
Probabilistic Timed ATL
Wojciech Jamroga

Institute of Computer Science,

Polish Academy of Sciences

& SnT, University of Luxembourg

jamroga@ipipan.waw.pl

Marta Kwiatkowska

Institute of Computer Science, PAS

& Department of Computer Science,

University of Oxford

marta.kwiatkowska@cs.ox.ac.uk

Wojciech Penczek

Institute of Computer Science,

Polish Academy of Sciences

Warsaw, Poland

penczek@ipipan.waw.pl

Laure Petrucci

LIPN, CNRS UMR 7030,

Université Sorbonne Paris Nord

Villetaneuse, France

petrucci@lipn.univ-paris13.fr

Teofil Sidoruk

Institute of Computer Science,

Polish Academy of Sciences

Warsaw, Poland

t.sidoruk@ipipan.waw.pl

ABSTRACT
We consider strategic reasoning for multi-agent systems modelled

as networks of continuous-time probabilistic timed automata (TA)

with asynchronous execution (PCAMAS) in the setting of imper-

fect information. We define PTATL, a probabilistic extension of

the alternating-time timed temporal logic TATL, which is inter-

preted over PCAMAS. Focusing on memoryless strategies of agents

with imperfect information, both probabilistic (irP) and determin-

istic (irp), we establish theoretical results regarding the compu-

tational complexity of model checking for the proposed logic: be-

tween PSPACE and EXPTIME for PTATLirp, and in 2EXPTIME for

PTATLirP. We demonstrate the practical feasibility of verification

for PTATLirp formulas through a novel proof-of-concept combina-

tion of state-of-the-art tools IMITATOR and PRISM on a scalable

benchmark, with encouraging results.

KEYWORDS
multi-agent systems; probabilistic model checking; strategic ability;

continuous time

ACM Reference Format:
Wojciech Jamroga, Marta Kwiatkowska, Wojciech Penczek, Laure Petrucci,

and Teofil Sidoruk. 2025. Probabilistic Timed ATL. In Proc. of the 24th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS
2025), Detroit, Michigan, USA, May 19 – 23, 2025, IFAAMAS, 9 pages.

1 INTRODUCTION
Alternating-time temporal logics ATL∗ and ATL [3, 4] extend the

temporal logic CTL∗ and CTL, resp., with the notion of strategic
ability. These logics allow one to express properties of agents (or

groups of agents) referring to what they can achieve. Such prop-

erties can be useful for specification, verification, and reasoning

about agent interactions in multi-agent systems [25, 27, 31, 32, 41].

Timed extensions of strategy logics with two types of interpre-

tations, over models of synchronous (Time) Multi-Agent Systems

(MAS) and asynchronous (Time) Multi-Agent Systems (AMAS), and

both discrete (D) and continuous (C) time, were investigated in [8].

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

Probabilistic (untimed) extensions of ATL and ATL∗ (PATL and

PATL∗) were also developed, initially in the perfect information

setting [16, 17, 37], and later also under imperfect information [10,

12]. Probability is needed to model randomisation, which is often

used to coordinate multi-agent systems, and to quantify failures,

for example message loss on unreliable communication channels

in Aloha [37] or information leakage in a security protocol. Note

that time and observability are equally relevant in this setting, e.g.

for specifying deadline properties [37], or modelling voter–coercer

interactions in electronic voting [28].

Probabilistic real-time systems can be modelled using (networks

of) probabilistic TA
1
and verified against (non-strategic) proba-

bilistic timed temporal logic PTCTL and PTCTL∗ by reduction to

probabilistic variants of region or zone graphs [42], though only the

perfect information setting has been considered. Strategy synthesis

algorithms have been formulated for probabilistic real-time multi-

player games using the coalition operator of ATL [35], but again

only for perfect information, with no logic or complexity of model

checking discussed. Solving partially observable (untimed) variants

of finite [22, 23] and infinite [47] games was studied, though again

without logic.

This paper extends previous works to integrate probabilistic and

real-time aspects within a single coherent framework, introducing

Probabilistic Timed ATL (PTATL). While adding discrete time can

be viewed as a mild extension of the untimed probabilistic setting,

the continuous-time setting is non-trivial and considered here for

the first time. Focusing on the memoryless strategies with imper-

fect information, both deterministic and probabilistic, we prove

complexity results for the PTATL model checking problem. For de-

terministic imperfect information strategies, we were able to adapt

state-of-the-art tools IMITATOR [6] and PRISM [34] to derive a

promising proof-of-concept implementation of strategy synthesis

in this challenging setting.

Related work. Alternating-time Temporal Logic ATL∗ and its

subset ATL [3] have become the most popular formalisms for rea-

soning about strategic abilities in multi-agent systems (MAS). Over

the recent years, these logics were further extended in various direc-

tions, including (discrete) TimedATL (TATL) [39], epistemicATLK
[20, 26], ATLsc with strategy contexts [14, 38], or Strategy Logic

(SL) [15], where strategies are represented as first order variables.

1
Since we discuss both parametric and probabilistic timed automata (TA), we will not

use the acronym PTA to avoid ambiguity.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1051

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Strategic Timed CTL (STCTL), introduced in [8], can be seen as a

branching-time counterpart to TATL.
Algorithms for stochastic model checking have been considered

since the mid-1980s, initially in the context of probabilistic concur-

rent programs and classical LTL properties [46]. The specification

language was first extended with probabilities in PCTL [21], which

replaced CTL path quantifiers with probabilistic operators quan-

tifying the probability of satisfaction for a set of paths (and also

with discrete time bounds on their evaluation). Continuous-time

PTCTL, interpreted over probabilistic TA, is considered in [42].

The earliest work on probabilistic verification of strategic abil-

ities introduced PATL and PATL∗ [17], which were subsequently

augmented with additional operators to express rewards [16] and

reason about Nash equilibria [36]. Stochastic multi-player games

have been extensively studied, too, including models with real time

[35] and partial observability (untimed) settings [22, 23, 47]. Prob-

abilistic Strategy Logic (PSL), in a similar formal setting to that

considered here (stochastic MAS, albeit with synchronous execu-

tion and perfect information strategies), was proposed in [5].

Models are typically specified as Markov decision processes

(MDPs), stochastic multi-player games, or as probabilistic TA. Our

formalism of Asynchronous Multi-Agent Systems (AMAS) com-

bines features of the latter two. AMAS were originally introduced

in [30] (though it should be noted the modelling approach is stan-

dard and inherited from distributed and interpreted systems [44]),

and subsequently extended with variables in [7], and with both

discrete and continuous time in [8]. Here, we take the latter variant

and lift it to the probabilistic case.

The closest related works are [11, 12], which investigate a prob-

abilistic extension of ATL for agents with imperfect information.

This semantics of strategic ability is better suited for most practical

applications (where agents typically should not know the entire

global state of the system). However, its downside is the higher com-

putational complexity of verification, since the efficient fixpoint

techniques for perfect information strategies are not applicable.

As a result, agents with imperfect information are considered less

often, and relevant work involving probabilistic models and logics

is particularly scarce. This setting was previously considered in

[24], which showed that PATL model checking is undecidable for

strategies with imperfect information perfect recall even for single-

agent coalitions; a further reduced subset of the logic is identified,

however, in which the problem is decidable and in 2EXPTIME.

2 PRELIMINARIES
In this section, we recall the formalism of Asynchronous Multi-

Agent Systems (AMAS) with continuous (dense) time [8], and the

logical framework for reasoning about strategic abilities of agents

in such models, including the syntax and semantics of PTATL.

2.1 Probabilistic Continuous-time AMAS
Asynchronous Multi-Agent Systems (AMAS), introduced in [30], are

a modern semantic model for the study of agents’ strategies in

asynchronous systems. Technically, they are similar to networks

of automata that synchronise on shared actions, and interleave

local transitions to execute asynchronously [19, 30, 40]. However,

to deal with agent coalitions, automata semantics (e.g. for Timed

Automata) must resort to algorithms and additional attributes. In

contrast, by linking protocols to agents, AMAS are a natural com-

positional formalism to analyse multi-agent systems. In [8], AMAS

were extended with time representation, following the standard

notions of timed systems [2]. Here, we recall and further augment

this formalism, lifting it to the probabilistic case. We assume the

standard definition of probability distribution.

Definition 1 (Distributions). A probability distribution over
a finite, non-empty set 𝑋 is a function 𝑑 : 𝑋 → [0, 1] such that∑
𝑥∈𝑋 𝑑 (𝑥) = 1. If there exists 𝑥 ∈ 𝑋 such that 𝑑 (𝑥) = 1, we refer to 𝑑

as a Dirac distribution or point distribution. The set of distributions
over 𝑋 is denoted by 𝐷𝑖𝑠𝑡 (𝑋).

Each agent has an associated set of clocks. All clocks evolve at

the same rate (across agents), thus allowing for delays and instan-

taneous actions. R0+ denotes the set of non-negative real numbers.

Definition 2 (Clocks). We denote a finite set of clocks, with a
fixed ordering assumed for simplicity, by X = {𝑥1, . . . , 𝑥 |X | }, where
𝑥𝑖 ∈ R0+ for all 𝑖 ∈ {1, . . . , |X|}. A clock valuation on X is an
|X|-tuple 𝑣 . We denote:
• by 𝑣 (𝑥𝑖) or 𝑣 (𝑖), the value of clock 𝑥𝑖 in 𝑣 ;
• by 𝑣 + 𝛿 , where 𝛿 ∈ R0+, 𝑣 ′ such that 𝑣 ′ (𝑥) = 𝑣 (𝑥) + 𝛿 for all
𝑥 ∈ X;

• by 𝑣[X := 0], where 𝑋 ⊆ X, 𝑣 ′ such that 𝑣 ′ (𝑥) = 0 for all 𝑥 ∈ 𝑋 ,
and 𝑣 ′ (𝑥) = 𝑣 (𝑥) for all 𝑥 ∈ X \ 𝑋 .

Definition 3 (Clock constraints). The set CX collects all clock
constraints over X, defined by the grammar: 𝔠𝔠 := 𝑡𝑟𝑢𝑒 | 𝑥𝑖 ∼ 𝑐 |
𝑥𝑖 −𝑥 𝑗 ∼ 𝑐 | 𝔠𝔠 ∧ 𝔠𝔠, where 𝑥𝑖 , 𝑥 𝑗 ∈ X, 𝑐 ∈ N, and ∼∈ {≤, <,=, >,≥}.
For 𝔠𝔠 ∈ CX , the satisfaction relation |= is inductively defined as:
𝑣 |= 𝑡𝑟𝑢𝑒 ,
𝑣 |= (𝑥𝑖 ∼ 𝑐) iff 𝑣 (𝑥𝑖) ∼ 𝑐 ,
𝑣 |= (𝑥𝑖 − 𝑥 𝑗 ∼ 𝑐) iff 𝑣 (𝑥𝑖) − 𝑣 (𝑥 𝑗) ∼ 𝑐 , and
𝑣 |= (𝔠𝔠 ∧ 𝔠𝔠′) iff 𝑣 |= 𝔠𝔠 and 𝑣 |= 𝔠𝔠′.

The set of all valuations satisfying 𝔠𝔠 is denoted by J𝔠𝔠K.

Definition 4 (PCAMAS). A probabilistic continuous-timeAMAS

(PCAMAS) consists of 𝑛 agents A = {1, . . . , 𝑛}, each associated with
a 9-tuple 𝐴𝐺𝑖 = (𝐿𝑖 , 𝜄𝑖 , 𝐴𝑐𝑡𝑖 , 𝑃𝑖 ,X𝑖 ,I𝑖 ,𝑇𝑖 , PV 𝑖 ,𝑉𝑖) including:
• a finite non-empty set of local states 𝐿𝑖 = {𝑙1

𝑖
, 𝑙2
𝑖
, . . . , 𝑙

𝑛𝑖
𝑖
};

• an initial local state 𝜄𝑖 ∈ 𝐿𝑖 ;
• a finite non-empty set of local actions 𝐴𝑐𝑡𝑖 ={𝑎1

𝑖
, 𝑎2

𝑖
, . . . , 𝑎

𝑚𝑖

𝑖
};

• a local protocol 𝑃𝑖 : 𝐿𝑖 → 2
𝐴𝑐𝑡𝑖 \ {∅};

• a set of clocks X𝑖 ;
• a local invariant I𝑖 : 𝐿𝑖 → CX𝑖

;
• a (partial) probabilistic local transition function 𝑇𝑖 : 𝐿𝑖 ×𝐴𝑐𝑡𝑖 ×
CX𝑖

× 2
X𝑖 ⇀ 𝐷𝑖𝑠𝑡 (𝐿𝑖) such that 𝑇𝑖 (𝑙𝑖 , 𝑎, 𝔠𝔠, 𝑋) ∈ 𝐷𝑖𝑠𝑡 (𝐿𝑖) iff

𝑎 ∈ 𝑃𝑖 (𝑙𝑖), 𝔠𝔠 ∈ CX𝑖
, and 𝑋 ⊆ X𝑖 ;

• a finite non-empty set of local propositions PV 𝑖 = {p1i , . . . , p
ri
i };

• a local valuation function 𝑉𝑖 : 𝐿𝑖 → 2
PV 𝑖 .

For a local transition 𝑡 := 𝑙
𝑎,𝔠𝔠,𝑋−−−−−→ (𝑙 ′, 𝑑 (𝑙 ′)) for a distribution

𝑑 ∈ 𝐷𝑖𝑠𝑡 (𝐿𝑖), 𝑙 is the source state, 𝑎 is the executed action, which
has probability 𝑑 (𝑙 ′) of moving to target state 𝑙 ′, clock condition 𝔠𝔠

is called a guard, and 𝑋 is the set of clocks to be reset. Note that 𝑇𝑖
is defined on local actions only. This is reflected in the definition of

PCAMAS models, or Interleaved Interpreted Systems [30, 40].

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1052

Definition 5 (Model). The model of a PCAMAS is an 8-tuple
M = (A, 𝑆, 𝜄, 𝐴𝑐𝑡,X,I,𝑇 ,𝑉), including:
• the set of agents A = {1, . . . , 𝑛};
• the set of global states 𝑆 =

∏𝑛
𝑖=1

𝐿𝑖 ;
• the initial global state 𝜄 = (𝜄1, . . . , 𝜄𝑛) ∈ 𝑆 ;
• the set of actions 𝐴𝑐𝑡 =

⋃
𝑖∈A 𝐴𝑐𝑡𝑖 ;

• the set of clocks X =
⋃

𝑖∈A X𝑖 ;
• the invariant I(𝑠) =∧

𝑖∈A I𝑖 (𝑠𝑖), where 𝑠𝑖 is 𝑖’s local state of 𝑠 ;
• the probabilistic global transition function𝑇 : 𝑆×𝐴𝑐𝑡×CX×2

X →
𝐷𝑖𝑠𝑡 (𝑆), such that 𝑇 (𝑠, 𝑎,∧𝑖∈𝐴𝑔𝑒𝑛𝑡 (𝑎) 𝔠𝔠𝑖 , 𝑋) = 𝑑 iff:
∀𝑠′ ∈ 𝑆, 𝑑 (𝑠′) =∏

𝑖∈𝐴𝑔𝑒𝑛𝑡 (𝑎) 𝑑𝑖 ((𝑠′)𝑖),
where 𝐴𝑔𝑒𝑛𝑡 (𝑎) = {𝑖 ∈ A|𝑎 ∈ 𝐴𝑐𝑡𝑖 }, and 𝑑𝑖 =𝑇𝑖 (𝑠𝑖 , 𝑎, 𝔠𝔠𝑖 , 𝑋𝑖);

• the valuation function 𝑉 : 𝑆 → 2
PV , where PV =

⋃𝑛
𝑖=1

PV 𝑖 , s.t.
we have 𝑉 (𝑠) = (𝑉1 (𝑠1), . . . ,𝑉𝑛 (𝑠𝑛)) for each 𝑠 ∈ 𝑆 .

Intuitively, an action 𝑎 shared by agents 𝑖 ∈ {1, . . . , 𝑛}, whose
transitions 𝑇𝑖 define respectively𝑚1, . . . ,𝑚𝑛 local successors upon

executing 𝑎, induces𝑚1 · . . . ·𝑚𝑛 possible global state successors.

Each one is assigned the product of probabilities of all local succes-

sors involved.

The continuous (dense) semantics of time defines concrete states
as tuples of global states and non-negative real clock valuations.

Definition 6 (PACTS). The concrete model of a PCAMAS model
M = (A, 𝑆, 𝜄,X,I,𝑇 ,𝑉) is given by its Probabilistic Asynchronous
Continuous Transition System (PACTS): a 5-tuple (A, CS, 𝑞𝜄 ,→𝑐

,𝑉𝑐), including:
• the set of agents A = {1, . . . , 𝑛};
• the set of concrete states CS = 𝑆 × R |X |

0+ ;
• the concrete initial state 𝑞𝜄 = (𝜄, 𝑣) ∈ CS, s.t. ∀𝑥𝑖 ∈ X, 𝑣 (𝑥𝑖) = 0;
• the probabilistic transition relation →𝑐 ⊆ CS × ((R0+ × CS) ∪
(𝐴𝑐𝑡×𝐷𝑖𝑠𝑡 (𝑆)), defined by time- and probabilistic action-successors
as follows:

• (𝑠, 𝑣) 𝛿−→𝑐 (𝑠, 𝑣 + 𝛿) such that 𝛿 ∈ R0+ and 𝑣, 𝑣 + 𝛿 ∈ JI(𝑠)K,
• (𝑠, 𝑣)

𝑎,𝑝
−−−→𝑐 (𝑠′, 𝑣 ′) iff there are 𝑎 ∈ 𝐴𝑐𝑡 , 𝑝 ∈ [0, 1], 𝔠𝔠 ∈ CX ,

𝑋 ⊆ X such that: 𝑣 ∈ J𝔠𝔠K, 𝑣 ∈ JI(𝑠)K, 𝑣 ′ = 𝑣 [𝑋 := 0],
𝑣 ′ ∈ JI(𝑠′)K, and 𝑝 =𝑇 (𝑠, 𝑎, 𝔠𝔠, 𝑋) (𝑠′);

• the valuation function 𝑉𝑐 (𝑠, 𝑣) =𝑉 (𝑠).

Intuitively, delays

𝛿−→𝑐 increase the clock valuation(s) by a given

𝛿 but do not change the global state, while probabilistic actions

𝑎,𝑝
−−−→𝑐 move to a successor state, possibly resetting some clocks. For

𝑞 = (𝑠, 𝑣), we use 𝑠𝑡𝑎𝑡𝑒 (𝑞) for 𝑠 and 𝑣𝑐𝑙𝑜𝑐𝑘 (𝑞) for 𝑣 .
Note that untimed probabilistic AMAS (PAMAS) are a special

case of Def. 4, where X𝑖 = ∅ for all 𝑖 ∈ A. Since the set of clocks

is empty, the concrete model contains only action transitions, and

thus it is identical to the model itself.

Executions of PACTS (i.e. concrete PCAMAS models) are in-

terleaved sequences of concrete states and delays or probabilistic

action transitions between them, defined as follows.

Definition 7 (Execution). An execution of PACTS from a con-
crete state 𝑞0 = (𝑠0, 𝑣0) is an infinite sequence of interleaved timed-
and probabilistic action steps 𝜌 = 𝑞0, 𝛿0, 𝑞

′
0
, 𝑎0, 𝑞1, 𝛿1, 𝑞

′
1
, 𝑎1, . . . , where

𝑞𝑖 = (𝑠𝑖 , 𝑣𝑖), 𝑞′𝑖 = (𝑠𝑖 , 𝑣𝑖+1), such that for each 𝑖 ≥ 0 we have:

𝑞𝑖
𝛿𝑖−−→𝑐 𝑞

′
𝑖
, 𝑞′

𝑖

𝑎𝑖 ,𝑝𝑖−−−−→𝑐 𝑞𝑖+1, for some 𝛿𝑖 ∈ R0+, 𝑎𝑖 ∈ 𝐴𝑐𝑡 , and 𝑝𝑖 > 0.

V

v1 v2 v1 v2 v1 v2

vc

reg𝑚

r eg
𝑖

reg
𝑝

pa
ck
𝑚

pack
𝑖

pack
𝑝

vo
te
1 𝑚

0
.9

0.1

vote2
𝑚

0
.
9

0
.1

vo
te
1 𝑖

0
.6

0
.
4

vote2
𝑖

0
.6

0
.4

vo
te
1 𝑝

0
.9

9

0
.0

1

vote2
𝑝

0.9
9

0
.0

1

Figure 1: Voter 𝑉 in the PCAMAS from Example 1.

We denote a finite prefix (or a history) of an execution by h, the
last concrete state of h by 𝑙𝑎𝑠𝑡 (h), and the set of all histories by H .

Example 1. Consider a simple model inspired by Estonian election
procedures, previously featured in [8], in which a voter 𝑉 selects one
of three modalities (vote by mail, over the internet, or at a polling
station), receives the appropriate voting package from the election au-
thority 𝐸𝐴 (e.g. a postal ballot, e-voting access credentials, or address
of the local election office), and proceeds to vote for a candidate. We
augment the original model by adding a chance of coercion with dif-
ferent probabilities depending on the chosen voting modality. Agents
comprising the PCAMAS for this scenario are depicted in Figs. 1 and 2.

2.2 Strategies and Outcomes
Strategies are conditional plans that dictate the (potentially prob-

abilistic) choice of each agent 𝑖 ∈ A in each possible situation,

that is, a function 𝜎𝑖 : H → 𝐷𝑖𝑠𝑡 (𝐴𝑐𝑡𝑖). In deterministic MAS, the

strategy type is usually classified based on the agents’ state infor-
mation: perfect (I) vs. imperfect (i), and their recall of state history:
perfect (R) vs. no recall (r) [45]. Here we add yet another angle,

namely probabilistic (P) vs. non-probabilistic (p) strategies. To that

end, we extend the standard notation as follows:

Definition 8 (irP-strategy). A probabilistic memoryless im-

perfect information (irP) strategy for agent 𝑖 ∈ A is a function
𝜎𝑖 : 𝐿𝑖 → 𝐷𝑖𝑠𝑡 (𝐴𝑐𝑡𝑖) such that for each 𝑎 ∈ 𝐴𝑐𝑡𝑖 , 𝑙 ∈ 𝐿𝑖 , and
𝑑 ∈ 𝐷𝑖𝑠𝑡 (𝐴𝑐𝑡𝑖): if 𝑑 (𝑎) > 0, then 𝑎 ∈ 𝑃𝑖 (𝑙).

Probabilistic strategies indicate the probability of choosing each

action from a given location, as opposed to probabilities of transi-

tions resulting from choosing the action as in the model definition

(Def. 5). Moreover, non-probabilistic (or deterministic) memoryless

imperfect information strategies, denoted by irp, are a special case

of the above where only point distributions are considered.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1053

𝑥 ≤ 0

EA

𝑥 ≤ 0 𝑥 ≤ 0

𝑡 <= 11

𝑡 ≤ 6

reg𝑖
𝑥 := 0

pack
𝑖

𝑡 ≤
1reg

𝑚𝑥
:=

0

pack
𝑚

𝑡 ≤ 10

reg 𝑝

𝑥 :=
0

pac
k 𝑝

𝑡
=

1
1

close

1 ≤ 𝑡 ≤ 7, vote1𝑚
1 ≤ 𝑡 ≤ 7, vote2𝑚

6 ≤ 𝑡 ≤ 9, vote1𝑖
6 ≤ 𝑡 ≤ 9, vote2𝑖

10 ≤ 𝑡 ≤ 11, vote1𝑝
10 ≤ 𝑡 ≤ 11, vote2𝑝

Figure 2: Election authority 𝐸𝐴 in the PCAMAS from Ex. 1.

Definition 9 (irp-strategy). An irp-strategy for agent 𝑖 ∈ A is
an irP-strategy 𝜎𝑖 such that each 𝜎𝑖 (𝑙) is a point distribution.

In the following, we will parameterise strategy type with 𝑌 ∈
{irP, irp} wherever both variants are applicable. 𝑆𝑡𝑟𝑌

𝑖
denotes the

set of all 𝑌 -strategies of agent 𝑖 . A joint 𝑌 -strategy 𝜎𝐴 of coalition

𝐴 ⊆ A is a tuple of 𝑌 -strategies, one for each agent 𝑖 ∈ 𝐴.

Definition 10 (Outcome paths). Let 𝑌 ∈ {irP, irp}, 𝐴 ⊆ A, M
be a PCAMAS model, and 𝜌 be an execution of the concrete model
of M . The set of outcome paths of 𝑌 -strategy 𝜎𝐴 in state 𝑞0 of the
concrete model ofM , denoted by Out𝑌M (𝑞0, 𝜎𝐴), collects all executions
𝜌 = 𝑞0, 𝛿0, 𝑞

′
0
, 𝑎0, . . . , where 𝑞′𝑗 = (𝑠′

𝑗
, 𝑣 ′

𝑗
), such that for each 𝑖, 𝑗 ≥ 0

if 𝑖 ∈ 𝐴𝑔𝑒𝑛𝑡 (𝑎 𝑗) ∩𝐴, then we have 𝜎𝑖 (𝑠
′𝑖
𝑗
) (𝑎 𝑗) > 0.

To enable quantitative reasoning about the probabilities of PTATL
properties, we define the probability measure over outcome paths.

Let𝐴 ⊆ A,M be a PCAMASmodel, and 𝜎𝐴 an𝑌 -strategy, where

𝑌 ∈ {irP, irp}. Note that the outcome paths of 𝜎𝐴 can also be seen

as the outcome paths of a general strategy 𝜎 for all agents A, such

that 𝜎 (h) = 𝜎𝐴 (𝑙𝑎𝑠𝑡 (h)), while opponents in 𝐴 = A \ 𝐴 are not

restricted to memoryless strategies and can make any probabilistic

choices 𝜎𝐴 based on state history and time. Following the standard

construction [13, 18, 33], used e.g. in [12], we have that the set

of outcome paths Out𝑌M (𝑞0, 𝜎𝐴) induces an infinite-state Markov

chain MC𝑌
M (𝑞, 𝜎𝐴) = (𝑆𝑡, 𝑃𝑟), defined as follows. States 𝑆𝑡 ⊆ H

are the finite prefixes (i.e. histories) of the paths in Out𝑌M (𝑞0, 𝜎𝐴).
Distribution 𝑃𝑟 ∈ 𝐷𝑖𝑠𝑡 (H × H) is defined as 𝑃𝑟 (h, h𝑞′) =

∑
𝑎∈𝐴𝑐𝑡,
𝔠𝔠∈CX ,
𝑋 ∈X

𝜎 (h) (𝑎) ·𝑇 (𝑙𝑎𝑠𝑡 (h), 𝑎, 𝔠𝔠, 𝑋) (𝑞′) if 𝑙𝑎𝑠𝑡 (h)
𝑎,𝑝
−−−→𝑐 𝑞

′

1 if 𝑙𝑎𝑠𝑡 (h) 𝛿−→𝑐 𝑞
′ .

for some h, h𝑞′ ∈ H , 𝑎 ∈ 𝐴𝑐𝑡 , 𝑝 ∈ [0, 1], and 𝛿 ∈ R0+.
Moreover,MC𝑌

M (𝑞, 𝜎𝐴) induces a canonical probability space on

its infinite paths, and thus also on Out𝑌M (𝑞0, 𝜎𝐴).

For history h ∈ 𝑆𝑡 , by a cylinder set 𝐶 (h) we mean the set of

all infinite paths in MC𝑌
M (𝑞, 𝜎𝐴) (which can be identified with the

outcome paths of strategy 𝜎𝐴) that start with prefix h. From [9, 46],

we have that there is a unique smallest 𝜎-algebra Σh that con-

tains all cylinder sets𝐶 (h). Let h = 𝑞0, 𝛿0, 𝑞
′
0
, 𝑎0, . . . , 𝑞𝑚, 𝛿𝑚, 𝑞′𝑚, 𝑎𝑚 .

Following [9], there exists a unique probability measure 𝑃𝑟𝑜𝑏h
on Σh, defined as 𝑃𝑟𝑜𝑏h (𝐶 (h)) =

∏
𝑘∈[0,𝑚] 𝑃𝑟 (h𝑘 , h𝑘+1

), where
h𝑘 = 𝑞0, 𝛿0, 𝑞

′
0
, 𝑎0, . . . , 𝑞𝑘 , 𝛿𝑘 , 𝑞

′
𝑘
, 𝑎𝑘 .

Definition 11 (Outcome). Let M be a model, 𝜎𝐴 a joint 𝑌 -
strategy and MC𝑌

M (𝑞, 𝜎𝐴) = (𝑆𝑡, 𝑃𝑟) the Markov chain induced
by the outcome paths of 𝜎𝐴 in concrete state 𝑞 ∈ CS. The outcome of
𝜎𝐴 in 𝑞, denoted by out𝑌M (𝑞, 𝜎𝐴), is the set of all probability measures
𝑃𝑟𝑜𝑏h, for h ∈ 𝑆𝑡 .

Wewill use 𝜇𝑌M (𝑞, 𝜎𝐴) to iterate over the elements of𝑜𝑢𝑡𝑌M (𝑞, 𝜎𝐴).

2.3 Syntax and Semantics of PTATL
Assume a countable set PV of atomic propositions, and a finite set

A of agents. The syntax of Probabilistic Timed ATL (PTATL) is
defined as:

𝜑 ::= p | ¬𝜑 | 𝜑 ∧ 𝜑 | ⟨⟨𝐴⟩⟩⊲⊳𝑧𝜑 U 𝐼𝜑 | ⟨⟨𝐴⟩⟩⊲⊳𝑧𝜑 R 𝐼𝜑 ,

where p ∈ PV , 𝐴 ⊆ A, ⊲⊳∈ {≤, <, >,≥}, 𝑧 ∈ [0, 1], and 𝐼 ⊆ R0+
is an interval with bounds [𝑛, 𝑛′], [𝑛, 𝑛′), (𝑛, 𝑛′], (𝑛, 𝑛′), (𝑛,∞), or
[𝑛,∞), for 𝑛, 𝑛′ ∈ N. The operator ⟨⟨𝐴⟩⟩⊲⊳𝑧 states that coalition

𝐴 has a strategy to enforce the temporal property that follows

with a probability in relation ⊲⊳ with constant 𝑧. U (“strong until”)

and R (“release”) are standard temporal operators. G (“always”), F
(“eventually”), and Boolean connectives can be derived as usual.

Example 2. The formula 𝜑 = ⟨⟨𝑉 ⟩⟩≥0.8F [0,8]v1 states that 𝑉 has
a strategy to successfully vote for candidate 1 (i.e. avoid being coerced
to pick 𝑐 instead) within 8 time units, with probability at least 0.8.

Below, we give the continuous-time semantics of PTATL.

Definition 12 (PTATL Semantics). Let 𝑌 = {irP, irp}, M =

(A, CS, 𝑞𝜄 ,→𝑐 ,𝑉𝑐) be a PACTS, 𝑞0 = (𝑠0, 𝑣0) ∈ CS a concrete state,
𝐴 ⊆ A, 𝜑,𝜓 be PTATL formulae, 𝜌 = 𝑞0, 𝛿0, 𝑞

′
0
, 𝛼0, . . . an execution

of M where 𝑞𝑘 = (𝑠𝑘 , 𝑣𝑘+1
). The 𝑌 -semantics of PTATL is given as:

• M, (𝑠, 𝑣) |= p iff p ∈ 𝑉𝑐 (𝑠, 𝑣),
• M, (𝑠, 𝑣) |= ¬𝜑 iff M, (𝑠, 𝑣) ̸|= 𝜑 ,
• M, (𝑠, 𝑣) |= 𝜑 ∧𝜓 iff M, (𝑠, 𝑣) |= 𝜑 and M, (𝑠, 𝑣) |=𝜓 ,
• M, (𝑠, 𝑣) |= ⟨⟨𝐴⟩⟩⊲⊳𝑧𝛾 iff there exists a joint 𝑌 -strategy 𝜎𝐴 such that
for all 𝜇𝑌M ((𝑠, 𝑣)), 𝜎𝐴) ∈ out𝑌M ((𝑠, 𝑣), 𝜎𝐴)
we have 𝜇𝑌M ((𝑠, 𝑣)), 𝜎𝐴) ({𝜌 | M, 𝜌 |= 𝛾}) ⊲⊳ 𝑧, where
• M, 𝜌 |= 𝛾1𝑈𝐼𝛾2 iff there is 𝑟 ∈ 𝐼 such that: M, 𝜋𝜌 (𝑟) |= 𝛾2 and
for all 0 ≤ 𝑟 ′ < 𝑟 : M, 𝜋𝜌 (𝑟 ′) |= 𝛾1.

• M, 𝜌 |= 𝛾1𝑅𝐼𝛾2 iff for all 𝑟 ∈ 𝐼 : M, 𝜋𝜌 (𝑟) |= 𝛾2 or there is 0 ≤
𝑟 ′ < 𝑟 : M, 𝜋𝜌 (𝑟 ′) |= 𝛾1.

In the above, by 𝜋𝜌 we mean the dense path corresponding to 𝜌 ,

i.e. a mapping from R0+ to a set of concrete states [43], given by

𝜋𝜌 (𝑟) = (𝑠𝑖 , 𝑣𝑖 +𝛿), for 𝑟 = Σ𝑖−1

𝑗=0
𝛿 𝑗 +𝛿 , where 𝑖 ≥ 0 and 0 ≤ 𝛿 < 𝛿𝑖 .

3 MODEL CHECKING PROBABILISTIC TATL
In this section, we discuss theoretical results regarding the model

checking problem for PTATL with continuous time, considering

both probabilistic (irP) and deterministic (irp) strategies. Then, we

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1054

introduce our approach to practical model checking, applicable to

the latter semantics of strategic ability.

3.1 Complexity Results for TATL
In previous works, TATL has only been considered in the discrete-

time semantics. Therefore, we begin by establishing the complexity

of model checking TATL with continuous time (TATLC
).

Proposition 1. TATL semantically subsumes TCTL.

Proof. The cases of propositions and Boolean connectives are

straightforward. Consider TCTL formulas 𝜑1 = ∀𝛾 and 𝜑2 = ∃𝛾 ,
where 𝛾 =𝜓1 U 𝐼𝜓2 or 𝛾 =𝜓1 R 𝐼𝜓2. Using the empty coalition ∅ and

the grand coalition A, 𝜑1 and 𝜑2 can be equivalently expressed

in TATL as 𝜑 ′
1
= ⟨⟨∅⟩⟩𝛾 and 𝜑 ′

2
= ¬⟨⟨A⟩⟩¬(𝛾), respectively, where

¬(𝜓1 U 𝐼𝜓2) = (¬𝜓1) R 𝐼 (¬𝜓2) and ¬(𝜓1 R 𝐼𝜓2) = (¬𝜓1) U 𝐼 (¬𝜓2).
Note that the strategic modality generalises quantifiers ∀ and ∃,
allowing for quantification over strategies of coalitions between

these extremes; such properties cannot be expressed in TCTL. □

Theorem 2. Model checking TATLir

C is PSPACE-complete.

Proof. The lower bound follows from Proposition 1 and the

PSPACE-completeness of TCTL model checking [1].

The upper bound follows from the previous results for STCTL,
whose model checking is PSPACE-complete [8, Theorem 4.5], and

which subsumes TATL [8, Proposition 5.3]. □

3.2 PTATL with Deterministic Strategies
We begin, similarly to [11], by looking at the special case where

coalitions can only use deterministic (non-randomized) strategies,

i.e. considering the verification of PTATLirp. Below, we fix some

additional notations.

• Let 𝑟𝑒𝑔(𝑀,𝜑) denote the set of regions in the detailed region

graph for model𝑀 and PTATL formula 𝜑 , obtained by the stan-

dard construction in [1, 43]. Moreover, for a clock valuation 𝑣 , we

will denote its region in 𝑟𝑒𝑔(𝑀,𝜑) by 𝑟𝑒𝑔(𝑣). Note that, while the
construction was originally defined for models and formulas of

TCTL, the addition of strategic operators and probabilistic con-

straints does not affect it, so we apply it for the TCTL formula

obtained by replacing the strategy operators with ∀ in 𝜑 .

• Observe also that, for each 𝑟 ∈ 𝑟𝑒𝑔(𝑀,𝜑), 𝑣, 𝑣 ′ ∈ 𝑟 , 𝑠 ∈ 𝑆 , and each

state subformula𝜓 of 𝜑 , we have𝑀, (𝑠, 𝑣) |=𝜓 iff𝑀, (𝑠, 𝑣 ′) |=𝜓 .

To prove it, consider (𝑠, 𝑣) and (𝑠, 𝑣 ′) with 𝑣, 𝑣 ′ ∈ 𝑟 . Then, we can

show that for each execution 𝜌 = 𝑞0, 𝛿0, 𝑞
′
0
, 𝑎0, 𝑞1, 𝛿1, 𝑞

′
1
, 𝑎1, . . . ,

starting at 𝑞0 = (𝑠, 𝑣) there is a corresponding execution 𝜌′ =
𝑢0, 𝛿

′
0
, 𝑢′

0
, 𝑎′

0
, 𝑢1, 𝛿

′
1
, 𝑢′

1
, 𝑎′

1
, . . . starting at 𝑞′

0
= (𝑠, 𝑣 ′) s.t. for each

𝑖 ≥ 0 we have 𝑎𝑖 = 𝑎′
𝑖
, 𝑠𝑡𝑎𝑡𝑒 (𝑞𝑖) = 𝑠𝑡𝑎𝑡𝑒 (𝑢𝑖); 𝑣𝑐𝑙𝑜𝑐𝑘 (𝑞𝑖) ∈ 𝑟𝑖

and 𝑣𝑐𝑙𝑜𝑐𝑘 (𝑢𝑖) ∈ 𝑟𝑖 for some 𝑟𝑖 ∈ 𝑟𝑒𝑔(𝑀,𝜑), and 𝑠𝑡𝑎𝑡𝑒 (𝑞′
𝑖
) =

𝑠𝑡𝑎𝑡𝑒 (𝑢′
𝑖
); 𝑣𝑐𝑙𝑜𝑐𝑘 (𝑞′

𝑖
) ∈ 𝑟 ′

𝑖
and 𝑣𝑐𝑙𝑜𝑐𝑘 (𝑢′

𝑖
) ∈ 𝑟 ′

𝑖
for some 𝑟 ′

𝑖
∈

𝑟𝑒𝑔(𝑀,𝜑). This follows by induction from the fact that the same

probabilistic actions are enabled at 𝑞′
𝑖
and 𝑢′

𝑖
and the same de-

lays can be taken at 𝑞𝑖 and 𝑢𝑖 , for each 𝑖 ≥ 0. The base case

follows from the fact that 𝑣, 𝑣 ′ ∈ 𝑟 . Therefore, by induction on

the complexity of a formula 𝜑 , we can show that𝑀, (𝑠, 𝑣) |=𝜓 iff

𝑀, (𝑠, 𝑣 ′) |=𝜓 , for each subformula𝜓 of 𝜑 .

• An extendedmodel �̂� for𝜑 extendsmodel𝑀 by some fresh atomic

propositions ˆPV and a valuation function 𝑉 : (PV ∪ ˆPV) →

𝑆 × 𝑟𝑒𝑔(𝑀,𝜑). That is, the propositional variables are now evalu-

ated w.r.t. the current state and the equivalence class for clock

valuations. We assume 𝑉 (p) = {(𝑠, 𝑟) | p ∈ 𝑉 (𝑠), 𝑟 ∈ 𝑟𝑒𝑔(𝑀,𝜑)}
for p ∈ PV .

• By 𝐼𝑛𝑡 (𝜑), we denote the number of intervals 𝐼 in a state (or

path) formula 𝜑 . We also say that 𝜑 is flat if it contains no proper
subformula with a strategic operator.

Proposition 3. Let𝜑 be a PTATLirp formula,𝜓 ≡ ⟨⟨𝐴⟩⟩⊲⊳𝑧𝛾 a flat
subformula of 𝜑 ,𝑀 a probabilistic timed model (as in Definition 5), 𝑠
a state in𝑀 , and 𝑟 ∈ 𝑟𝑒𝑔(𝑀,𝜑) a region in the detailed region graph
for model𝑀,𝜑 . Checking whether ∀𝑣∈𝑟 𝑀, (𝑠, 𝑣) |=𝜓 can be done in
2
𝑂 ((|𝑆 |+|X |+𝐼𝑛𝑡 (𝜑)) log(|𝑇 |+|I |)) steps.

Proof. Observe after [11, 12] that, in finite games, the opponents

always have a deterministic best-response strategy to any given

(deterministic or probabilistic) strategy 𝜎𝐴 of the coalition. The

following procedure is used to check if ∀𝑣∈𝑟 𝑀, (𝑠, 𝑣) |= ⟨⟨𝐴⟩⟩⊲⊳𝑧𝛾 :
• repeat
• Guess an irp-strategy 𝜎𝐴 for coalition 𝐴;

• for every Irp-strategy 𝜎A\𝐴 do
• 𝑀′

:=𝑀 pruned according to (𝜎𝐴, 𝜎A\𝐴);
• 𝑀′′

:= the detailed region graph model of𝑀′
;

• 𝑤𝑖𝑛 := output of PCTL model checking of 𝑀′′, (𝑠, 𝑣) |=
P⊲⊳𝑧𝛾 , where P⊲⊳𝑧𝛾 expresses that the probability measure

of the set of paths satisfying 𝛾 is in relation ⊲⊳ with 𝑧;

• until𝑤𝑖𝑛 = 𝑡𝑟𝑢𝑒 or no more irp-strategies for 𝐴;

• Return(𝑤𝑖𝑛).

Note: (a) the combined repeat/for loops iterate 𝑂 (|𝐴𝑐𝑡 | |A | · |𝑆 |) ≤
𝑂 (|𝑇 | |𝑆 |) times; (b) pruning takes 𝑂 (|𝑆 | · |𝐴𝑐𝑡 | · |A|) = 𝑂 (|𝑇 |)
steps; (c) construction of the region graph takes 𝑂 ((|𝑆 | + |𝑇 | +
|I|) |X |+𝐼𝑛𝑡 (𝜑)) = 𝑂 ((|𝑇 | + |I|) |X |+𝐼𝑛𝑡 (𝜑)) steps, and the result-

ing graph has as many states [1, 43]; (d) model checking PCTL is

cubic in the number of states in the model [21]. Thus, the above

algorithm runs in time 𝑂
(
|𝑇 | |𝑆 | ·

(
|𝑇 | + (|𝑇 | + |I|) |X |+𝐼𝑛𝑡 (𝜑) +

(|𝑇 | + |I|)3(|X |+𝐼𝑛𝑡 (𝜑)))) = 𝑂
(
|𝑇 | |𝑆 | · (|𝑇 | + |I|)3(|X |+𝐼𝑛𝑡 (𝜑))) =

2
𝑂 ((|𝑆 |+|X |+𝐼𝑛𝑡 (𝜑)) log(|𝑇 |+|I |))

. □

Theorem 4. Model checking PTATLirp is PSPACE-hard.

Proof. The lower bound follows by a reduction of TCTL model

checking, which is PSPACE-complete [1]. Given are: a model𝑀 , a

state 𝑠 in𝑀 , and aTCTL formula𝜑 . Before we present the reduction,

we make some important observations.

Note that𝑀 can be seen as a stochastic model with only Dirac

probability distributions for transitions. Moreover, in finite games,

the opponents always have a deterministic best-response strategy

to any given strategy 𝜎𝐴 of the coalition. Thus,𝑀, (𝑠, 𝑣) |=TCTL ∀𝛾
iff the agents in ∅ enforce 𝛾 on all paths iff they do so against all

the probabilistic responses from A. Since the set of best responses

includes deterministic strategies of A in the deterministic CGS
2 𝑀 ,

this is equivalent to saying that𝑀, (𝑠, 𝑣) |=PTATLirp
⟨⟨∅⟩⟩≥1𝛾 .

Based on that, we present the reduction. In order to model-check

𝜑 , we: (i) transform 𝜑 so that it contains only universal path quanti-

fiers ∀, (ii) replace each ∀ with ⟨⟨∅⟩⟩≥1
, and (iii) verify the resulting

PATLirp formula, which completes the reduction. □

2
Concurrent Game Structure [12].

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1055

Theorem 5. Model checking PTATLirp is in EXPTIME w.r.t. the
size of the model and the length of the formula.

Proof. For the upper bound, we do a variant of global model
checking, computing the set of states and clock valuations in which

the input formula is satisfied. Note that this set is usually infi-

nite, but it can be represented by the corresponding finite set of

(state,region) pairs from the extended model [1, 43]. For the nested

formulas, we proceed recursively (bottom-up). The resulting algo-

rithm is as follows.

• Construct the region graph for𝑀,𝜑 , and let 𝑅𝑒𝑔 = 𝑟𝑒𝑔(𝑀,𝜑);
• Let �̂� be the extended model of𝑀 for 𝜑 with ˆPV = ∅;
• while 𝜑 is not atomic do
• Take any flat non-atomic state subformula𝜓 of 𝜑 ;

• if 𝜓 ≡ ⟨⟨𝐴⟩⟩⊲⊳𝑧𝛾 then use the procedure of Proposition 3 to

compute 𝑆𝑎𝑡 (𝜓) = {(𝑠, 𝑟) ∈ 𝑆 × 𝑅𝑒𝑔 | ∀𝑣∈𝑟 𝑀, (𝑠, 𝑣) |=𝜓 };
• else compute 𝑆𝑎𝑡 (𝜓) in the standard way (𝜓 must be a boolean

combination of atomic propositions);

• Add a fresh atomic proposition p𝜓 to ˆPV with𝑉 (p𝜓) = 𝑆𝑎𝑡 (𝜓);
• Replace every occurrence of𝜓 in 𝜑 by p𝜓 ;

• if (𝑠, 𝑟𝑒𝑔(𝑣)) ∈ 𝑉 (p𝜑) then return true else return false.

It halts in𝑂 ((|𝑇 |+|I|) |X |+𝐼𝑛𝑡 (𝜑))+|𝜑 | ·𝑂 ((|𝑇 |+|I|) |X |+𝐼𝑛𝑡 (𝜑)) ·
𝑂 ((|𝑇 |+|I|) |𝑆 |+|X |+𝐼𝑛𝑡 (𝜑))=2

𝑂 ((|𝑆 |+|X |+𝐼𝑛𝑡 (𝜑)) log(|𝑇 |+|I |))
steps,

and thus in deterministic exponential time, by the complexity of

region graphs and their construction [1, 43], and from Prop. 3. □

3.3 PTATL with Probabilistic Strategies
Now, we consider the general case where coalitions can use ran-

domized strategies, similarly to [12].

Theorem 6. Model checking PTATLirP is PSPACE-hard.

Proof. We proceed by a reduction of TCTL model checking,

which is PSPACE-complete [1]. Similarly to Theorem 4, we have

𝑀, (𝑠, 𝑣) |=TCTL ∀𝛾 iff 𝑀, (𝑠, 𝑣) |=PTATLirP
⟨⟨∅⟩⟩≥1𝛾 , and the same

reduction can be used to complete the proof. □

Proposition 7. Let 𝜑 be a PTATLirP formula, 𝜓 ≡ ⟨⟨𝐴⟩⟩⊲⊳𝑧𝛾 a
flat subformula of 𝜓 , 𝑀 a probabilistic timed model, 𝑠 a state in
𝑀 , and 𝑟 ∈ 𝑟𝑒𝑔(𝑀,𝜑) a region in the detailed region graph for
model 𝑀,𝜑 . Checking whether ∀𝑣∈𝑟 𝑀, (𝑠, 𝑣) |= 𝜓 can be done in
2

2
𝑂 ((|X|+𝐼𝑛𝑡 (𝜑)) log(|𝑇 |+|I|))

steps.

Proof. Similarly to Proposition 3, we observe that in finite

games the opponents always have a deterministic best-response

strategy to any given strategy 𝜎𝐴 of the coalition. Thus, we can use

the following procedure to check if ∀𝑣∈𝑟 𝑀, (𝑠, 𝑣) |= ⟨⟨𝐴⟩⟩⊲⊳𝑧𝛾 :
• Transform 𝑀,𝜑 to 𝑀′, 𝜑′ by the standard construction that re-

moves each interval 𝐼 from 𝜑 and implements it via an auxiliary

clock 𝑦, auxiliary action 𝑎𝑦 resetting 𝑦, and the proposition 𝑝𝑦∈𝐼
in𝑀′

(see the construction in [43], p. 172). Note that 𝜑 ′ is (syn-
tactically) a formula of PATL;

• Construct𝑀′′
as the detailed region graph for𝑀 . Note also that

𝑀′′
can be seen as a finite stochastic iCGS

3
;

• Use the procedure of [12, Proposition 1, Proposition 2 & Proposi-

tion 3] to check if𝑀′′, 𝑟 |=PATLirP
𝜑 ′, and return the outcome.

3
Concurrent Game Structure with imperfect information [12].

Note: construction of the region graph takes𝑂 ((|𝑇 |+|I|) |X |+𝐼𝑛𝑡 (𝜑))
steps, and the resulting graph has |𝑆𝑀 ′′ | =𝑂 ((|𝑇 | + |I|) |X |+𝐼𝑛𝑡 (𝜑))
states [1, 43]; model checking of flat PATLirP formulas is in time

2
𝑂 (|A | · |𝐴𝑐𝑡 | · |𝑆𝑀′′ | ·log(|A | · |𝐴𝑐𝑡 | · |𝑆𝑀′′ |)

[12], and therefore also in

2
2
𝑂 ((|X|+𝐼𝑛𝑡 (𝜑)) log(|𝑇 |+|I|))

. □

Theorem 8. Model checking PTATLirP is in 2EXPTIME w.r.t. to
the size of the model and the length of the formula.

Proof. We use an analogous algorithm to that of Theorem 5,

which runs in deterministic time of |𝜑 | ·22
𝑂 ((|X|+𝐼𝑛𝑡 (𝜑)) log(|𝑇 |+|I|))

. □

The following is a straightforward corollary.

Theorem 9. If the total number of clocks in the model and the
intervals in the formula is bounded, then model checking PTATLirP

is in EXPTIME w.r.t. to the model size and the formula length.

Finally, we note undecidability of the satisfiability problem of

PTATL, which is also a straightforward corollary of prior results.

Theorem 10. The satisfiability problem is undecidable for both
PTATLirp and PTATLirP.

Proof. Since the problem of TCTL satisfiability is undecidable

[1], and TCTL is subsumed by TATL (cf. Proposition 1), clearly the

problem is also undecidable for extensions of the latter: PTATLirp

and its more general case PTATLirP. □

3.4 Practical Model Checking of PTATL
The problem is to determine, given a PCAMAS S, and a PTATLirp

formula 𝜑 = ⟨⟨𝐴⟩⟩⊲⊳𝑧𝛾 , whether the formula is satisfied in the initial

state 𝜄 = (𝑠, 𝑣) of model M of S.
While several tools can be used for model checking subsets of

PTATLirp, none of them supports the full language of the logic.

IMITATOR [6] allows for real-time and parametric verification, and

its parametric verification engine can be leveraged to encode agents’

irp-strategies, see [8]. PRISM [34] is a state-of-the-art probabilistic

model checker, but does not explicitly support the ATL coalition

operator for probabilistic TA or imperfect information strategies

of agents. Therefore, to demonstrate the practical feasibility of

PTATLirp model checking, we combine these two verifiers.

We proceed as summarised in Algorithm 1. The network of non-

probabilistic, parametric TAS′
is obtained fromS by replacing each

transition 𝑇𝑖 (𝑙𝑖 , 𝑎, 𝔠𝔠, 𝑋) = 𝑑 with several non-probabilistic copies

𝑇𝑖 (𝑙𝑖 , 𝑎, 𝔠𝔠, 𝑋) = 𝑙 ′
𝑖
, one for each 𝑙 ′

𝑖
such that 𝑑 (𝑙 ′

𝑖
) > 0. Moreover,

for each coalition agent 𝑖 ∈ 𝐴, we add one parameter per local state,
whose value will be tested in the guards of outgoing transitions

from that location (e.g. compared to 1 for the first transition, 2 for

the second, and so on, see Fig. 3). Multiple copies originating from

the same probabilistic transition in S are compared to the same

value as they correspond to the same choice in an irp-strategy.

Note that we supply a non-strategic formula 𝜑 ′ = 𝛾 to IMI-

TATOR, which does not explicitly support the modality. Instead,

possible strategies are encoded using parameters in the tool’s input

parametric TA S′
. Because IMITATOR may synthesise multiple

candidate strategies for the (non-probabilistic) model ofS′
, we need

to prepare as many corresponding variants S𝑣𝑎𝑟 to be checked with

PRISM. However, it is enough that one of them produces a positive

result for the original formula 𝜑 to be satisfied in S.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1056

Algorithm 1 mcheckPTATL
irp

(M, (𝑠, 𝑣), ⟨⟨𝐴⟩⟩⊲⊳𝑧𝛾)

• Obtain S′
by replacing each probabilistic local transition in S

with several non-probabilistic copies.

• Encode strategies in S by adding parameters checked in guards

of all transitions of agents in the coalition 𝐴, as defined in [8].

• Run IMITATOR for the network of parametric TA S′
and 𝜑 ′ = 𝛾 .

• If S′ ̸ |= 𝜑 ′, then return S ̸|= 𝜑 (since there is no strategy for

coalition 𝐴 regardless of the probabilities on transitions).

• Otherwise, if S′ |= 𝜑 ′,
for each set of param. constraints 𝑣𝑎𝑟 synthesised by IMITATOR:

• Obtain S𝑣𝑎𝑟 by pruning all transitions of coalition agents in S
that are not consistent with the strategy corresponding to 𝑣𝑎𝑟 .

• Run PRISM for the network of probabilistic TA S𝑣𝑎𝑟 and for-

mula 𝜑 ′′ = Pmax=? [𝛾], yielding the value 𝑃𝑣𝑎𝑟 ∈ [0, 1].
• If 𝑃𝑣𝑎𝑟 ⊲⊳ 𝑧, then return S |= 𝜑 (since the strategy was already

fixed by pruning all other transitions).

• If there is no 𝑣𝑎𝑟 such that 𝑃𝑣𝑎𝑟 ⊲⊳ 𝑧, then return S ̸|= 𝜑 .

Note also that the PRISM input property 𝜑 ′′ = Pmax=? [𝛾] is a
quantitative query yielding the maximum probability for PTCTL
formula 𝛾 , see [42]. It corresponds to the original PTATL formula

𝜑 , since TATL subsumes TCTL (cf. Prop. 1), and the coalition’s

strategy is already fixed in S𝑣𝑎𝑟 .

Theorem 11. Algorithm 1 is sound and complete.

Proof. Let 𝜑 = ⟨⟨𝐴⟩⟩⊲⊳𝑧𝛾 . Note that any irp-strategy for the

coalition 𝐴 that allows one to enforce 𝛾 in the input PCAMAS

model M of S will also be synthesised by IMITATOR in the non-

probabilistic model M′
of S′

, since the latter overapproximates M
by removing probabilities on transitions. Therefore, no strategies

are missed by the algorithm.

The obtained set of “candidate” strategies is then exhaustively

checked by PRISM, guaranteeing that it returns M, (𝑠, 𝑣) |= 𝜑 iff a

strategy exists that enforces 𝛾 with probability in the relation ⊲⊳

with the constant 𝑧. □

4 EXPERIMENTAL RESULTS
To demonstrate the practical feasibility of PTATL model checking,

and to assess the scalability of our approach, we used the voting

scenario from Example 1 as a benchmark, scaling it with both the

number of voters 𝑛 and the number of candidates 𝑐 . Propositions vi,j
are now indexed with 𝑖 ∈ {1, . . . , 𝑛} and 𝑗 ∈ {1, . . . , 𝑐}. The input
formula is 𝜑 = ⟨⟨𝑉1⟩⟩≥0.8F [0,8]v1,1, which states that the first voter

has a strategy to successfully vote for the first candidate within 8

time units, with a probability of at least 0.8. Note that we cannot

currently synthesise probabilistic strategies, because our approach
relies on a parametric engine, and neither tool supports probabilities

to the extent needed. More precisely, PRISM’s probabilistic TA

engine does not support parametric expressions in guards, only in

transition probabilities. On the other hand, IMITATOR has robust

functionality for verification with time parameters, but not with

probabilities. Therefore, in these experimental results we are only

considering deterministic strategies of agent 𝑉1.

4.1 Generating Test Instances
Our prototype implementation is a tool chain supported by a gen-

erator to automate the process, which proceeds as follows. First,

a non-probabilistic IMITATOR model is prepared, containing du-

plicates of transitions wherever probabilistic execution can occur

in the PCAMAS of Figs. 1 and 2. Moreover, it includes parameters
added in each local state of agent𝑉1, see Fig. 3. Checked in guards of

outgoing transitions, they ensure only one transition can be chosen

from each local state (thus encoding irp-strategies).

loc v10: invariant True

when regm1=1 & regi1=0 & regp1=0 sync regm1 goto m1; (* postal vote *)

when regm1=0 & regi1=1 & regp1=0 sync regi1 goto i1; (* internet vote *)

when regm1=0 & regi1=0 & regp1=1 sync regp1 goto p1; (* polling station *)

loc m1: invariant True

when packm1=1 sync packm1 goto rm1; (* receive package for postal vote *)

loc i1: invariant True

when packi1=1 sync packi1 goto ri1; (* receive credentials for e-voting *)

loc p1: invariant True

when packp1=1 sync packp1 goto rp1; (* receive address of polling station *)

loc rm1: invariant True

when vm11=1 & vm12=0 sync vm11 goto voted11; (* two copies of each trans. *)

when vm11=1 & vm12=0 sync vm11 goto coerced1;

when vm11=0 & vm12=1 sync vm12 goto voted12;

when vm11=0 & vm12=1 sync vm12 goto coerced1;

loc ri1: invariant True

when vi11=1 & vi12=0 sync vi11 goto voted11; (* two copies of each trans. *)

when vi11=1 & vi12=0 sync vi11 goto coerced1;

when vi11=0 & vi12=1 sync vi12 goto voted12;

when vi11=0 & vi12=1 sync vi12 goto coerced1;

loc rp1: invariant True

when vp11=1 & vp12=0 sync vp11 goto voted11; (* two copies of each trans. *)

when vp11=1 & vp12=0 sync vp11 goto coerced1;

when vp11=0 & vp12=1 sync vp12 goto voted12;

when vp11=0 & vp12=1 sync vp12 goto coerced1;

Figure 3: Parameters checked in guards of the coalition agent
𝑉1’s outgoing transitions in the IMITATOR model (excerpt).

On this parametric model, the (non-probabilistic) formula 𝜑 ′ =
⟨⟨𝑉1⟩⟩F [0.8]v1,1 is verified. IMITATOR’s command line arguments

-merge=none and -comparison=equality allow one to skip comparing

time zones (which are disjoint in our case and so cannot be merged

anyway). The IMITATOR output lists all valuations of parameters

such that 𝜑 ′ is satisfied. In other words, we obtain a superset of all

possible irp-strategies of agent𝑉1 that ensure the timing constraint,

but not necessarily the probabilistic requirement.

// constants synthesised by IMITATOR (fixing strategy):

const int regp1 = 0; const int regi1 = 1; const int regm1 = 0;

[...]

module V1 [...]

[reg1m] (locV1=0) & (regm1=1) -> (locV1'=1);

[reg1i] (locV1=0) & (regi1=1) -> (locV1'=2);

[reg1p] (locV1=0) & (regp1=1) -> (locV1'=3);

Figure 4: Fixing a strategy in the PRISM model (excerpt) by
defining constants synthesised by IMITATOR.

To proceed with probabilistic verification, a set of PRISM prob-

abilistic TA models is then generated, each corresponding to one

strategy synthesised by IMITATOR, and with all choices of the coali-

tion agent 𝑉1 fixed according to that strategy. Technically, this is

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1057

done by taking the IMITATOR output, i.e. sets of constraints where

parameters are valued either 0 or 1, and attaching them as defini-

tions of constants at the beginning of each PRISM model. These

constants are checked in the guards of 𝑉1’s transitions, preventing

the execution of those not consistent with the currently evaluated

candidate strategy, see Fig. 4.

The property Pmax=? [F <=8v1,1] is verified using PRISM, with

the command line argument -ptamethod digital that specifies its
digital clocks engine should be used. This reduces model checking

of probabilistic TA to MDP model checking for a restricted class of

PCTL properties. Note that this property corresponds to the original

PTATL formula 𝜑 , since TATL subsumes TCTL (see Proposition 1),

and the coalition’s strategy is already fixed in the PRISM model

by disabling the execution of any transition not consistent with

it. Therefore, the output is the maximum probability of achieving

F [0;8]v1,1 when following the currently fixed strategy. This value is

compared against 𝑧 = 0.8 given in the formula 𝜑 . If greater than or

equal to the latter, the process is stopped and subsequent strategies

(fixed in the remaining PRISM models) are not checked, as 𝜑 is

already known to be satisfied in the input PCAMAS.

4.2 Results and Discussion
All experiments were performed on a Windows 10 PC with a 4.0

Ghz Intel Core i9-9900KS CPU (8 physical cores, 16 threads) and 64

GB RAM, running the IMITATOR and PRISM binaries via Windows

Subsystem for Linux (WSL). The results reported in Table 1 include,

in addition to model checking time with both verifiers, also the gen-

eration time of all models (which was always negligible compared

to the former). As per the default WSL configuration, the running

process was terminated if its memory usage exceeded half of the

total available, indicated by memout in the table.

c = 1 c = 2 c = 3 c = 4 c = 5 c = 6

n = 1 1.2 1.2 1.2 1.3 1.5 1.5

n = 2 2.6 2.9 4.0 6.4 9.5 15.4

n = 3 4.5 16.5 45.3 125.9 302.8 610.5

n = 4 40.3 181.2 854.2 3083.4 8107.4 memout

n = 5 344.6 3647.2 memout

n = 6 7177.0 memout

Table 1: Results for the voting benchmark with 𝑛 voters and
𝑐 candidates. All times in seconds.

As expected, the results scale much worse with the number 𝑛

of voters vs. that of candidates 𝑐 . Each additional voter introduces

another component of the PCAMAS that needs to synchronise

with the election authority, significantly increasing the number of

global states and transitions in the model (exacerbated by additional

interleavings due to asynchronous execution). On the other hand,

adding more candidates only requires a modest number of new

transitions in existing modules, plus corresponding parameters and

constants (in the IMITATOR and PRISM models, respectively).

In all instances, the input formula 𝜑 is satisfied in the model for

𝑉1’s strategy 𝜎𝑉 1 that registers for a vote by mail (i.e. selects 𝑟𝑒𝑔𝑚
in the initial local state) and then selects 𝑣𝑜𝑡𝑒1𝑚 when choosing

the candidate.
4
Note that another strategy permitting a vote for

candidate 1within the interval [0; 8] is𝜎′
𝑉 1

, in which registration for

e-voting (action 𝑟𝑒𝑔𝑖) is chosen in the initial state instead, followed

by 𝑣𝑜𝑡𝑒1𝑖 . As such, IMITATOR synthesises two sets of constraints,

corresponding to strategies 𝜎𝑉 1 and 𝜎
′
𝑉 1

, respectively. However, the

latter only gives a maximum probability of 0.6 and thus is discarded

upon verifying the PRISM probabilistic TA model with fixed 𝜎′
𝑉 1

.

We note that the timing and probability constraints in the input

PCAMAS and formula can significantly affect the efficiency of our

approach. In particular, if the timing constraints are strict (in the

sense they can only be met in very few executions of the model),

then only a small number of candidate strategies will be synthesised

by IMITATOR, significantly speeding up the process of verification

as fewer calls to PRISM will be needed. On the other hand, the

opposite is true for probability constraints: the more often 𝑃𝑣𝑎𝑟 ⊲⊳ 𝑧

is satisfied, the fewer times PRISM needs to run as it is sufficient

to find just one candidate strategy that meets the constraint. Note

also that by not halting the computation at that point, all possible
strategies can be easily synthesised using our method, if needed.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we established theoretical complexity results for the

model checking of probabilistic, continuous-time ATL (PTATL).
Moreover, by combining two state-of-the-art tools IMITATOR and

PRISM, we demonstrated for the first time the practical feasibility

of verifying specifications that feature probability, real time, and

strategic ability of asynchronous agents with imperfect information.

It is important to note the semantic side effects that arise in

strategic reasoning, discussed extensively in [29], are applicable

also to PCAMAS. While it should be relatively straightforward

to account for these issues, we leave this adaptation for future

work due to space constraints and instead focus here on putting

forward novel theoretical and practical results. Another important

direction is to investigate the feasibility of practical model checking

of PTATLirP, i.e. with probabilistic strategies, which are lacking

at present. Finally, since STCTLir is more expressive than TATLir

while retaining the same model checking complexity, it would be

interesting to study an analogous extension of the former logic, i.e.

PSTCTL, and in particular to determine whether it enjoys the same

advantage when probabilistic models and strategies are considered.

ACKNOWLEDGMENTS
This work was supported by: CNRS IRP “Le Trójkąt”, NCBR Poland

& FNR Luxembourg under the PolLux/FNR-CORE project SpaceVote

(POLLUX-XI/14/SpaceVote/2023 and C22/IS/17232062/SpaceVote),

the ANR-22-CE48-0012 project BISOUS, the PHC Polonium project

MoCcA (BPN/BFR/2023/1/00045). Marta Kwiatkowska contributed

while on sabbatical and acknowledges funding from the ERC un-

der the EU’s Horizon 2020 research and innovation programme

(FUN2MODEL, grant agreement No. 834115). For the purpose of

open access, and in fulfilment of the obligations arising from the

grant agreement, the authors have applied CC BY 4.0 license to any

Author Accepted Manuscript version arising from this submission.

4
Formally, an irp-strategy assigns an action to each local state of an agent, as per

Def. 9. For clarity, we omit here𝑉1’s choices in states that will never be visited in the

strategy’s outcome paths (or only have a single successor).

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1058

REFERENCES
[1] Rajeev Alur, Costas Courcoubetis, and David L. Dill. 1993. Model-Checking in

Dense Real-Time. Inf. Comput. 104, 1 (1993), 2–34.
[2] Rajeev Alur and David L. Dill. 1990. Automata for Modeling Real-Time Systems.

In Proceedings of ICALP’90 (Lecture Notes in Computer Science, Vol. 443). Springer,
322–335.

[3] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. 1997. Alternating-Time

Temporal Logic. In Proceedings of the 38th Annual Symposium on Foundations of
Computer Science (FOCS). IEEE Computer Society Press, 100–109.

[4] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. 2002. Alternating-Time

Temporal Logic. J. ACM 49 (2002), 672–713.

[5] Benjamin Aminof, Marta Kwiatkowska, Bastien Maubert, Aniello Murano, and

Sasha Rubin. 2019. Probabilistic Strategy Logic. In Proceedings of IJCAI 2019.
ijcai.org, 32–38.

[6] Étienne André. 2021. IMITATOR 3: Synthesis of Timing Parameters BeyondDecid-

ability. In Proceedings of CAV 2021 (Lecture Notes in Computer Science, Vol. 12759).
Springer, 552–565.

[7] Jaime Arias, Carlos E. Budde, Wojciech Penczek, Laure Petrucci, Teofil Sidoruk,

and Mariëlle Stoelinga. 2020. Hackers vs. Security: Attack-Defence Trees as

Asynchronous Multi-agent Systems. In Proceedings of ICFEM 2020. Springer, 3–
19.

[8] Jaime Arias, Wojciech Jamroga, Wojciech Penczek, Laure Petrucci, and Teofil

Sidoruk. 2023. Strategic (Timed) Computation Tree Logic. In Proceedings of
AAMAS’23. ACM, 382–390.

[9] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking. MIT

Press.

[10] Francesco Belardinelli, Wojciech Jamroga, Damian Kurpiewski, Vadim Malvone,

and Aniello Murano. 2019. Strategy Logic with Simple Goals: Tractable Reasoning

about Strategies. In Proceedings of IJCAI’19. ijcai.org, 88–94.
[11] Francesco Belardinelli, Wojciech Jamroga, Munyque Mittelmann, and Aniello

Murano. 2023. Strategic Abilities of Forgetful Agents in Stochastic Environments.

In Proceedings KR 2023. 726–731.
[12] Francesco Belardinelli, Wojciech Jamroga, Munyque Mittelmann, and Aniello

Murano. 2024. Verification of Stochastic Multi-Agent Systems with Forgetful

Strategies. In Proceedings of AAMAS 2024. ACM, 160–169.

[13] Raphaël Berthon, Nathanaël Fijalkow, Emmanuel Filiot, Shibashis Guha, Bastien

Maubert, Aniello Murano, Laureline Pinault, Sophie Pinchinat, Sasha Rubin, and

Olivier Serre. 2020. Alternating Tree Automata with Qualitative Semantics. ACM
Trans. Comput. Logic 22, 1, Article 7 (2020), 24 pages.

[14] Thomas Brihaye, Arnaud Da Costa Lopes, François Laroussinie, and Nicolas

Markey. 2009. ATL with Strategy Contexts and Bounded Memory. In Proceedings
of LFCS (Lecture Notes in Computer Science, Vol. 5407). Springer, 92–106.

[15] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. 2007. Strategy

Logic. In Proceedings of CONCUR 2007. 59–73.
[16] Taolue Chen, Vojtech Forejt, Marta Kwiatkowska, David Parker, and Aistis

Simaitis. 2013. Automatic Verification of Competitive Stochastic Systems. Formal
Methods in System Design 43, 1 (2013), 61–92.

[17] Taolue Chen and Jian Lu. 2007. Probabilistic Alternating-time Temporal Logic

and Model Checking Algorithm. In Proceedings of FSKD 2007. 35–39.
[18] Edmund M. Clarke, Orna Grumberg, Daniel Kroening, Doron A. Peled, and

Helmut Veith. 2018. Model Checking, 2nd Edition. MIT Press.

[19] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. 1995. Rea-
soning about Knowledge. MIT Press.

[20] Dimitar P. Guelev and Catalin Dima. 2012. Epistemic ATLwith Perfect Recall, Past

and Strategy Contexts. In Proceedings of CLIMA-XIII (Lecture Notes in Computer
Science, Vol. 7486). Springer, 77–93. https://doi.org/10.1007/978-3-642-32897-8_7

[21] Hans Hansson and Bengt Jonsson. 1994. A Logic for Reasoning about Time and

Reliability. Formal Aspects of Computing 6, 5 (1994), 512–535.

[22] Karel Horák and Branislav Bošanskỳ. 2019. Solving Partially Observable Stochas-

tic Games with Public Observations. In Proceedings of AAAI’19, Vol. 33. AAAI
Press, 2029–2036.

[23] Karel Horák, Branislav Bošanskỳ, Vojtěch Kovařík, and Christopher Kiekintveld.

2023. Solving Zero-sum One-sided Partially Observable Stochastic Games. Arti-
ficial Intelligence 316 (2023), 103838.

[24] Xiaowei Huang, Kaile Su, and Chenyi Zhang. 2012. Probabilistic Alternating-

Time Temporal Logic of Incomplete Information and Synchronous Perfect Recall.

In Proceedings of AAAI’12. 765–771.
[25] Xiaowei Huang and Ron van der Meyden. 2014. Symbolic Model Checking

Epistemic Strategy Logic. In Proceedings of AAAI’14. 1426–1432.
[26] Wojciech Jamroga and Nils Bulling. 2011. Comparing Variants of Strategic Ability.

In Proc. of IJCAI 2011. IJCAI/AAAI, 252–257.
[27] Wojciech Jamroga, Beata Konikowska, andWojciech Penczek. 2016. Multi-Valued

Verification of Strategic Ability. In Proceedings of AAMAS 2016. 1180–1189.
[28] Wojtek Jamroga, Lukasz Masko, Lukasz Mikulski, Witold Pazderski, Wojciech

Penczek, Teofil Sidoruk, and Damian Kurpiewski. 2022. Verification of Multi-

Agent Properties in Electronic Voting: A Case Study. In Proceedings of AiML 2022.
College Publications, 531–556.

[29] Wojciech Jamroga, Wojciech Penczek, and Teofil Sidoruk. 2021. Strategic Abilities

of Asynchronous Agents: Semantic Side Effects and How to Tame Them. In

Proceedings of KR 2021. 368–378.
[30] Wojciech Jamroga, Wojciech Penczek, Teofil Sidoruk, Piotr Dembinski, and An-

toni W. Mazurkiewicz. 2020. Towards Partial Order Reductions for Strategic

Ability. JAIR 68 (2020), 817–850.

[31] Magdalena Kacprzak and Wojciech Penczek. 2004. Unbounded Model Check-

ing for Alternating-Time Temporal Logic. In Proceedings of AAMAS 2004. IEEE
Computer Society, 646–653.

[32] Magdalena Kacprzak and Wojciech Penczek. 2005. Fully Symbolic Unbounded

Model Checking for Alternating-time Temporal Logic. Autonomous Agents and
Multi-Agent Systems 11, 1 (2005), 69–89.

[33] John G. Kemeny, J. Laurie Snell, and Anthony W. Knapp. 1976. Denumerable
Markov Chains. Springer, Chapter Stochastic Processes, 40–57.

[34] Marta Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Verifi-

cation of Probabilistic Real-time Systems. In Proc. 23rd International Conference
on Computer Aided Verification (CAV’11) (LNCS, Vol. 6806). Springer, 585–591.

[35] Marta Kwiatkowska, Gethin Norman, and David Parker. 2019. Verification and

Control of Turn-Based Probabilistic Real-Time Games. Lecture Notes in Computer
Science 11760, 379–396.

[36] Marta Kwiatkowska, Gethin Norman, David Parker, and Gabriel Santos. 2019.

Equilibria-Based Probabilistic Model Checking for Concurrent Stochastic Games.

In Proceedings of FM 2019 (Lecture Notes in Computer Science, Vol. 11800). Springer,
298–315.

[37] Marta Kwiatkowska, Gethin Norman, David Parker, and Gabriel Santos. 2021.

Automatic Verification of Concurrent Stochastic Systems. Formal Methods in
System Design 58, 1 (2021), 188–250.

[38] François Laroussinie and Nicolas Markey. 2015. Augmenting ATL with Strategy

Contexts. Information and Computation 245 (2015), 98–123.

[39] François Laroussinie, NicolasMarkey, andGhassanOreiby. 2006. Model-Checking

Timed ATL for Durational Concurrent Game Structures. In Proceedings of FOR-
MATS’06 (Lecture Notes in Computer Science, Vol. 4202). Springer, 245–259.

[40] Alessio Lomuscio, Wojciech Penczek, and Hongyang Qu. 2010. Partial Order

Reductions for Model Checking Temporal-Epistemic Logics over Interleaved

Multi-Agent Systems. Fundam. Informaticae 101, 1-2 (2010), 71–90.
[41] A. Lomuscio, H. Qu, and F. Raimondi. 2015. MCMAS: An Open-Source Model

Checker for the Verification of Multi-Agent Systems. International Journal on
Software Tools for Technology Transfer 24 (2015), 84–90. Available online.

[42] Gethin Norman, David Parker, and Jeremy Sproston. 2013. Model Checking for

Probabilistic Timed Automata. Formal Methods in System Design 43, 2 (2013),

164–190.

[43] Wojciech Penczek and Agata Pólrola. 2006. Advances in Verification of Time Petri
Nets and Timed Automata: A Temporal Logic Approach. Studies in Computational

Intelligence, Vol. 20. Springer.

[44] Lutz Priese. 1983. Automata and Concurrency. Theoretical Computer Science 25,
3 (1983), 221 – 265.

[45] Pierre-Yves Schobbens. 2004. Alternating-Time Logic with Imperfect Recall. In

Proceedings of LCMAS’03, Vol. 85(2). 1–12.
[46] Moshe Y. Vardi. 1985. Automatic Verification of Probabilistic Concurrent Finite-

State Programs. In Proceedings of FOCS’85. IEEE Computer Society, 327–338.

[47] Rui Yan, Gabriel Santos, Gethin Norman, David Parker, and Marta Kwiatkowska.

2024. Partially Observable Stochastic Games with Neural Perception Mechanisms.

In Proceedings of FM’24. Springer, 363–380.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1059

https://doi.org/10.1007/978-3-642-32897-8_7

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Probabilistic Continuous-time AMAS
	2.2 Strategies and Outcomes
	2.3 Syntax and Semantics of PTATL

	3 Model Checking Probabilistic TATL
	3.1 Complexity Results for TATL
	3.2 PTATL with Deterministic Strategies
	3.3 PTATL with Probabilistic Strategies
	3.4 Practical Model Checking of PTATL

	4 Experimental Results
	4.1 Generating Test Instances
	4.2 Results and Discussion

	5 Conclusions and Future Work
	Acknowledgments
	References

