
Tackling Sparsity in Designated Driver Dispatch with Multi-Agent
Reinforcement Learning

Jiaxuan Jiang
Tsinghua University

Beijing, China
Shanghai Qi Zhi Institute

Shanghai, China
jjx21@mails.tsinghua.edu.cn

Ling Pan
Hong Kong University of Science and

Technology
Hong Kong, China
lingpan@ust.hk

Lin Zhou
DiDi Chuxing Technology Co.

Beijing, China
realzhoulin@DiDiglobal.com

Longbo Huang
Tsinghua University

Beijing, China
longbohuang@tsinghua.edu.cn

Zhixuan Fang
Tsinghua University

Beijing, China
Shanghai Qi Zhi Institute

Shanghai, China
zfang@mail.tsinghua.edu.cn

ABSTRACT
Designated driving service is a fast-growing market that provides
drivers to transport customers in their own cars. The key technical
challenge in this business lies in the design of driver repositioning
due to the far distances between drivers and orders, which is caused
by complex moving constraints of drivers and the “hub-and-spoke"
structure of orders. To address these challenges, this paper proposes
Reinforcement Learning for Designated Driver Dispatch (RLD3),
a Multi-Agent Reinforcement Learning (MARL) algorithm based
on the Partially Observed Markov Decision Process (POMDP) for-
mulation. Our algorithm considers group-sharing structures and
frequent potential rewards with heterogeneous costs to achieve
a trade-off between heterogeneity and sparsity. Additionally, our
algorithm addresses long-term agent cross-effects through window-
lasting policy ensembles. We also implement a simulator to train
and evaluate our algorithm using real-world data. Extensive exper-
iments demonstrate that our algorithm achieves superior perfor-
mance compared to existing Deep Reinforcement Learning (DRL)
and taxi-reposition methods.

KEYWORDS
Multi-agent reinforcement learning; Fleet management

ACM Reference Format:
Jiaxuan Jiang, Ling Pan, Lin Zhou, Longbo Huang, and Zhixuan Fang. 2025.
Tackling Sparsity in Designated Driver Dispatch with Multi-Agent Rein-
forcement Learning. In Proc. of the 24th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2025), Detroit, Michigan,
USA, May 19 – 23, 2025, IFAAMAS, 10 pages.

Corresponding authors: Zhixuan Fang (zfang@mail.tsinghua.edu.cn).

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

Control
center

Dispatch Pick-up

Passenger who can’t drive

Designated driver

Destination

Designated driving service

Figure 1: Designated driving.

1 INTRODUCTION
Designated driving, also known as chauffeur service, represents
an emerging online platform service wherein professional drivers
transport customers who are unable to drive for various reasons,
such as intoxication or inexperience. In this service model, the
designated driver arrives on an electric scooter and subsequently
drives the customer’s vehicle to the desired destination, as illus-
trated in Figure 1. The platform manages the driver dispatching
behaviors to improve customers’ experience and drivers’ income.
Designated driving has already become a significant and promising
industry, with a market size of over 4 billion in China [4].

As such, one of the critical challenges in this industry is the
design of driver dispatch, including matching and repositioning.
While typical ride-hailing platforms focus on improving the match-
ing quality between drivers and customers, designated driving
platforms still struggle to find a driver for each order. Due to the
“hub-and-spoke" pattern of orders, orders’ origins are clustered in
hot spots such as bars and restaurants, while most destinations are
residential areas. After completing orders, the distribution of drivers
becomes dispersed and sparse, leading to far distances from po-
tential customers. Thus, repositioning drivers to reduce the future
pick-up time is an urgent matter for designated driving.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1060

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

While optimizationmethods exist for repositioning problems [32,
41], they require complexmodeling of supply and demand dynamics.
Recent approaches using Deep Reinforcement Learning (DRL) have
made strides in ride-hailing platforms [1, 6, 23, 24, 27, 30, 35, 43, 44].
However, designated driving introduces unique challenges for DRL
applications, particularly due to three factors related to sparsity:

• Dataset Sparsity: The number of designated drivers is signif-
icantly lower than that of taxi drivers, with a data collection
from Hangzhou revealing only around 4,000 designated dri-
vers serving over 8,000 km2 area.

• Feedback Sparsity: Individual drivers receive limited feed-
back on order matches, averaging only four per day.

• Agent Interaction Sparsity: The slow movement and long-
lasting effects of driver actions necessitate focusing on cu-
mulative interactions.

Additionally, the heterogeneity and scalability among drivers fur-
ther complicate traditional Multi-Agent Reinforcement Learning
(MARL) applications.

This paper proposes a group-sharing window-lasting Reinforce-
ment Learning framework, Reinforcement Learning for Designated
Driver Dispatch (RLD3), for designated driver dispatch challenges.
By modeling the problem as a Decentralized Partially Observed
Markov Decision Process (Dec-POMDP), RLD3 addresses the spe-
cific observations of drivers. Key features of RLD3 include:

• Group-sharing Structure: Agents grouped by sharing pa-
rameters and experience, balancing sparsity, scalability, and
heterogeneity.

• Reward Design: A reward structure reflecting instant order
match and long-term order potentials while accommodating
diverse movement constraints.

• Window-lasting Interaction: A cumulative action calculation
over execution periods to capture agent interactions and
decision-making adequately.

We developed a simulator using real-world datasets and con-
ducted extensive experiments, demonstrating that RLD3 outper-
forms existing Deep Reinforcement Learning (DRL) benchmarks
and optimization strategies in completed orders and adherence to
movement constraints.

The main contributions of this paper are summarized as follows:
• To the best of our knowledge, we are the first to model the
repositioning problem of designated drivers in designated
driving markets.

• We propose a novel MARL algorithm, RLD3, to address the
sparsity challenges of designated driver repositioning, which
builds upon group-sharing structures and window-lasting
agent interactions with a potential/cost-aware reward.

• We design a designated driving simulator using real-world
datasets and conduct extensive experiments. RLD3 efficiently
learns system dynamics and outperforms existing DRL and
optimization methods.

2 RELATEDWORK
2.1 Fleet Management
Fleet management, also known as the driver reposition problem, has
been extensively studied using optimization algorithms [9, 32, 38,

42] and DRL-based techniques [1, 6, 10, 14, 16, 20, 23, 24, 27, 30, 35,
36, 43, 44]. Optimization methods leverage historical data for policy
formulation but struggle with real-world demand-supply dynamics.
Conversely, DRL algorithms can optimize long-term effects without
strong assumptions.

Several DRL studies focus on scalability, heterogeneity, and par-
tial observability. MIX-H [14] uses multi-level controllers for scala-
bility and optimizes joint actions. Deep-dispatching [23] balances
local observation and global information, addressing partial obser-
vation sparsity. MAC-PPO [20] tailors task scheduling and charging
for heterogeneous vehicle types using the MAPPO algorithm.

However, taxi platforms’ fast-moving and denser orders reduce
sparsity challenges, making direct application to designated driving
less effective.

2.2 Multi-Agent Reinforcement Learning
MARL techniques address complex multi-agent problems. MAD-
DPG [25], extending DDPG [21, 22, 28, 29], uses deep networks to
approximate action values and manage agent interactions. MAPPO
[40], based on the gradient policy improvement of PPO [33], further
enhances the sample complexity and performance of multi-agent
learning. Despite the benefits within the CTDE paradigm [5], it
faces challenges with sparse feedback and agent heterogeneity in
designated driving, reducing exploration and learning efficiency.

To enhance exploration, Random Network Distillation (RND) [3]
uses an additional value function to estimate intrinsic reward to
enhance exploration. In the designated driving platform, due to the
unique “hub-and-spoke" structure of orders, the hotspots of orders
are more concentrated. Exploring non-semantic information would
result in excessive driver movement costs. Curriculum Learning
approaches, such as Curriculum Deep Reinforcement Learning [11]
and Relevant Curriculum Reinforcement Learning [7], help in learn-
ing from sparse feedback by planning the neural network’s learning
path. However, planning learning paths in multi-agent scenarios
is challenging due to the complex dynamics of cooperation and
competition among drivers. Mean-Field Reinforcement Learning
techniques, such as Mean Field Multi-Agent Reinforcement Learn-
ing (MAMFRL) [39] and Multi-Agent Mean Field Q-Learning [8],
model agent interactions as the interaction between a single agent
and a field effect. Mean-field methods can address the issue of sparse
agent distributions but lack consideration for the lasting interac-
tion of different drivers, which should be taken into account since
designated drivers have slow movement and complex constraints.

HRL approaches, including Feudal HRL [37], Data-Efficient HRL
[26], and Model-Free HRL [31], help tackle scalability and hetero-
geneity by decomposing problems into sub-agents. However, they
must account for complex agent interactions and sparsity issues
specific to designated driver reposition applications.

3 RLD3: REINFORCEMENT LEARNING FOR
DESIGNATED DRIVER DISPATCH

We consider the designated driving service in one metropolis. There
are 𝑁 drivers on the platform, and orders arrive at the platform
to be served. The platform tries to match each order with a driver.
Meanwhile, the platform sends movement instructions to relocate
idle drivers, aiming to decrease future pick-up time. In the following,

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1061

we will first introduce the Decentralized Partially Observed Markov
Decision Process (Dec-POMDP) model on driver reposition, and
then three unique designs of our algorithm: the grouped structure,
the potential reward, and the lasting agent interaction.

3.1 Formulation
We consider discrete time intervals, with each time step represent-
ing 30 seconds. Then we divide the metropolis into hexagonal grids,
each with a radius of about 180 meters, which is the moving dis-
tance of an electric scooter in one time step. At each time step,
the platform decides the reposition movement for every idle driver.
Due to the limited patience of passengers in the real world, we
assume that all orders have thresholds for the waiting time. The
order will be canceled if it remains unmatched after the waiting
time threshold.

The detailed Dec-POMDP formulation ⟨𝑁,𝒮,𝒪,𝒜,P,ℛ, 𝛾⟩ is
elaborated as follows:

• Agent 𝑖 ∈ [𝑁]: Each driver is considered an agent, result-
ing in a total of 𝑁 unique agents. The platform can only
reposition idle drivers, as each agent can be in one of three
statuses: offline, idle, or working at any given time 𝑡 .

• State 𝑠 ∈ 𝒮: At each time 𝑡 , a global state is maintained to
encapsulate the statuses of all drivers and orders, including
drivers’ coordinates, movement distances, work statuses,
serving targets, and intended movement trajectories. The
state also includes calling time, patience, origin, destination,
and serving status for orders.

• Observation 𝑠 ↦→𝑖 𝑜𝑖 ∈ 𝒪: Drivers have partial observations
of the state 𝑠 . In our implementation, each agent’s observa-
tion is represented by a 22-dimensional vector:

([#𝒐𝒓𝒅𝒆𝒓], [#𝒅𝒓 𝒊𝒗𝒆𝒓], [min 𝒅 𝒊𝒔𝒕], 𝑡, 𝑙𝑎𝑡, 𝑙𝑛𝑔,𝑚𝑜𝑣𝑒), (1)

where the first three terms denote the number of orders to
be matched, the number of idle drivers, and the distance to
the closest order in six-segment-direction neighborhoods
as shown in Figure 2. The last four terms represent current
time, latitude, longitude, and the distance already moved.

• Action 𝑎1 × · · · × 𝑎𝑁 ∈ 𝒜: The platform proposes a joint
action instructing the movement policy for all available dri-
vers based on their observations 𝑜𝑡 at time 𝑡 . We assume
that idling drivers fully comply with movement instructions.
The action space for an individual agent consists of seven
discrete actions including moving to six neighboring direc-
tions and staying at the current location as shown in Figure
2. Agents located at the boundary and corners of the map
have a smaller action space.

• State Transition P : 𝑠 × 𝒂 [𝑵] ↦→ 𝑠′: The movement of dri-
vers, along with order updates and matches between drivers
and orders, induces state transitions in the environment.

• Reward 𝑟𝑖 ∈ ℛ: Upon executing an action, each agent re-
ceives an immediate distinct reward 𝑟𝑖 . The reward at time
step 𝑡 , 𝑟 𝑖𝑡 , is calculated by combining three components: the
immediate match reward, the move cost, and the neighbor-
hood potential reward, i.e.,

𝑟𝑡𝑖 =𝑚𝑡𝑡𝑖 +𝑚𝑣𝑡𝑖 + 𝑛𝑏
𝑡
𝑖 . (2)

Due EastDue West

North by 30 degrees West North by 30 degrees East

South by 30 degrees EastSouth by 30 degrees West

#�0, #�0

#�4, #�4

#�3, #�3

#�2, #�2 #�1, #�1

#�5, #�5

Figure 2: The six action directions and six segments of the
neighborhood.

The immediate match reward 𝑚𝑡𝑡
𝑖
directly relates to the

gross merchandise volume of the platform, which is the
objective of our algorithm. To optimize volumewithout using
discriminatory personal information, the immediate match
reward is set to a fixed number:

𝑚𝑡𝑡𝑖 =

{
50, if agent 𝑖 is matched with an order at 𝑡 ;
0, otherwise.

(3)

To control drivers’ moving distance, we include the move
cost 𝑚𝑣𝑡

𝑖
as a regularizer that influences the behavior of

agents in the reward. Previous empirical study (e.g., [2, 20,
34]) indicates that moving costs of drivers can be divided
into several types due to differences in their electric scooters’
physical characteristics and individual preferences regarding
motion during idle periods. We categorize the move cost
into five types, varying from "very low" to "very high", i.e.,
𝑐1 < 𝑐2 < ... < 𝑐5. Every agent has a corresponding type.
Thus, the move cost for agent 𝑖 at time 𝑡 is set as follows:

𝑚𝑣𝑡𝑖 =

{
−𝑐 𝑗 , if agent 𝑖 moves;
0, if agent 𝑖 stays;

(4)

where 𝑗 is the type index of agent 𝑖 . In this work, the single-
step cost 𝑐 𝑗 is set as 𝑐 𝑗 = 0.5 × (𝑗 + 1).
Details of the neighborhood potential reward 𝑛𝑏𝑡

𝑖
will be

introduced later in Section 3.3, as a solution towards feedback
sparsity.

3.2 Towards Dataset Sparsity: Group Sharing
To mitigate issues related to sparse data for individual agents and
limited feedback regarding matches, we introduce group-sharing
structures in our methodology.

As introduced in Section 3.1, the agents are classified into 5 types
based on the cost condition, and a natural idea is to place agents
of the same type into the same group since they share the same

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1062

Environment

Order Pool Driver Pool

Actor Critic

Shared Group �

Actor Critic

Shared Group 1

Driver �

Driver �

Driver 1

Driver �

Driver �

Driver � − �

Driver 1

State �

�1

��

��

�1

��−�

��

��

…

… …

Centralized Updating

Execution

Driver � − �

��−�

…
…

…
…

Figure 3: Information flow in the execution stage.

reward function, thereby making their data distributions similar.
Based on the concept of grouping, agents within the group share
the same network along with their experience data in the training
process. Specifically, we divide the 𝑁 agents into 𝑀 groups, where
𝑀 is a fixed number. The number of groups𝑀 is a hyper-parameter
of the algorithm, and intuitively, the number of groups needs to
be no less than the number of types to ensure that the algorithm
captures the heterogeneity of different agents in the system.

It is important to emphasize that agent grouping in this algo-
rithm pertains to the design of the neural network structure and
is decoupled from the agents’ inherent type attributes. Since the
number of groups is determined by the heterogeneity of agents,
the number of neural networks in the system does not increase
linearly with the number of agents. Consequently, RLD3 avoids
scalability issues such as value function dimensionality explosion
and coordination challenges due to a slow convergence of too many
networks during large-scale training.

Under the group sharing structure, RLD3 utilizes double critic-
networks and double actor-networks for every group, with the
delayed copy used for soft-update. During the training stage, a
group network can access the experienced data of all agents belong-
ing to that group, stored in a replay buffer. Therefore, a network
can efficiently explore different individuals of the same group in
the metropolis and gather more experiences. During the execution
stage, each agent calls its corresponding group network to perform
policy execution independently. The policy input for each agent is
based on its current observation while the output is its determinis-
tic action. To transform the continuous output seven-dimensional
vector into a discrete action, the last layer uses Gumble-Softmax
[15]. Such mixed strategy ensures that even agents of the same
group at the same location may execute different discrete actions,
avoiding competition among agents. The information flow during
the execution stage is illustrated in Figure 3.

Meanwhile, since agents are grouped, we estimate the influence
between these groups using the mean-field effect to deal with agent
interactions. Specifically, we calculate the overall impact of all
agents in group 𝑗 on the environment at time step 𝑡 as 𝑔𝑡

𝑗
, which

will be introduced in detail in Section 3.4.

3.3 Towards Feedback Sparsity: Space Potential
Since the immediate match reward is highly sparse for the DRL
method in designated driving platforms (i.e., it only occurs at the
time step with a successful order match, which is rare), we introduce
a dense neighborhood potential reward 𝑛𝑏𝑡

𝑖
to reflect the potential

value of the current area. The intuition is that the distance to an
order in the neighborhood reflects how fast an agent can pick up
the order. Almost all orders in the neighborhood are attractive to
the driver, although the closest ones are especially attractive.

Specifically, we assign potential values to nearby unmatched
orders, with higher feedback given to closer orders. We then sum
up all potential values to represent the total potential value of the
driver’s current position. This provides reward feedback to the
driver at every time step, compensating for the sparse immediate
match reward. The potential reward is defined as follows:

𝑛𝑏𝑡𝑖 = (𝑑∗ + 0.1)−0.5 + 0.1 ×
∑︁

neighbor order 𝑗
(𝑑𝑖 𝑗 + 0.1)−0.5, (5)

where 𝑑𝑖 𝑗 denotes the distance from driver 𝑖 to order 𝑗 , and 𝑑∗

denotes the distance to the closest order. The power index is set to
−0.5 to ensure that the potential reward increases as the distance
approaches and is a convex function, in order to encourage desig-
nated drivers to approach a specific order rather than maintain an
equal distance from all orders. It is important to note that the po-
tential reward is merely a complement to the sparse match reward,
and its scale is far smaller than the match reward. During training,
since the optimization objective of the reinforcement learning algo-
rithm is the cumulative discounted reward, the algorithm will still
maximize the order completion rate and, at the same time, make
better allocations for the positions of idle drivers.

3.4 Towards Interaction Sparsity: Window
Lasting

In designated driver platforms, agents are frequently distanced from
one another, leading to sparse, long-term interactions. For example,
a driver’s income is not directly influenced by the actions of drivers
located far away, but rather by the accumulated distribution changes
caused by the lasting movements of other drivers. Therefore, we
introduce the average action over a time window, instead of a
single-step action, when considering other agents’ policies.

To achieve this, in addition to recording regular singe-step tu-
ples (𝑠, 𝒂, 𝒓, 𝑠′), the buffer calculates and stores the window-lasting
actions for all agents. The window-lasting action 𝑎𝑖 represents the
average of sequential actions for the last𝑊 time steps within a
single idle period:

𝑎𝑡𝑖 = E
[
𝑎𝑠𝑖

]
, 𝑠 ∼ [𝑡 −𝑊, 𝑡] ∩𝑇last idle, (6)

where 𝑇last idle refers to the most recent period in which the driver
was idling, considering possible different idle periods that may re-
sult in diverse moving directions. 𝑎𝑖 signifies the general movement
direction of agent 𝑖 during this idle period after completing the last
order. Thus, the mean-field effect for group 𝑗 is defined as:

𝑔𝑡𝑗 = E𝑖∈group 𝑗

[
𝑎𝑡𝑖

]
. (7)

Similar to the group number 𝑀 , the window length𝑊 is also
an important hyper-parameter of the algorithm. To best represent
the general movement direction of idle drivers between serving

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1063

Q-value
� ��, � � , ��, � �

…
 …

State
representation

Observation
��

Group
interaction

Action
��

Order Pool
Driver Pool K-Means

Fully-connected

Group �

Group �

Group �

…

…

����

��+���+�

����+�

��
���

�−�

…
…

…

… �

Window-lasting action

Figure 4: Network structure.

two orders,𝑊 should be set to the average time a driver is idling
between two consecutive matches, which is 60 (i.e., 30 minutes in
real-world simulation) in our work.

Additionally, we use an encoder in the input of the critic to
handle complex state representations and their varying dimen-
sions. This encoder is responsible for the distribution of the current
unmatched orders and idle drivers respectively. We employ the
K-Means algorithm [12] for this encoder. Such an encoder performs
clustering on the coordinates of unmatched orders and idle drivers,
respectively, and uses the centroid coordinates of the clusters to
represent the hot zones of the current distribution of orders and
drivers. The encoder converts the variable-dimensional, complex
state vectors into a concise and effective fixed-length vector repre-
sentation. The number of clusters is also a hyper-parameter of the
algorithm, which depicts the number of hot spots in the distribution
of drivers and orders on the map. As the map size increases, the
number of clusters also needs to be set larger.

Therefore, the input of value function network is denoted as
𝑄 𝑗

(
𝑜𝑖 , 𝑒𝑛𝑐𝑜𝑑𝑒 (𝑠), 𝑎𝑖 ,𝒈[𝑴]

)
, where 𝒈[𝑴] denotes the concatenated

vector of the mean-field effect 𝑔 𝑗 (1 ≤ 𝑗 ≤ 𝑀) for all groups. The
detailed value-function structure for every group is shown in Figure
4. All networks utilize two fully connected layers and the GELU
activation function [13].

3.5 Network Update
The complete framework is summarized in Algorithm 1. The net-
work update follows the gradient-based actor-critic paradigm. To
encourage policy exploration, enabling the value function to incor-
porate adjustments in learning strategies for better adaptation to
changes in the environment, we adopt a policy exploration-based
Bellman update rather than a greedy Bellman update. Thus, the
loss function for the value network becomes:

L(𝜃 𝑗) =E𝑠𝑎𝑚𝑝𝑙𝑒𝑡
𝑗

[(
𝑄𝜋
𝑗

(
𝑜𝑖 , 𝑒𝑛𝑐𝑜𝑑𝑒 (𝑠), 𝑎𝑖 ,𝒈[𝑴]

)
− 𝑦

)2]
,

𝑦 = 𝑟𝑖 + 𝛾𝑄𝜋 ′
𝑗

(
𝑜′𝑖 , 𝑒𝑛𝑐𝑜𝑑𝑒 (𝑠

′), 𝑎′𝑖 ,𝒈
′
[𝑴]

)
,

(8)

where the 𝑠𝑎𝑚𝑝𝑙𝑒𝑡
𝑗
is a batch of data sampled from the correspond-

ing replay buffer of the updating group network 𝑗 , and each data
comes from all drivers that belong to group 𝑗 .

Due to the partially observed property and our critic structure,
the gradient of the policy network is:

∇𝜃 𝑗
𝐽 (𝜋 𝑗) =E𝑠𝑎𝑚𝑝𝑙𝑒𝑡

𝑖

[
∇𝜃 𝑗

𝜋 𝑗 (𝑎𝑖 | 𝑜𝑖)

∇𝑎𝑖𝑄
𝜋
𝑗

(
𝑜𝑖 , 𝑒𝑛𝑐𝑜𝑑𝑒 (𝑠), 𝑎𝑖 ,𝒈[𝑴]

) ����
𝑎𝑖=𝜋 𝑗 (𝑜𝑖)

]
.

(9)

Algorithm 1 Reinforcement Learning for Designated Driver Dis-
patch (RLD3).
Require: order data, driver pool [𝑁], episode number 𝑀𝐴𝑋 ,

episode length 𝑇 , learning rate 𝜆, update rate 𝜏 , batch size
𝑆 , group number𝑀 , window length𝑊 .

1: for episode from 1 to𝑀𝐴𝑋 do
2: Initialize environment and receive an initial state 𝑠 .
3: for 𝑡 from 1 to 𝑇 and not all drivers are off-line do
4: Generate action 𝑎𝑖 = 𝜋𝑖 (𝑜𝑖).
5: Execute action (𝑎1, 𝑎2, · · · , 𝑎𝑁) and observe reward 𝒓 and

next state 𝑠′.
6: Push (𝑠, 𝒂, 𝒓, 𝑠′, 𝒂) into buffer.
7: 𝑠 = 𝑠′.
8: for group 𝑗 from 1 to𝑀 do
9: Sample a batch of size 𝑆 : (𝑠, 𝑜𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠′, 𝒂) (𝑖 ∈ group 𝑗)

from replay buffer.
10: Update critic by minimizing L(𝜃 𝑗).
11: Update actor using sample policy gradient ∇𝜃 𝑗

𝐽 .
12: end for
13: Update the target network parameter for each agent 𝑖 by

𝜃 ′
𝑖
= 𝜏𝜃𝑖 + (1 − 𝜏)𝜃 ′

𝑖
.

14: end for
15: end for

4 SIMULATOR
We conduct experiments to evaluate RLD3 using a simulator and
real-world data. The simulator models the whole process of how
states of drivers and orders evolve on a designated driving platform.
Specifically, the simulator includes a driver dispatch module that is
available to reposition any idling driver. Therefore, the simulator
serves as a training environment for RL algorithms and can evalu-
ate the performance of various dispatch policies. We describe the
environment simulator as follows:

4.1 Real-World Dataset
The simulator is built on a real-world dataset. The real-world data
is obtained, from Hangzhou, China. The data includes over 4,000
drivers and 16,000 orders per day from Feb 21 to Feb 28, 2022. Each
order’s information consists of the coordinates and the time of its
events including generation, match, completion, and cancellation.
Each driver’s information consists of log-in time, log-out time, and
online coordinates. The data collection process does not include
personal information about drivers and orders. To prevent the leak-
age of driver or passenger behavior patterns, we also utilize virtual
IDs. In every experiment episode, we sample a fixed number of
orders from the dataset to simulate the order distribution.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1064

UnmatchedInitial

Overtime

Cancelled

Completed

Serving

Real-world Generation
15 minutes

Real-world cancellation

Poisson (8 minutes) AB-circle
Destination

Idling

Off-work Serving

Pre-work Picking-up

Real-world time
Match

Real-world time,

last order finish

Order cancellation

Order cancellation

Order completion

Order
location

Figure 5: Order(above) and driver(below) state transfer.

4.2 Order State Transfer
For the order process, every appearing order enters the order pool
and waits to be matched at a predetermined real-world genera-
tion time. During the waiting period, if an unmatched order is not
answered within a specified period, it enters the overtime state
and fails. The overall timeout is set to 15 minutes, as in real-world
applications. In addition to the timeout limit, each order also has its
own patience time. Since the cancellation time of canceled orders
in the dataset follows an exponential distribution with a mean of
8 minutes, we assume that all orders cancel following a Poisson
process with a mean cancellation time of 8 minutes after known
real-world patience. However, if an order is canceled by the cus-
tomer in the real world, the patience of the order will be set to
the actual real-world value. The whole state transfer for orders is
illustrated in Figure 5.

4.3 Driver State Transfer
Each driver has a scheduled on-work and off-work time. When the
current simulation time exceeds the online time, the driver enters
the idle state from its actual location in the real world. Idling drivers
can either move to a given location according to the dispatch policy
or match with an order for service. When an idle driver matches an
order, the driver immediately goes to pick up the customer. Once
the order is completed, the driver returns to the idle status until the
simulation time exceeds their offline time. The whole state transfer
for drivers is illustrated in Figure 5.

4.4 Matching Module
The simulator applies a two-step driver-searching algorithm, the
AB-circle algorithm, to match drivers and nearby orders. The algo-
rithm is intuitive and is deployed in Hangzhou. At each time step,
for orders around which there are idling drivers within the A-circle
(with a radius of 3000 meters), the algorithm assigns the order to
the closest driver to minimize pick-up time. After matching all such
orders, the algorithm calculates a global optimal match between
orders and drivers within the B-circle (with a radius of 5000 meters).

The optimal match is calculated using the Kuhn-Munkres algorithm
[19] in a bipartite graph. The matching process in a single time step
is illustrated in Algorithm 2.

Algorithm 2 AB-circle matching algorithm.
Require: Unmatched order pool, idling driver pool.
1: for order 𝑖 sorted by generation time do
2: if there exist drivers within A circle of 𝑖 then
3: Match 𝑖 with the closest driver.
4: end if
5: end for
6: Construct a bipartite graph 𝐺 between unmatched orders and

idling drivers till then.
7: for order 𝑖 in 𝐺 do
8: for drivers 𝑗 in 𝐺 do
9: if 𝑗 is in B circle of 𝑖 then
10: Connect 𝑖 and 𝑗 with an edge weighted by the negative

distance.
11: end if
12: end for
13: end for
14: Run Kuhn-Munkres algorithm to get the maximal match be-

tween orders and drivers in 𝐺 .

5 EXPERIMENT
We conduct experiments based on the proposed simulator and real-
world data. Due to the slow execution of most MARL algorithms in
large-scale scenarios, we sample an area of approximately 600 km2,
simulating 50 drivers and 500 orders. This area is roughly equiva-
lent to a driver’s daily operational range. In real-world applications,
we can similarly divide the entire metropolis into hexagonal sec-
tions, each approximately 600 km2, to solve for the locally optimal
strategy in each section.

We first present the training process of our model and then
compare the performance with other existing methods. Next, we
conduct an ablation study to validate the ability of different modules.
At last, we study the scalability of our algorithm. Each experiment is
repeated with 4 different seeds on a single NVIDIA A100/A40 GPU,
and the average result is presented. All algorithms were trained for
1000 episodes, with the first 100 episodes dedicated to exploration.

5.1 Performance Comparison
We compare our algorithm against existing DRL methods, taxi
reposition strategies, and optimization policies. Every episode starts
at 11:00 and ends at 20:00 when all orders are completed or canceled.
Eligible orders are sampled from the dataset per episode.

Benchmark algorithms include independent DDPG [22], MAD-
DPG [25], MAMFRL [39], RND [3], and MAPPO [40]. We also in-
clude deep-dispatching [23] and VPS [17] for taxi dispatch com-
parisons. All DRL algorithms are configured uniformly regarding
hidden layers, update intervals, and learning rates. To reveal the
performance differences of the algorithm itself, all DRL algorithms
use the same hyper-parameters including optimizer, learning rate,
update rate, update interval, batch size, hidden dimension, and
exploration episode number.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1065

Algorithm Testing performance IID generalization
Order ↑ Distance ↓(km) Order ↑ Distance ↓(km)

Our Algorithm RLD3 237.2 ± 3.4237.2 ± 3.4237.2 ± 3.4 7.0 ± 1.37.0 ± 1.37.0 ± 1.3 234.0 ± 3.9234.0 ± 3.9234.0 ± 3.9 7.0 ± 1.37.0 ± 1.37.0 ± 1.3

Taxi-dispatch Algorithm VPS [17] 232.1 ± 5.7 37.8 ± 7.7 229.1 ± 5.8 38.2 ± 7.6
Deep-dispatch [23] 230.3 ± 2.3 15.5 ± 2.4 229.0 ± 2.3 15.1 ± 2.3

DRL-based

DDPG [22] 186.9 ± 5.2 27.8 ± 3.0 183.1 ± 5.5 27.9 ± 3.1
MADDPG [25] 215.7 ± 3.7 29.6 ± 0.6 212.0 ± 4.4 30.2 ± 0.5
MADDPG-RND [3] 228.6 ± 3.5 65.3 ± 0.7 224.0 ± 3.7 66.3 ± 0.9
MAMFRL [39] 224.3 ± 3.7 34.3 ± 5.3 221.1 ± 4.8 34.9 ± 5.5
MAPPO [40] 229.0 ± 3.5 63.1 ± 0.8 225.4 ± 4.5 61.4 ± 10.1

Optimization-based Myopic-dispatch 229.8 73.2 228.8 73.1
Myopic-dispatch with PO 225.4 29.1 221.8 29.3

Table 1: Testing performance. The testing performance is evaluated for 10 episodes based on the model that has the best episodic
performance, and the results are averaged over the 10 episodes and four seeds. The IID generalization performance is measured
using an additional testing dataset of 10 episodes that are separated from the training dataset.

Figure 6: Training performance. The average results across
four seeds along with the confidence intervals are presented.

As shown in Figure 6 and Table 1, our model outperforms all
other algorithms in terms of the number of completed orders and
moving distance. RND and MAPPO fall into no-semantic explo-
ration due to always moving; MADDPG and MAMFRL fail to differ-
entiate the value of different directions when there are no nearby
orders, resulting in a significant amount of random walking. Al-
though deep-dispatching addresses the problem of partial observ-
ability by combining local and global information, the algorithm
is constrained by data sparsity, making it difficult to handle the
instability of dynamic agent interactions. While VPS encourages
exploration and stability by incorporating an additional value func-
tion based on global states, similar to RND, it faces challenges
related to excess exploration and instability during later stages
of training due to policy changes. For optimization baselines, the
myopic driver repositioning policy optimizes the picking-up dis-
tances by treating the drivers as servers, which in turn leads to

intense competition among drivers for orders. Partial observability
helps alleviate this competition, but it may lead to a decrease in
optimization effectiveness.

5.2 IID Generalization
We conducted IID Generalization experiments to assess robustness
by assuming training and testing data originate from the same
distribution [18]. We sampled 500 unseen orders per episode. As
shown in Table 1, our algorithm does not decline significantly in IID
performance and still outperforms other methods. An interesting
phenomenon is that all algorithms demonstrate good IID generaliza-
tion performance. This is because the designated driving platform
itself exhibits sparsity, and the hotspots of orders are concentrated.
Since we maintain the same initial state for all drivers and the same
order underlying distribution in the IID generalization test, drivers
are still able to effectively transfer the learned hotspot information
from previous experiences when moving.

5.3 Scalability Evaluation
To test scalability, we proportionally increased the simulated city
area and the number of drivers while experimenting with differ-
ent scales of cluster numbers. We measured the average reward
of agents to evaluate the algorithm’s performance across different
scales. As shown in Figure 7, RLD3 exhibits superlinear perfor-
mance in large-scale experiments, as larger numbers of agents
enable greater diversity and more data sharing when fixing the
group number and cluster size. In addition, increasing the number
of clusters can enhance the state encoder to summarize the distri-
bution of orders and drivers in large-scale scenarios, which allows
for a more accurate description of the current distribution of hot
zones, leading to improved performance.

5.4 Ablation Study
Group Number. The group number is a typical hyper-parameter

that determines the number of shared networks. A larger group
number better represents the heterogeneity, but also increases the

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1066

Figure 7: Scalability Evaluation. The figure presents the aver-
age reward performance per agent, demonstrating the super-
linear improvement of RLD3 in large-scale scenarios.

Algorithm Order ↑ Distance ↓
RLD3 (5 groups, 60 window length) 237.2 ± 3.4237.2 ± 3.4237.2 ± 3.4 7.0 ± 1.3
RLD3 for 1 group 150.5 ± 9.2 21.5 ± 1.2
RLD3 for 10 groups 236.4 ± 3.6 7.4 ± 0.3
RLD3 for 50 groups 231.7 ± 3.6 9.1 ± 0.4
RLD3 for 10 groups (3:7 uneven) 235.3 ± 3.9 10.1 ± 1.3
MADDPG for 5 groups 223.0 ± 3.6 24.5 ± 1.2
MADDPG-RND for 5 groups 211.5 ± 7.4 56.1 ± 1.8
MAMFRL for 5 groups 227.0 ± 10.2 6.1 ± 1.7
RLD3 without window-lasting 229.5 ± 3.2 27.1 ± 3.4
RLD3 for 30 window length 236.3 ± 4.5 7.8 ± 0.9
RLD3 for 120 window length 231.7 ± 3.6 9.1 ± 0.4
RLD3 without state encoder 232.2 ± 3.7 27.2 ± 1.6
RLD3 without potential reward 223.8 ± 3.8 6.7 ± 1.2

Table 2: Ablation study. The averaged results over 10 testing
episodes and four seeds are presented.

storage pressure and training time. Additionally, a large group num-
ber may not learn well in sparse feedback situations. The results in
Table 2 show that the group-sharing structure helps improve the
performance of MADDPG and RLD3. We further investigated the
performance of RLD3 under uneven group distributions. Experi-
mental results demonstrated that uneven group allocation leads to
marginal performance degradation and increased variance, primar-
ily attributable to training data quantity disparities.

Window-lasting Agent Interaction. Our algorithm uses a window-
lasting policy ensemble to better learn the cross-effects of other
agents’ policies. We evaluated the algorithm without the window
average. As shown in Table 2, removing window-averaged interac-
tion impairs learning due to fluctuating agent actions. The optimal
window length aids in capturing idle movements, with performance
deterioration observed at extreme lengths. In this experiment, the
window length is approximately equivalent to the average time
between two consecutive matched orders for drivers, and thus the

window-averaged action effectively captures the direction of idle
movement for the driver during this period. In practical applications,
the window length should also be selected based on the average
time for a single instance of idle movement for the agent.

State Encoder. To capture the distribution information of orders
and drivers during the training stage, we employ an encoder to
encode the system’s state. The dimensions of the state vector are
constantly changing, making it difficult to directly utilize the value
function. Therefore, we extract the distribution information of or-
ders and drivers separately using the K-Means method. As shown
in Table 2, the K-Means state encoder can assist DRL algorithms in
better understanding the state of the designated driving platform,
particularly in extracting driver-order distribution information. Ad-
ditionally, even without state encoders, our algorithm still outper-
forms others due to the benefits of group-sharing and window-
lasting interaction techniques.

Reward Design. We compared different reward components by
removing the neighborhood potential reward and move cost, as
shown in Table 2. All reward settings were tested with our proposed
group-sharing structure and training process. The dense potential
reward not only increases performance but also stabilizes the train-
ing process, as indicated by the much smaller value function loss.
The model without the cost falls into a sub-optimal situation where
only order numbers are optimized, ignoring distance constraints.

6 CONCLUSION
In this paper, we tackled the driver dispatch problem in desig-
nated driving platforms characterized by sparsity and strict con-
straints. We proposed a multi-agent deep reinforcement learning
(DRL) algorithm formulated as a decentralized partially observed
Markov decision process (Dec-POMDP). Our approach leverages a
group-sharing structure and a specially designed reward to address
sparsity issues and employs a window-lasting agent interaction
technique to manage long-lasting agent interactions.

Extensive experiments using a real-world data-based simula-
tor demonstrated that our algorithm outperforms traditional taxi-
reposition policies and existing DRL methods in completed order
numbers and adherence to moving constraints. Moreover, our algo-
rithm exhibits efficient scalability, underscoring its effectiveness in
the designated driver dispatch problem.

Future work will explore self-supervised group forming algo-
rithms like clustering, enhancing agent interaction modeling and
algorithm performance. Additionally, we plan to investigate the
impact of driver non-compliance on dispatch performance, aiming
to improve the real-world applicability of our algorithm.

ACKNOWLEDGMENTS
The work of Jiaxuan Jiang and Zhixuan Fang is supported by Ts-
inghua University Dushi Program, Shanghai Qi Zhi Institute In-
novation Program SQZ202312, and CCF-DiDi GAIA Collaborative
Research Funds for Young Scholars. The work of Longbo Huang
was support by the National Natural Science Foundation of China
Grants 52450016 and 52494974.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1067

REFERENCES
[1] Lina Al-Kanj, Juliana Nascimento, and Warren B Powell. 2020. Approximate

dynamic programming for planning a ride-hailing system using autonomous
fleets of electric vehicles. European Journal of Operational Research 284, 3 (2020),
1088–1106.

[2] María J Alonso-González, Sascha Hoogendoorn-Lanser, Niels van Oort, Oded
Cats, and Serge Hoogendoorn. 2020. Drivers and barriers in adopting Mobility
as a Service (MaaS)–A latent class cluster analysis of attitudes. Transportation
Research Part A: Policy and Practice 132 (2020), 378–401.

[3] Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. 2019. Explo-
ration by random network distillation. In 7th International Conference on Learning
Representations, ICLR 2019, NewOrleans, LA, USA, May 6-9, 2019. OpenReview.net.

[4] BusinessGrowthReport. 2022. Global Designated Driving Service Market Re-
search Report 2022. https://www.businessgrowthreports.com/TOC/22043825.
Accessed: 2022-9-30.

[5] Caroline Claus and Craig Boutilier. 1998. The Dynamics of Reinforcement
Learning in Cooperative Multiagent Systems. In Proceedings of the Fifteenth
National/Tenth Conference on Artificial Intelligence/Innovative Applications of Arti-
ficial Intelligence (Madison, Wisconsin, USA) (AAAI ’98/IAAI ’98). USA, 746–752.

[6] Soheil Sadeghi Eshkevari, Xiaocheng Tang, Zhiwei Qin, JinhanMei, Cheng Zhang,
Qianying Meng, and Jia Xu. 2022. Reinforcement Learning in the Wild: Scalable
RL Dispatching Algorithm Deployed in Ridehailing Marketplace. In KDD ’22:
The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, August 14 - 18, 2022. 3838–3848.

[7] Yannis Flet-Berliac and Philippe Preux. 2020. Only Relevant Information Matters:
Filtering Out Noisy Samples To Boost RL. In Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, IJCAI 2020, Christian
Bessiere (Ed.). ijcai.org.

[8] Sriram Ganapathi Subramanian, Pascal Poupart, Matthew E. Taylor, and Nidhi
Hegde. 2020. Multi Type Mean Field Reinforcement Learning. In Proceedings of
the 19th International Conference on Autonomous Agents and MultiAgent Systems
(Auckland, New Zealand) (AAMAS ’20). Richland, SC, 411–419.

[9] Yuhan Guo,Wenhua Li, Linfan Xiao, and Hamid Allaoui. 2024. A prediction-based
iterative Kuhn-Munkres approach for service vehicle reallocation in ride-hailing.
International Journal of Production Research 62, 10 (2024), 3690–3715.

[10] Zhen Guo, Bin Yu, Wenxuan Shan, and Baozhen Yao. 2023. Data-driven robust
optimization for contextual vehicle rebalancing in on-demand ride services under
demand uncertainty. Transportation Research Part C: Emerging Technologies 154
(2023), 104244.

[11] Guy Hacohen and Daphna Weinshall. 2019. On The Power of Curriculum Learn-
ing in Training Deep Networks. In Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA
(Proceedings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and
Ruslan Salakhutdinov (Eds.). PMLR, 2535–2544.

[12] J. A. Hartigan and M. A. Wong. 1979. A K-Means Clustering Algorithm. Journal
of the Royal Statistical Society: Series C (Applied Statistics) 28, 1 (1979), 100–108.
arXiv:https://rss.onlinelibrary.wiley.com/doi/pdf/10.2307/2346830

[13] Dan Hendrycks and Kevin Gimpel. 2016. Bridging Nonlinearities and Stochastic
Regularizers with Gaussian Error Linear Units. CoRR abs/1606.08415 (2016).
arXiv:1606.08415

[14] Xiaohui Huang, Jiahao Ling, Xiaofei Yang, Xiong Zhang, and Kaiming Yang. 2023.
Multi-Agent Mix Hierarchical Deep Reinforcement Learning for Large-Scale
Fleet Management. IEEE Transactions on Intelligent Transportation Systems 24, 12
(2023), 14294–14305. https://doi.org/10.1109/TITS.2023.3302014

[15] Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical Reparameterization
with Gumbel-Softmax. In 5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

[16] Shenggong Ji, Yu Zheng, Zhaoyuan Wang, and Tianrui Li. 2019. A deep reinforce-
ment learning-enabled dynamic redeployment system for mobile ambulances.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technolo-
gies 3, 1 (2019), 1–20.

[17] Yan Jiao, Xiaocheng Tang, Zhiwei Tony Qin, Shuaiji Li, Fan Zhang, Hongtu Zhu,
and Jieping Ye. 2021. Real-world ride-hailing vehicle repositioning using deep
reinforcement learning. Transportation Research Part C: Emerging Technologies
130 (2021), 103289.

[18] Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. 2023. A
Survey of Zero-shot Generalisation in Deep Reinforcement Learning. Journal of
Artificial Intelligence Research 76 (2023), 201–264.

[19] HaroldW Kuhn. 1955. The Hungarian method for the assignment problem. Naval
research logistics quarterly 2, 1-2 (1955), 83–97.

[20] Donghe Li, Chunlin Hu, Qingyu Yang, and Shitao Chen. 2023. Multi Actor-
Critic PPO: A Novel Reinforcement Learning Method for Intelligent Task and
Charging Scheduling in Electric Freight Vehicles Management. In 2023 IEEE 26th
International Conference on Intelligent Transportation Systems (ITSC). 1116–1121.
https://doi.org/10.1109/ITSC57777.2023.10421834

[21] Zhuoran Li, Ling Pan, and Longbo Huang. 2023. Beyond conservatism: Dif-
fusion policies in offline multi-agent reinforcement learning. arXiv preprint
arXiv:2307.01472 (2023).

[22] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous control
with deep reinforcement learning. In 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.).

[23] Yang Liu, FanyouWu, Cheng Lyu, Shen Li, Jieping Ye, and Xiaobo Qu. 2022. Deep
dispatching: A deep reinforcement learning approach for vehicle dispatching
on online ride-hailing platform. Transportation Research Part E: Logistics and
Transportation Review 161 (2022), 102694.

[24] Zhidan Liu, Jiangzhou Li, and KaishunWu. 2020. Context-Aware Taxi Dispatching
at City-Scale Using Deep Reinforcement Learning. IEEE Transactions on Intelligent
Transportation Systems (2020).

[25] Ryan Lowe, YiWu, Aviv Tamar, Jean Harb, Pieter Abbeel, and IgorMordatch. 2017.
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. In
Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.). 6379–6390.

[26] Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. 2018. Data-Efficient
Hierarchical Reinforcement Learning. In Advances in Neural Information Process-
ing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman
Garnett (Eds.). 3307–3317.

[27] Takuma Oda and Carlee Joe-Wong. 2018. MOVI: A model-free approach to
dynamic fleet management. In IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. IEEE, 2708–2716.

[28] Ling Pan, Longbo Huang, Tengyu Ma, and Huazhe Xu. 2022. Plan better amid
conservatism: Offline multi-agent reinforcement learning with actor rectification.
In International conference on machine learning. PMLR, 17221–17237.

[29] Ling Pan, Tabish Rashid, Bei Peng, Longbo Huang, and Shimon Whiteson. 2021.
Regularized softmax deep multi-agent q-learning. Advances in Neural Information
Processing Systems 34 (2021), 1365–1377.

[30] Guoyang Qin, Qi Luo, Yafeng Yin, Jian Sun, and Jieping Ye. 2021. Optimizing
matching time intervals for ride-hailing services using reinforcement learning.
Transportation Research Part C: Emerging Technologies 129 (2021), 103239.

[31] Jacob Rafati and David C. Noelle. 2019. Learning Representations in Model-Free
Hierarchical Reinforcement Learning. In The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artifi-
cial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27
- February 1, 2019. AAAI Press, 10009–10010.

[32] Jake Robbennolt and Michael W. Levin. 2023. Maximum Throughput Dispatch for
Shared Autonomous Vehicles Including Vehicle Rebalancing. IEEE Transactions
on Intelligent Transportation Systems 24, 9 (2023), 9871–9885.

[33] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. arXiv:1707.06347 [cs.LG]
https://arxiv.org/abs/1707.06347

[34] Mohammad Shahverdy, Mahmood Fathy, Reza Berangi, and Mohammad
Sabokrou. 2020. Driver behavior detection and classification using deep convolu-
tional neural networks. Expert Systems with Applications 149 (2020), 113240.

[35] Zhenyu Shou and Xuan Di. 2020. Reward design for driver repositioning using
multi-agent reinforcement learning. Transportation research part C: emerging
technologies 119 (2020), 102738.

[36] Jiahui Sun, Haiming Jin, Zhaoxing Yang, Lu Su, and Xinbing Wang. 2022. Op-
timizing Long-Term Efficiency and Fairness in Ride-Hailing via Joint Order
Dispatching and Driver Repositioning. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (Washington DC, USA)
(KDD ’22). Association for Computing Machinery, New York, NY, USA, 3950–3960.
https://doi.org/10.1145/3534678.3539060

[37] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max
Jaderberg, David Silver, and Koray Kavukcuoglu. 2017. FeUdal Networks for
Hierarchical Reinforcement Learning. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 Au-
gust 2017 (Proceedings of Machine Learning Research, Vol. 70), Doina Precup and
Yee Whye Teh (Eds.). PMLR, 3540–3549.

[38] Xiaoyang Xie, Fan Zhang, and Desheng Zhang. 2018. PrivateHunt: Multi-source
data-driven dispatching in for-hire vehicle systems. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 1 (2018), 1–26.

[39] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang.
2018. Mean Field Multi-Agent Reinforcement Learning. In Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018 (Proceedings of Machine Learning Research,
Vol. 80), Jennifer G. Dy and Andreas Krause (Eds.). PMLR, 5567–5576.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1068

https://www.businessgrowthreports.com/TOC/22043825
https://arxiv.org/abs/https://rss.onlinelibrary.wiley.com/doi/pdf/10.2307/2346830
https://arxiv.org/abs/1606.08415
https://doi.org/10.1109/TITS.2023.3302014
https://doi.org/10.1109/ITSC57777.2023.10421834
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://doi.org/10.1145/3534678.3539060

[40] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen,
and YIWU. 2022. The Surprising Effectiveness of PPO in CooperativeMulti-Agent
Games. In Advances in Neural Information Processing Systems, S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Asso-
ciates, Inc., 24611–24624. https://proceedings.neurips.cc/paper_files/paper/2022/
file/9c1535a02f0ce079433344e14d910597-Paper-Datasets_and_Benchmarks.pdf

[41] Lingyu Zhang, Tao Hu, Yue Min, Guobin Wu, Junying Zhang, Pengcheng Feng,
Pinghua Gong, and Jieping Ye. 2017. A Taxi Order Dispatch Model based On
Combinatorial Optimization. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August
13 - 17, 2017. ACM, 2151–2159.

[42] Rick Zhang, Federico Rossi, and Marco Pavone. 2016. Model predictive control of
autonomous mobility-on-demand systems. In 2016 IEEE International Conference
on Robotics and Automation (ICRA). 1382–1389.

[43] Wenqi Zhang, Qiang Wang, Jingjing Li, and Chen Xu. 2020. Dynamic Fleet
Management With Rewriting Deep Reinforcement Learning. IEEE Access 8 (2020),
143333–143341.

[44] Bolong Zheng, Lingfeng Ming, Qi Hu, Zhipeng Lü, Guanfeng Liu, and Xiaofang
Zhou. 2022. Supply-Demand-Aware Deep Reinforcement Learning for Dynamic
Fleet Management. ACM Trans. Intell. Syst. Technol. 13, 3, Article 37 (2022),
19 pages.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1069

https://proceedings.neurips.cc/paper_files/paper/2022/file/9c1535a02f0ce079433344e14d910597-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9c1535a02f0ce079433344e14d910597-Paper-Datasets_and_Benchmarks.pdf

	Abstract
	1 Introduction
	2 Related Work
	2.1 Fleet Management
	2.2 Multi-Agent Reinforcement Learning

	3 RLD3: Reinforcement Learning for Designated Driver Dispatch
	3.1 Formulation
	3.2 Towards Dataset Sparsity: Group Sharing
	3.3 Towards Feedback Sparsity: Space Potential
	3.4 Towards Interaction Sparsity: Window Lasting
	3.5 Network Update

	4 Simulator
	4.1 Real-World Dataset
	4.2 Order State Transfer
	4.3 Driver State Transfer
	4.4 Matching Module

	5 Experiment
	5.1 Performance Comparison
	5.2 IID Generalization
	5.3 Scalability Evaluation
	5.4 Ablation Study

	6 Conclusion
	Acknowledgments
	References

