𝑖 denotes the tuple of agents excluding agent 𝑖 . Like-

wise, we denote

∏𝑁
𝑗=1, 𝑗≠𝑖 𝜋 𝑗 as 𝝅−𝑖 . In the fully cooperative case

all agents share the same goal: 𝑅1 = . . . 𝑅𝑁 := 𝑅.

4 Theoretical Analysis
In the CT paradigm, given a state 𝑠 ∈ S and the joint action 𝒂 ∈ A,

each agent 𝑖 ∈ N computes its action-value function 𝑄𝑖 (𝑠, 𝒂). The
action-value function provides an estimate of the agent’s expected

return using its policy given the behaviour of all other agentsN/{𝑖}
for a given action 𝑎𝑖 ∈ A𝑖 . Therefore, 𝑄𝑖 (𝑠, 𝒂) seeks to provide an

estimate of the agent’s own action, accounting for the actions of

others. Agents use stochastic policies to explore, and therefore the
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aggregated joint action 𝒂 ∼ 𝝅 may be composed of exploratory

actions sampled from individual agent’s policies.

In this section, we examine the effect of introducing a sampling

process of the joint-policy 𝝅−𝑖 for each agent 𝑖 . This is used to

compute the expected value of 𝑎𝑖 under joint-policy of the other

agents in the system. We compute the expected value of agent 𝑖’s

action-value function �̃� , as defined below:

�̃�𝑖 (𝑠, 𝑎𝑖 ) := E𝝅−𝑖 [𝑄𝑖 (𝑠, 𝒂)] ; 𝒂 ≡ (𝑎𝑖 , 𝒂−𝑖 ) ∈ A, (1)

where 𝑠 ∈ S, 𝑎𝑖 ∼ 𝜋𝑖 (·|𝑠), 𝒂−𝑖 ∼ 𝝅−𝑖 (·|𝑠). This object requires
some explanation; as with 𝑄𝑖 , the function �̃�𝑖 seeks to estimate

the expected return following agent 𝑖 taking action 𝑎𝑖 . However,

unlike𝑄𝑖 , �̃�𝑖 builds in the expected value under the actions of other

agents, 𝒂−𝑖 . Consequently, the critic can more accurately estimate

the value of action 𝑎𝑖 given the behaviour of the other agents in the

system. In practice it may be impossible to analytically calculate

(1), hence to approximate �̃�𝑖 (𝑠, 𝑎𝑖 ), for any ∀𝑠 ∈ S and any 𝑎𝑖 ∈ A𝑖

we construct:

�̂�𝑖 (𝑠, 𝑎𝑖 ) =
1

𝑘

𝑘∑︁
𝑗=1

𝑄𝑖 (𝑠, 𝑎𝑖 , 𝒂 ( 𝑗 )𝑖
); 𝒂 ( 𝑗 )−𝑖 ∼ 𝜋 (𝒂−𝑖 |𝑠).

𝑘 ∈ 1, 2, . . . , (2)

We now perform a detailed theoretical analysis of increased per-

state joint action sampling during training. We prove that doing

so vastly reduces the variance of the key estimates used in training.

We begin with a result that quantifies the reduction of variance

when using �̂�𝑖 instead of 𝑄𝑖 . We defer all proofs to the Appendix.

We first prove the folliowing result which is required to prove

the Theorem 1.

Lemma 1. Given 𝑁 random variables (𝑥𝑖 )𝑁𝑖=1, where 𝑥𝑖 : Ω → X𝑖
and ameasurable function 𝑓 : ×𝑁

𝑖=1
X𝑖 → R, define by ˜𝑓 (𝑥1, . . . , 𝑥𝑀 ) :=

E[𝑓 (𝑥1, . . . , 𝑥𝑁 ) |𝑥1, . . . , 𝑥𝑀 ] for some𝑀 ≤ 𝑁 then

Var(𝑓 (𝑥1, . . . , 𝑥𝑁 )) ≥ Var( ˜𝑓 (𝑥1, . . . , 𝑥𝑀 )) . (3)

Moreover, for a 𝑘-sample Monte-Carlo estimator of ˜𝑓 given by:

ˆ𝑓 (𝑥1, . . . , 𝑥𝑀 ) = 1

𝑘

𝑘∑︁
𝑖=1

𝑓 (𝑥1, . . . , 𝑥𝑀 , 𝑥 (𝑖 )𝑀+1, . . . , 𝑥
(𝑖 )
𝑁

),

where 𝑥 (𝑖 )
𝑗

is the 𝑖𝑡ℎ sample of 𝑥 𝑗 , we have:

Var( ˆ𝑓 (𝑥1, . . . , 𝑥𝑀 ))

=
1

𝑘
Var(𝑓 (𝑥1, . . . , 𝑥𝑁 )) +

𝑘 − 1

𝑘
Var( ˜𝑓 (𝑥1, . . . , 𝑥𝑀 )). (4)

We are now in position to give our first key result:

Theorem 1. The variance of marginalised Q-function �̃�𝑖 is (weakly)
less than that of the non-marginalised Q-function 𝑄𝑖 for any 𝑖 ∈ N ,
that is to say:

Var(𝑄𝑖 (𝑠, a)) ≥ Var(�̃�𝑖 (𝑠, 𝑎𝑖 )) . (5)

Moreover, for the approximation to the marginalised Q-function (c.f.
Equation 2) the following relationship holds:

Var
(
�̂�𝑖 (𝑠, 𝑎𝑖 )

)
=

1

𝑘
Var (𝑄𝑖 (𝑠, 𝒂−𝑖 , 𝑎𝑖 )) +

𝑘 − 1

𝑘
Var

(
�̃�𝑖 (𝑠, 𝑎𝑖 )

)
. (6)

Therefore for 𝑘 = 1, we observe that the approximation has

the same variance as the non-marginalised Q-function. However,

for any 𝑘 > 1 the approximation to marginalised Q-function has

less variance than the non-marginalised Q-function. Therefore

marginalisation procedure can essentially be used as a variance

reduction technique. Let us now analyse how this framework can

be applied to enhance multi-agent policy gradient algorithm, which

is known to suffer from high variance in its original version.

In the policy gradient algorithms, we assume a fully cooper-

ative game which avoids the need to add the agent indices to

the state-action and state-value functions since the agents have

identical rewards. The goal of each agent is therefore to max-

imise the expected return from the initial state defined as J (𝜽 ) =
E𝑠0∼𝑝 (𝑠0 ) [𝑣 (𝑠0)], where 𝑝 (𝑠0) is the distribution of initial states and

𝜽 = (𝜽𝑇
1
, . . . , 𝜽𝑇

𝑁
)𝑇 is the concatenated vector consisting of policy

parameters for all agents. The following well-known theorem estab-

lishes the gradient of J (𝜽 ) with respect to the policy parameters.

Theorem 2 (MARL Policy Gradient [27]).

∇𝜽𝑖 J (𝜽 ) = E

[ ∞∑︁
𝑡=0

𝛾𝑡𝑄 (𝑠𝑡 , 𝒂𝑡−𝑖 , 𝑎
𝑡
𝑖 )∇𝜽𝑖 log𝜋𝑖 (𝑎

𝑡
𝑖

��𝑠𝑡 )] .
Therefore, to calculate the gradient with respect to policy pa-

rameters, it is necessary to make use of the state-action-values. In

practice, it can estimated by a function approximator, which gives

rise to Actor-Critic methods [9]. In MARL, one can either maintain

a centralised critic that provides state-action-value for the 𝑖𝑡ℎ agent

using the knowledge of the other agents’ actions or introduce a de-

centralized critic that does not take actions of others (in its inputs).

This gives rise to the centralised training decentralized execution

(CT-DE) 𝒈C
𝑖
and decentralized 𝒈D

𝑖
gradient estimators respectively,

as defined below.

𝒈C𝑖 :=

∞∑︁
𝑡=0

𝛾𝑡𝑄 (𝑠𝑡 , 𝒂𝑡−𝑖 , 𝑎
𝑡
𝑖 )∇𝜽𝑖 log𝜋𝑖 (𝑎

𝑡
𝑖

��𝑠𝑡 ), (7)

𝒈D𝑖 :=

∞∑︁
𝑡=0

𝛾𝑡�̃� (𝑠𝑡 , 𝑎𝑡𝑖 )∇𝜽𝑖 log𝜋𝑖 (𝑎
𝑡
𝑖

��𝑠𝑡 ), (8)

where 𝑄 (𝑠𝑡 , 𝑎𝑡−𝑖 , 𝑎
𝑡
𝑖
) and �̃� (𝑠𝑡 , 𝑎𝑡

𝑖
) are the CT-DE and decentralized

critics respectively. Using our marginalisation technique (see Algo-

rithm 1) we use a third estimator:

𝒈P𝑖 :=

∞∑︁
𝑡=0

𝛾𝑡�̂� (𝑠𝑡 , 𝑎𝑡𝑖 )∇𝜽𝑖 log𝜋𝑖 (𝑎
𝑡
𝑖

��𝑠𝑡 ), (9)

where �̂� (𝑠𝑡 , 𝑎𝑡
𝑖
) is the Monte-Carlo approximation of �̃� (𝑠𝑡 , 𝑎𝑡

𝑖
).

Note, in this approach wemaintain a centralised critic𝑄 (𝑠𝑡 , 𝑎𝑡−𝑖 , 𝒂
𝑡
𝑖
),

therefore the approximation to the marginalised Q-function is ob-

tained using �̂� (𝑠𝑡 , 𝑎𝑡
𝑖
) = 1

𝑘

∑𝑘
𝑗=1𝑄 (𝑠𝑡 , 𝑎𝑡

𝑖
, 𝒂𝑡 ( 𝑗 )−𝑖 ), where 𝒂𝑡 ( 𝑗 )−𝑖 ∼

𝜋−𝑖 (𝒂𝑡−𝑖 |𝑠
𝑡 ). The estimator (9) is equal in expectation to the CT-DE

estimator as stated by the following Theorem.

Theorem3. Given the same (possibly imperfect) critic, the estimators
𝒈𝐶
𝑖
and 𝒈𝑃

𝑖
have the same expectation, that is

E[𝒈C𝑖 ] = E[𝒈P𝑖 ] .
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Hence, whenever the critic provides the true Q-value, the es-

timator (9) is an unbiased estimate of the policy gradient (which

follows from Theorem 2). However, although the CT-DE and es-

timator (9) have the same expectations, the estimator (9) enjoys

significantly lower variance. As in [10], we analyse the excess vari-

ance the two estimators have over the decentralized estimator. First

define by 𝐵𝑖 the upper bound on the gradient norm of 𝑖th agent,

i.e. 𝐵𝑖 = sup𝑠,𝒂

����∇𝜃𝑖 log𝜋𝑖 (𝑎𝑖 |𝑠)���� and by𝐶 the upper bound on the

Q-function, i.e. 𝐶 = sup𝑠,𝒂 𝑄 (𝑠, 𝒂). We now present two theorems

showing the effectiveness of the estimator (9) for policy gradients.

Theorem 4. Given true Q-values, the difference in variances between
the decentralized and marginalised estimators admits the following
bound:

Var(𝒈P𝑖 ) − Var(𝒈D𝑖 ) ≤
1

𝑘

𝐵2
𝑖
𝐶2

1 − 𝛾2
.

Theorem 5. Given true Q-values, the difference in variances between
the decentralized and CT-DE estimators admits the following bound:

Var(𝒈C𝑖 ) − Var(𝒈D𝑖 ) ≤
𝐵2
𝑖
𝐶2

1 − 𝛾2
.

Therefore, we can see that with 𝑘 = 1 the bound on excess

variance of the estimator (9) is the same as for the CT-DE estimator,

but as 𝑘 → ∞, the variance of our estimator matches the one of

the fully decentralized estimator. However, this is done while still

maintaining a centralised critic, unlike in the fully decentralized

case. The presence of a centralised critic plays an important role

in guaranteeing the convergence to a local optimum almost surely

(with probability 1). The result is stated by the next Theorem.

Theorem 6. Under the standard assumptions of stochastic approx-
imation theory [9], an Actor-Critic algorithm using 𝒈𝑃

𝑖
or 𝒈𝐶

𝑖
as a

policy gradient estimator, converges to a local optimum with proba-
bility 1, i.e.

𝑃

(
lim

𝑘→∞
∥∇𝜽𝑖 J (𝜽𝑘 )∥ = 0

)
= 1,

where 𝜽𝑘 is the value of vector 𝜽 obtained after the 𝑘th update fol-
lowing the policy gradient.

We present a proof sketch here and defer the full proof to Ap-

pendix ??.

Proof sketch. The proof consists of showing that a multi-agent
Actor-Critic algorithm using policy gradient estimate 𝒈𝑃

𝑖
or 𝒈𝐶

𝑖
is

essentially a special case of single-agent Actor-Critic. □

Note that because the decentralized critic does not allow us to

query the state-action-value for joint action of all agents, a decen-

tralized actor-critic using 𝒈𝐷
𝑖

as policy gradient estimate is not

equivalent to the single-agent version and we cannot establish con-

vergence for it. Therefore, our estimator enjoys both the low vari-

ance property of the decentralized estimator and the convergence

guarantee of the CT-DE one. Additionally, having a centralised

critic yields better performance in practice in environments with

strong interactions between agents [8].

Algorithm 1 PERLA MAPPO

1: Input: Joint-policy 𝝅 , critic parameters 𝝆, policy parameters

𝜽 , environment 𝐸, number of marginalisation samples 𝐾

2: Output: Optimised joint-policy 𝝅∗

3: Augment MAPPO critic 𝑉𝝆 to as input state 𝒔 and joint-action

𝒂−𝑖
4: Rollout 𝝅 in 𝐸 to obtain data 𝐷 = (𝒔0, 𝒂1, 𝑟1, . . . , 𝒔𝑇−1, 𝒂𝑇 , 𝑟𝑇 )
5: for 𝑡 = 0 to 𝑇 − 1 do
6: for each agent 𝑖 do
7: Generate 𝐾 samples of joint-actions at the next-state ob-

servations {𝒂𝑡 ( 𝑗 )−𝑖 ∼ 𝝅−𝑖 (𝑠𝑡+1)}𝐾𝑗=1
8: Compute TD-error: 𝛿𝑖 = 𝒓 + 𝛾 1

𝐾

∑𝐾
𝑗=1𝑉𝜌 (𝒔𝑡 , 𝒂

𝑡 ( 𝑗 )
−𝑖 )

− 1

𝐾

∑𝐾
𝑗=1𝑉𝜌 (𝒔𝑡 , 𝒂

𝑡 ( 𝑗 )
−𝑖 ) over sampled joint-actions for each

agent

9: Update critic parameters 𝝆 with 𝛿2
𝑖
as the loss

10: Update 𝑖th agent’s policy parameters 𝜽𝑖 with advantages

given by 𝛿𝑖 , using PPO update

11: end for
12: end for

5 PERLA Instantiation
We now give a concrete instantiation of PERLA on the popular

MAPPO [26] algorithm. This gives rise to PERLA MAPPO algo-

rithm as shown below in Algorithm 1. As MAPPO’s critic func-

tion for each agent only takes 𝑠 ∈ S and 𝑎𝑖 ∈ A as input, we

augment the input of the standard MAPPO critic to take 𝒂−𝑖 as
well. We do not make any changes to the standard MAPPO policy,

and it continues to only take the agent’s local observation as in-

put. As the critic is only needed during CT and not required for

execution, PERLA MAPPO operates under the CT-DE paradigm;

policies are executed in a fully decentralized manner. In PERLA

MAPPO we utilise a value-function style one-step critic, where

𝑄 (𝑠𝑡 , 𝑎𝑡
𝑖
, 𝒂𝑡 ( 𝑗 )−𝑖 ) = 𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1, 𝒂𝑡+1( 𝑗 )−𝑖 ) and 𝑉 (𝑠, 𝒂−𝑖 ) which is ap-

proximated via a deep neural network (PERLA is fully compatible

with different types of critics). In this case, marginalising the be-

haviour of other agents is equivalent of marginalising the next step

value function, as explained in more detail in Appendix ??. During
training, when performing policy and critic updates, we require to

generate samples of actions from other agents. In practice, this can

either be done by each agent communicating its policy parameters

or samples of actions directly. Thus the communication complex-

ity for each round would scale as O(min{𝐷,𝐾𝐴}), where 𝐷 is the

length of policy parameters and 𝐴 is the size of action space. After

the samples are communicated, the approximate expectation of the

critic can be performed, which in turn can be used to compute the

TD-error. The critic is trained with squared TD error as a loss and

the policy is updated with the TD-error as the advantage estimate.

To perform policy updates, we use PPO [21].
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6 Experiments
We ran a series of experiments in Large-scale Matrix Games [23],
Level-based Foraging (LBF) [1], Multi-agent Mujoco [3] and the Star-
Craft II Multi-agent Challenge (SMAC) [20]

3
to test if PERLA: 1.

Improves overall performance of MARL learners. 2. Enables sample

efficiency when the the number of agents is scaled up. 3. Reduces
variance of value function estimates. In all tasks, we compared the

performance of PERLA MAPPO against MAPPO [26]. We report

average training results across multiple scenarios/maps in LBF and

SMAC. Detailed performance comparisons are deferred to the Ap-

pendix. Lastly, we ran a suite of ablation studies which we deferred

to the Appendix. We implemented PERLA on top of the MAPPO

implementation provided in the codebase accompanying the MARL

benchmark study of Papoudakis et al. [15]. Hyperparameters were

tuned using simple grid-search, the values over which we tuned

the hyperparameters are presented in Table ?? in the Appendix. All

results are means over 3 random seeds unless otherwise stated. In

plots dark lines represent the mean across the seeds while shaded

areas represent 95% confidence intervals.

6.1 Performance Analysis
Large-Scale Matrix Games. To demonstrate PERLA’s ability to

handle various reward structures and scale efficiently we first tested

its performance in a set of variants of the hard matrix game pro-

posed in [23] (Appendix ??). This game contains multiple stable

points and a strongly attracting equilibrium [23] (all agents select-

ing action 𝐴). In our variants, we scaled up the number of agents,

or we increased the size of the action space (Appendix ??). In both

cases, it is crucial to accurately account for the behaviour of other

agents in the system. For instance, even if the joint-policy has

converged to the optimal solution, if even one agent samples an

exploratory action, it can be strongly destabilising due to its high

penalty (reward of 0 or −12 as opposed reward of 8 for optimal

joint-action). To avoid these issues, it is crucial to base updates on

the joint-policy rather than samples of the joint-action.

We used 500 training iterations and averaged the results of 10

random seeds in each method. As shown in Figure 2, policy-based

methods (MAPPO and IPPO) and leading value-based methods

(MAIC, QPLEX [24] andWQMIX [18]) achieve optimal performance

in the initial settings (2 agents with 3 available actions), while other

algorithms achieve suboptimal outcomes. When scaling with more

agents and larger action space, only PERLA can maintain optimal

performance across almost all variations. As shown, MAPPO com-

pletely fails when we scale the actions-space, going from a return of

8 to 0.5. PERLA MAPPO, however, is robust and attains the highest

return of all tested algorithms at about 7.75.

Level-based Foraging. Figure 2 shows learning curves averaged
across all LBF maps that we ran (the full list of maps is given

in the Appendix ??). As shown in the plot, PERLA significantly

improves baseMAPPO, both in learning speed and the quality of the

policy at the end of training. For example, it takes PERLA MAPPO

about 800, 000 interactions with the environment to achieve a mean

evaluation return of 0.8, whereas vanilla MAPPO does not achieve

3
The specific maps/variants used of each of these environments in given in Sections

?? and ?? of the Appendix)
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Figure 2: Top and centre: scaling with more agents and larger
action space, respectively, in Cooperative Matrix Game;
in both cases PERLA is able to maintain optimal perfor-
mance while other algorithms’ performances degrade. Bot-
tom: Learning curves of mean evaluation return of MAPPO
and PERLA MAPPO averaged over all tested LBF maps.
PERLA improves sample efficiency (better performance
faster) and quality of the final policy.

such a perfomance level even by the end of training. Moreover,

PERLA MAPPO is able to attain an mean evaluation return of 0.9

by the end of training, vanilla MAPPO attains an mean evaluation

return just under 0.8. Furthermore, as shown in Figure ?? (Appendix
??)) in the map requiring the highest level of coordination between

agents Foraging-15x15-8p-1f-coop-v2 (8 agents must cooperate

to attain reward), PERLA MAPPO manages to learn, and achieves

an evaluation return of 0.7 while MAPPO fails entirely. This shows

that PERLA enables vanilla MAPPO to scale to a high number of

agents in an environment with sparse and a high variance reward

function.

StarCraft II Multi-agent Challenge. Figure 3 shows perfor-
mance of MAPPO and PERLA MAPPO over a wide range of SMAC

maps from all difficulty levels. At regular intervals during training,

we ran 10 evaluation episodes and tracked the median win-rate.
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PERLA MAPPO

Figure 3: Average performance over all SMAC maps for IPPO, MAPPO, PERLA_MAPPO. PERLA enhances the base method
both in terms of sample efficiency (better performance, faster) and final performance.

The learning curves are then generated by computing the mean of

these win rates (disaggregated curves for each map are available in

Figure ?? in Appendix ??). SMAC maps are richly diverse and vary

along several dimensions such as the number of agents to control,

density of environment reward, degree of coordination required,

and (partial)-observability. Therefore, aggregated and averaged per-

formance over all maps gives us a fairly robust understanding of the

effects of PERLA. As with LBF, PERLA enhances the performance

MAPPO. PERLA MAPPO is more sample efficient and converges to

better overall policies (within the training budget).

Multi-agent Mujoco. To study PERLA’s capabilities in complex

settings that require both scalability and coordination, we compared

its performance with vanilla MAPPO on three tasks in Multi-agent

Mujoco: Walker 2×3, Hopper 3×1, and Swimmer 2×1. In Figure 4,

we report learning curves averaged over 6 seeds of each algorithm.

As can be seen, PERLA MAPPO outperforms or equals MAPPO

on all three tasks. By enabling agents to maintain estimates that

account for other agents’ actions, PERLA achieves more accurate

value estimation with the variance reduction, therefore establishing

more efficient learning.

6.2 Scaling Analysis
Scaling efficiently to large systems (i.e. systems with many agents

and large action spaces) is a major challenge in MARL. In Section 1,

we claimed the PERLA framework enables MARL to scale efficiently

in terms of the number of samples. To test this claim, we investi-

gated PERLA’s scaling ability in our large scale matrix games (de-

scribed above) and LBF. In matrix games, we demonstrated PERLA’s

ability to efficiently scale across both dimensions, namely, games

varied by (1) the number of agents 𝑁 = 2, 3, 4, 5, 6, 10, 15, 20 and

(ii) the cardinality of the agents’ action sets |A𝑖 | = 3, 6, 9, 12, 15. In

each case, we retained the setup that reward agents with a score of

8 only when all agents choose the first action.

We further tested this claim in LBF scenarios with 2, 5, and 8

agent, respectively. We expected to see PERLAMAPPO’s advantage

increase with the number of agents as the algorithm allows each

agent to better account for the actions of other agents in the system.

Figure 5 shows PERLA MAPPO’s over MAPPO. As shown, PERLA

enables monotonic performance gains with the number of agents,

yielding over 1000% improvement in systems with 8 agents.
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Figure 4: Comparisons of PERLA MAPPO versus MAPPO on
threeMulti-agent Mujoco tasks. PERLAMAPPO learns faster
and converges to superior policies.

6.3 Variance Analysis
In Sec. 4, we proved that PERLA reduces the variance of VF esti-

mators. To show this empirically, we constructed a toy problem

with three agents. Each agent has a binary action space of {0, 1}
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Figure 5: Top: % performance increase of policy trained by
PERLA MAPPO over policy trained by MAPPO as a function
number of agents (𝑁 ). For 𝑁 = 8, PERLA MAPPO yields over
+1000% performance gains over MAPPO. Bottom: Compari-
son of Policy Gradient Variance on a Toy Problem for CTDE,
DT and PERLA estimators. 𝐾 = 𝑛 denotes a PERLA estimator
using 𝑛 samples.

and plays a uniform policy. The team receives a reward of 1 if all

players play action 0 and a reward of 3 if all players play action

1. If at least one player plays an action different from others, the

whole team receives a reward of 0. As this is a state-less game,

the 𝑄-function takes only actions as inputs. We consider the case,

where the policy of agent 1 is defined by a sigmoid function i.e.

𝜋 (𝑎1 = 1;𝜃 ) = 1

1+exp(−𝜃 ) . We repeat the experiment 1000 times

and measure the variance of the policy gradient for 𝜃 = 0 calculated

using PERLA (Eq. 9), CTDE (Eq. 7) and DT (Eq. 8) estimators. In

the results shown in Figure 5 we see that as number of samples

𝑘 increases, the variance of PERLA estimator sharply decreases

and almost matches the variance of DT estimator for very large 𝑘 .

This is consistent with Theorem 4, where we have proven that as 𝑘

increases variance of PERLA estimator approaches the variance of

DT estimator at a rate of 1/𝑘 .

6.4 Ablation on number of agents
An important question is the scaling behaviour of the PERLA

method with the number of agents. To answer this question, we

examined the performance of PERLA MAPPO while varying the

number of agents from 2 to 8 for different per-state joint action

samples. We ran this experiment in the LBF environment. Figure

6 displays the overall return when the PERLA method is allowed

the make 5, 25 and 125 per-state joint action samples. The results

indicate that the performance remains stable when the number

of per-state joint action samples is varied while, as expected, the

performance diminishes only slightly when the number of agents

increases.

Figure 6: Final mean return against the number of players in-
creases in LBF environment. Blue indicates 5 samples, green
indicates 25 and orange corresponds to 125 samples.

7 Conclusion
Centralised training is a fundamental paradigm in performant, mod-

ern actor-critic MARL algorithms. While it enables agents to coor-

dinate to solve challenging problems, MARL estimators still suffer

from high variance. This hinders learning and reduces the sample

efficiency of MARL methods. Scalability and efficient learning are

key challenges in MARL research. In this paper, we introduced

PERLA, an enhancement tool that induces sample efficient, coor-

dinated learning among MARL agents. Our theory and empirical

analyses show that PERLA reduces the variance of VF estimators

which is critical for efficient learning. In this way, PERLA enables

MARL algorithms to exhibit sample efficient learning and a high

degree of scalability.
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