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ABSTRACT
Reinforcement learning (RL) enables an agent interacting with an

unknown MDP 𝑀 to optimise its behaviour by observing transi-

tions sampled from𝑀 . A natural entity that emerges in the agent’s

reasoning is𝑀 , the maximum likelihood estimate of𝑀 based on the

observed transitions. The well-known certainty-equivalencemethod

(CEM) dictates that the agent update its behaviour to 𝜋 , which is an

optimal policy for𝑀 . Not only is CEM intuitive, it has been shown

to enjoy minimax-optimal sample complexity in some regions of

the parameter space for PAC RL with a generative model [1].

A seemingly unrelated algorithm is the “trajectory tree method”

(TTM) [13], originally developed for efficient decision-time plan-

ning in large POMDPs. This paper presents a theoretical investiga-

tion that stems from the surprising finding that CEM may indeed

be viewed as an application of TTM. The qualitative benefits of this

view are (1) new and simple proofs of sample complexity upper

bounds for CEM, in fact under a (2) weaker assumption on the

rewards than is prevalent in the current literature. Our analysis

applies to both non-stationary and stationary MDPs. Quantita-

tively, we obtain (3) improvements in the sample-complexity upper

bounds for CEM both for non-stationary and stationary MDPs, in

the regime that the “mistake probability” 𝛿 is small. Additionally,

we show (4) a lower bound on the sample complexity for finite-

horizon MDPs, which establishes the minimax-optimality of our

upper bound for non-stationary MDPs in the small-𝛿 regime.
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1 INTRODUCTION
The principle of certainty-equivalence has been a recurring theme

in the design of reinforcement learning (RL) algorithms [1, 3]. Con-

cretely, consider an agent interacting with an unknown Markov

Decision Problem (MDP)𝑀 . The agent gains information about𝑀
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by repeatedly querying a generative model with an arbitrary (state,

action) pair or (state, action, time-step) triple, and it is provided

an accordingly-sampled next state and reward. Based on this set

of samples 𝐷 , the agent must propose rewarding behaviour for𝑀 .

The first step in applying the certainty-equivalence method (CEM)

is to identify𝑀 , a maximum likelihood estimate of𝑀 based on 𝐷

(𝑀 is also called the “empirical model”). The agent then computes a

policy 𝜋 that is optimal for 𝑀 . In other words, the agent computes

the same behaviour as it would if it were certain that𝑀 = 𝑀 . The

idea is intuitive since𝑀 indeed approaches𝑀 as 𝐷 grows larger.

A natural question is whether CEM is optimal in its sample com-

plexity. A line of work that formalises the problem using the PAC

framework has provided partially affirmative answers, although

gaps remain. If𝑀 is a stationary MDP, the baseline for comparison

has been a sample-complexity lower bound from Azar et al. [3].

These authors also provide a sample-complexity upper bound for

an iterative implementation of CEM. Their upper bound matches

the lower bound when restrictions are placed on some problem

parameters—the tolerance 𝜖 and the discount factor𝛾 . In subsequent

work, Agarwal et al. [1] partially relax the restriction. Interestingly,

Li et al. [16] show that minimax-optimality is possible over the

full range of problem parameters by injecting randomness into

CEM (hence, technically, the resulting algorithm is not CEM). They

also provide an upper bound for CEM itself in the case that 𝑀 is

a non-stationary MDP, adopting the convention of using a finite

horizon 𝐻 in place of discount factor 𝛾 . Although the preceding

analyses [1, 3, 15] vary in approach, they have a common technical

core that uses bounds on the variance of the long-term return.

1.1 Contribution
In this paper, we provide an alternative perspective on CEM, which

offers a new template for analysis and new upper bounds.

1.1.1 New analytical framework. We illustrate a connection be-

tween CEM and the seemingly-unrelated trajectory tree method

(TTM), proposed by Kearns et al. [13] for decision-time planning in

large MDPs and POMDPs. A trajectory tree is designed to provide

unbiased estimates of the value function of every possible policy

for the task. In TTM, Kearns et al. [13] deliberately generate several

independent trajectory trees, so that confident estimates of value

functions can be obtained by averaging. Our main insight is that

CEM implicitly performs the same kind of averaging. Consequently,

we can reuse the proof structure accompanying TTM (summarised

in Section 3), only now using a variant of Hoeffding’s inequality
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for a sum of dependent random variables [8, see Section 5]. Other-

wise, we only need elementary probability and counting, setting

up simple, intuitive proofs. We also obtain quantitative gains.

1.1.2 Upper bound for non-stationary MDPs. The more straightfor-

ward case for us to analyse is when𝑀 is non-stationary: that is, its
dynamics can change over time. Let CEM-NS denote the algorithm

based on the certainty-equivalence principle for this setting. Under

CEM-NS, the maximum likelihood MDP𝑀 is also a non-stationary

MDP, which estimates a separate transition probability distribution

over next states for each (state, action, time-step) triple. If 𝑀 has

a set of states 𝑆 , a set of actions 𝐴, and horizon 𝐻 , our analysis

shows that CEM-NS requires 𝑂

(
|𝑆 | |𝐴 |𝐻 3

𝜖2
log

1

𝛿
+ |𝑆 |2 |𝐴 |𝐻 4

log |𝐴 |
𝜖2

)
samples, where tolerance 𝜖 and mistake probability 𝛿 are the usual

PAC parameters (formally specified in the next section). This bound

is in general incomparable with the𝑂

(
|𝑆 | |𝐴 |𝐻 4

𝜖2
log

|𝑆 | |𝐴 |𝐻
𝛿

)
upper

bound shown recently by Li et al. [16], and is tighter by a factor of𝐻

in the regime of small 𝛿 . Interestingly, our upper bound holds with

a weaker assumption on the rewards (explained in Section 2.1) than

is common in the literature. We present the main elements of our

analytical approach, situated in the context of the non-stationary

setting, in Section 4.

1.1.3 Upper bound for stationary MDPs. If it is known that 𝑀 is

a stationary MDP, then the certainty-equivalence principle would

imply constructing a stationary maximum likelihood MDP 𝑀 by

pooling together all the samples for any (state, action) pair. Let

CEM-S denote the algorithm that is consistent with this approach.

In Section 5, we analyse CEM-S under the usual assumption that

𝑀 is infinite-horizon, with discount factor 𝛾 < 1. A key technical

difference emerges when we analyse CEM-S using the TTM toolkit.

In the stationary setting, some trajectory trees—or equivalently,

“worlds”, as we shall denote them—use the same sample transition

at different time steps, and therefore no longer provide unbiased
value estimates of policies. We simply use the fact that such worlds

constitute only a small fraction of the universe of worlds, and hence

their influence is limited.

Our eventual sample-complexity upper bound for CEM-S is

�̃�

(
|𝑆 | |𝐴 |

(1−𝛾 )3𝜖2
(
log

1

𝛿
+ |𝑆 | |𝐴|𝜖

))
, where �̃� suppresses factors that are

logarithmic in
1

𝜖 and
1

1−𝛾 . This upper bound matches the lower

bound from Azar et al. [3] in the regime of small 𝛿 . By contrast,

the upper bounds provided by Azar et al. [3] and Agarwal et al.

[1] hold for all 𝛿 ∈ (0, 1), but unlike ours, apply only to restricted

ranges of 𝜖 .

1.1.4 Lower bound for finite-horizon MDPs. As an independent

contribution, we adapt the lower bound of [3] to the finite horizon

setting, showing that Ω
(
|𝑆 | |𝐴 |𝐻 3

𝜖2
log

1

𝛿

)
samples are necessary on

some instances for any PAC algorithm in the finite-horizon setting.

This result, presented in Section 6, establishes the new finding

that within the small-𝛿 regime, CEM is indeed a minimax-optimal

algorithm for non-stationary MDPs.

In short, our paper furthers the understanding of CEM, a natural

and intuitive algorithm, by bringing out its connection with TTM,

itself a classical algorithm. Our analysis and results are significant

to the theory of RL, which is a central paradigm for agent learning.

Our work also motivates further analysis and algorithm design. We

begin with a formal problem statement (Section 2) and a review of

the relevant literature (Section 3) before presenting our analysis.

2 PAC RL: PROBLEM STATEMENT
We formalise the requirement of PAC RL with a generative model.

2.1 Markov Decision Problems
We adopt a definition of MDPs that covers both stationary and

non-stationary tasks, with both finite and infinite horizons. An

MDP 𝑀 = (𝑆,𝐴,𝑇 , 𝑅, 𝐻,𝛾) comprises a set of states 𝑆 and a set

of actions 𝐴. We assume 𝑆 and 𝐴 are finite. Positive integer 𝐻

(possibly infinite) denotes the task horizon; let [𝐻 ] denote the set
{0, 1, 2, . . . , 𝐻 − 1}. The transition function 𝑇 : 𝑆 ×𝐴 × [𝐻 ] × 𝑆 →
[0, 1] assigns a probability 𝑇 (𝑠, 𝑎, 𝑡, 𝑠′) to change state from 𝑠 ∈ 𝑆

to 𝑠′ ∈ 𝑆 by taking action 𝑎 ∈ 𝐴 at time step 𝑡 ∈ [𝐻 ]; hence∑
𝑠′∈𝑆 𝑇 (𝑠, 𝑎, 𝑡, 𝑠′) = 1 for 𝑠 ∈ 𝑆 , 𝑎 ∈ 𝐴, 𝑡 ∈ [𝐻 ]. Taking action 𝑎 ∈ 𝐴

from state 𝑠 ∈ 𝑆 at time step 𝑡 ∈ 𝐻 also earns a numeric reward

𝑅(𝑠, 𝑎, 𝑡). Hence, an agent’s interaction with the MDP is a sequence

𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, . . . , 𝑠𝐻−1, 𝑎𝐻−1, 𝑟𝐻−1, 𝑠𝐻 wherein for time step

𝑡 ∈ [𝐻 ], the agent (1) takes action 𝑎𝑡 from state 𝑠𝑡 , (2) obtains

reward 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑡), and (3) proceeds to state 𝑠𝑡+1 ∼ 𝑇 (𝑠𝑡 , 𝑎𝑡 , 𝑡),
with the convention that 𝑠𝐻 is a terminal state. The discount factor

𝛾 ∈ [0, 1] is used to compute long-term values; we permit 𝛾 = 1

only when 𝐻 is finite.

Previous work [1, 3, 15] has typically assumed that each re-

ward comes from a known, bounded range (taken by convention as

[0, 1]). However, we only enforce the weaker requirement that the

discounted sum of rewards

∑
𝑡 ∈[𝐻 ] 𝛾

𝑡𝑟𝑡 lie in a known interval [9].

For easy comparison with previous results, we take this interval

as [0,𝑉max], where 𝑉max ≤ min

{
𝐻, 1

1−𝛾

}
, as would follow if each

reward is at most 1. To simplify exposition, we assume that the

rewards are deterministic, and that the reward function is known

to the agent. Approximating a stochastic reward function 𝑅 from

samples would not alter the asymptotic complexity of our upper

bounds, as also observed by Agarwal et al. [1].

Let 𝜋 : 𝑆 × [𝐻 ] → 𝐴 be a non-stationary policy for 𝑀 . Its

value function 𝑉 𝜋
: 𝑆 × [𝐻 ] → R specifies the expected long-term

discounted reward for each (𝑠, 𝑡) ∈ 𝑆 × [𝐻 ], and is given by

𝑉 𝜋 (𝑠, 𝑡) = 𝑅(𝑠, 𝜋 (𝑠, 𝑡), 𝑡) + 𝛾
∑︁
𝑠′∈𝑆

𝑇 (𝑠, 𝜋 (𝑠, 𝑡), 𝑡, 𝑠′)𝑉 𝜋 (𝑠′, 𝑡 + 1),

with the convention that 𝑉 𝜋 (·, 𝐻 ) def

= 0. It is well-known that every

MDP has an optimal policy 𝜋★ : 𝑆 × [𝐻 ] → 𝐴, which satisfies

𝑉 𝜋★ (𝑠, 𝑡) ≥ 𝑉 𝜋 (𝑠, 𝑡) for all (𝑠, 𝑡) ∈ 𝑆 × [𝐻 ] and 𝜋 : 𝑆 × [𝐻 ] → 𝐴.

The value function of 𝜋★ is denoted 𝑉★
. We may assume 𝜋★ to be

stationary (that is, independent of time step 𝑡 ∈ [𝐻 ]) if 𝑀 is also

stationary (that is, 𝑇 and 𝑅 do not depend on 𝑡 ) and 𝐻 is infinite.

2.2 Learning Algorithms
When learning with a generative model, an algorithm L can re-

peatedly query arbitrary (𝑠, 𝑎, 𝑡) ∈ 𝑆 × 𝐴 × [𝐻 ], and is returned

𝑟 = 𝑅(𝑠, 𝑎, 𝑡), 𝑠′ ∼ 𝑇 (𝑠, 𝑎, 𝑡) by the environment. Hence, at any stage,

the data 𝐷 available with the algorithm is the sequence of samples

so gathered. Based on 𝐷 , the algorithm may either pick a new tuple

to query, or stop and return a policy.
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In the PAC formulation, the other inputs to the learning algo-

rithm are a tolerance parameter 𝜖 ∈ (0,𝑉max) and a mistake proba-

bility 𝛿 ∈ (0, 1). The policy 𝜋 returned by L is 𝜖-optimal if for all

𝑠 ∈ 𝑆 ,𝑉 𝜋 (𝑠, 0) ≥ 𝑉★(𝑠, 0) −𝜖.We require that on every MDP𝑀 it is

run, L stop and return an 𝜖-optimal policy with probability at least

1−𝛿 . The sample complexity of L on a run is the number of samples

it has gathered before termination. In this paper, we restrict our

attention to worst case sample-complexity upper bounds (across

problem instances) for CEM. For simplicity, we assume that the

algorithm samples each (𝑠, 𝑎, 𝑡) ∈ 𝑆 ×𝐴 × [𝐻 ] the same number of

times 𝑁 , where 𝑁 is a function of |𝑆 |, |𝐴|, 𝐻 , 𝛾 , 𝑉𝑚𝑎𝑥 , 𝜖 , and 𝛿 . We

seek upper bounds on 𝑁 to ensure the PAC guarantee.

3 RELATEDWORK
In this section, we review sample-complexity bounds for PAC RL,

and provide a sketch of TTM.

3.1 PAC RL with a Generative Model
The original PAC formulation of RL was put forth by Fiechter [6],

who established that its sample complexity is polynomial in the

problem parameters. Kearns and Singh [14] then demonstrated that

model-free learning algorithms such as𝑄-learning can also achieve

polynomial sample complexity. For a stationary, infinite-horizon

MDP, the model size scales as Θ( |𝑆 |2 |𝐴|), whereas Q-learning uses

Θ( |𝑆 | |𝐴|) entries. Progress on PAC RL with a generative model

has accelerated in the last decade, owing to the minimax-optimal

bounds furnished by Azar et al. [3]. For stationary, infinite-horizon

tasks having 𝑘 (state, action) pairs, Azar et al. [3] show a sample-

complexity lower bound of Ω
(

𝑘
(1−𝛾 )3𝜖2 log

𝑘
𝛿

)
for obtaining an 𝜖-

approximation of the optimal action value function 𝑄★
. They con-

struct an MDP instance on which every PAC algorithm must incur

at least the specified sample complexity. They also provide an upper

bound (applicable to all MDPs), which is is “minimax-optimal” in

the sense that there exists an MDP on which the lower and upper

bounds match up to a constant factor.

The tools proposed by Azar et al. [3] have been the basis for many

subsequent investigations. The essential idea is to construct the

empirical model 𝑀 , and to compute an output policy by running

value iteration (or policy iteration) on 𝑀 for a finite number of

iterations. If 𝑄𝑘 is the 𝑘-step action value function of the output

policy on𝑀 , for 𝑘 ≥ 1, the analysis proceeds by inductively upper-

bounding the difference between𝑄𝑘 and𝑄★
. Although the original

algorithms of Azar et al. [3] estimate 𝑄★
with minimax-optimal

sample complexity, they do not automatically yield a near-optimal

policy. Obtaining such a policy from the action value function

would ordinarily require scaling the sample complexity by
1

1−𝛾 .
A variance-reduction technique proposed by Sidford et al. [20],

while different from CEM, directly yields a near-optimal policy

without this additional complexity. Yet, the minimax-optimal upper

bounds given above do not apply to the entire range of 𝜖 ∈ (0,𝑉max).
For instance, the upper bound given by Azar et al. [3] only holds

for 𝜖 ∈ (0, 1/
√︁
(1 − 𝛾) |𝑆 |), and that of Sidford et al. [20] only for

𝜖 ∈ (0, 1]. The most recent advance in this line of work is due to

Agarwal et al. [1], who show that CEM itself can deliver a near-

optimal policy for stationary MDPs with minimax-optimal sample

complexity, under the constraint that 𝜖 ≤
√︁
1/(1 − 𝛾). The main

components of their analysis are bounds on the variance of the

return (introduced by Azar et al. [3]), and an intermediate MDP

designed to break the dependence among samples used to construct

the empirical model. In contrast to all these approaches, our analysis

only relies on a version of Hoeffding’s inequality [8]. We obtain an

upper bound for the entire range of problem parameters, whose

ratio to the lower bound approaches a logarithmic term as 𝛿 → 0

(while keeping other parameters fixed).

Li et al. [16] devise learning algorithms that are minimax-optimal

for stationary MDPs for the entire range of parameters, including

𝜖 ∈ (0, 1/(1 − 𝛾)) . A key feature of their algorithms is the care-

ful use of randomness for perturbing rewards or action-selection

probabilities. The statistical guarantees of these algorithms kick

in as soon as the sample size reaches Θ( |𝑆 | |𝐴|/(1 − 𝛾)), whereas
the so-called “sample barrier” in the guarantees of Agarwal et al.

[1] is Θ( |𝑆 | |𝐴|/(1 − 𝛾)2). Li et al. [16] do not need to randomise

their algorithm for the non-stationary setting, and consequently

it boils down to exactly CEM. Our upper bound for CEM in the

non-stationary setting is tighter than theirs by a factor of 𝐻 in the

regime of small 𝛿 , although it can be looser for large 𝛿 .

Suppose we wish to estimate the action-value for some (𝑠, 𝑎) ∈
𝑆 ×𝐴, and this state-action pair gives reward 𝑟 and transitions to a

(random) next state 𝑠′. If the horizon 𝐻 is finite, then the 𝐻 -step

action-value of (𝑠, 𝑎) depends only on the (𝐻 − 1)-step return from

𝑠′. Since our problem does not require us to explicitly estimate ℎ-

step returns for ℎ < 𝐻 , we make no independent assumption on the

range of theℎ-step returns.We allow rewards obtained after visiting

𝑠′ to be arbitrarily large or small (possibly negative), provided the

sum of the first 𝐻 rewards following (𝑠, 𝑎) is bounded in [0,𝑉max].
This distinction between the ranges of 𝐻 -step and (𝐻 − 1)-step
rewards becomes inconsequential if 𝐻 is infinite, and we anyway

have to estimate action-values at all states. Mainly focused on

stationary, infinite-horizon MDPs, the previous literature [1, 3, 16]

constructs concentration bounds by expressing the variance of the

return from (𝑠, 𝑎) in terms of the variance of the return from 𝑠′. We

do not employ such a step. Rather, like in the analysis of TTM, we

only apply Hoeffding’s inequality to 𝐻 -step returns.

3.2 Trajectory Tree Method
In decision-time planning [12], the aim is to identify, a near-optimal

action to take from the agent’s current state 𝑠0, with a given proba-

bility. A trajectory tree [13] is a randomly-grown tree whose nodes

correspond to states, starting with 𝑠0 at the root. From any node

𝑠𝑡 , 𝑡 ∈ [𝐻 ], exactly one sample 𝑠′ ∼ 𝑇 (𝑠𝑡 , 𝑎, 𝑡) is drawn for each

possible action 𝑎 ∈ 𝐴, giving rise to a child node 𝑠′. This process
results in a tree of size |𝐴|𝐻 (but independent of |𝑆 |), as illustrated
in Figure 1. Each transition has an associated reward. In POMDPs,

each node additionally stores a randomly generated observation.
The rationale for building such a tree is that it can provide an

unbiased estimate of the value of any arbitrary policy 𝜋 (possibly

history-dependent), starting from 𝑠0. Observe that applying the

policy takes us through a trajectory (fixed actions, random next

states) with the same probability as in the true MDP or POMDP.

Hence, 𝑉 𝜋 (𝑠) can be estimated by growing some𝑚 independent

trajectory trees rooted at 𝑠0, and averaging their value estimates.
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Crucially, the same𝑚 trees can be used to evaluate every policy 𝜋

from the policy class Π being considered (which can be arbitrary).

If Π is finite, then setting𝑚 = 𝑂

(
𝑉max

𝜖2
log

|Π |
𝛿

)
and selecting the

empirically-best policy guarantees 𝜖-optimality of the chosen action

with probability at least 1 − 𝛿 . This is because, by Hoeffding’s

inequality, each policy is estimatedΘ(𝜖)-accuratelywith probability
at least 1 − 𝛿

|Π | [10, see Chapter 6].
TTM essentially arises from a view of any MDP as a distribution

over deterministic MDPs (each represented as a trajectory tree

from the current state). This same view also facilitates variance

reduction in policy search [19]. To obtain bounds independent of

|𝑆 |, Kearns et al. [13] branch from every action sequence. On the

other hand, to analyse CEM, we are happy with bounds that depend

on |𝑆 |. Correspondingly, we represent each deterministic MDP as a

collection of samples, one for each (state, action, time-step) triple.

We call such a collection a “world”.

4 NON-STATIONARY MDPS
We present our main ideas for the more general setting of non-

stationary MDPs. First we summarise CEM in this setting.

4.1 Certainty-Equivalence: CEM-NS Algorithm
If the underlying MDP 𝑀 = (𝑆,𝐴,𝑇 , 𝑅, 𝐻,𝛾) is known to be non-

stationary, then so is its maximum likelihood estimate 𝑀 . It is

sufficient for our purposes to assume that 𝐷 contains the same

number of samples, 𝑁 ≥ 1, for each tuple (𝑠, 𝑎, 𝑡) ∈ 𝑆 × 𝐴 × [𝐻 ].
Let count(𝑠, 𝑎, 𝑡, 𝑠′) denote the number of observed transitions of

(𝑠, 𝑎, 𝑡) to 𝑠′ ∈ 𝑆 . The empirical transition function 𝑇 is set to

𝑇 (𝑠, 𝑎, 𝑡, 𝑠′) = count(𝑠, 𝑎, 𝑡, 𝑠′)
𝑁

.

𝑀 = (𝑆,𝐴,𝑇 , 𝑅, 𝐻,𝛾) is a maximum likelihood estimate of𝑀 based

on𝐷 . Let𝑉★

𝑀
: 𝑆×[𝐻 ] → R denote the optimal value function of𝑀 ,

and let 𝜋 : 𝑆×[𝐻 ] → 𝐴 be a corresponding optimal policy.𝑉★

𝑀
and 𝜋

are easily computed by dynamic programming. For (𝑠, 𝑡) ∈ 𝑆 × [𝐻 ],

𝑉★

𝑀
(𝑠, 𝑡) = max

𝑎∈𝐴

(
𝑅(𝑠, 𝑎, 𝑡) + 𝛾

∑︁
𝑠′∈𝑆

𝑇 (𝑠, 𝑎, 𝑡, 𝑠′)𝑉★

𝑀
(𝑠′, 𝑡 + 1)

)
; (1)

𝜋 (𝑠, 𝑡) ∈ argmax

𝑎∈𝐴

(
𝑅(𝑠, 𝑎, 𝑡) + 𝛾

∑︁
𝑠′∈𝑆

𝑇 (𝑠, 𝑎, 𝑡, 𝑠′)𝑉★

𝑀
(𝑠′, 𝑡 + 1)

)
. (2)

𝑠0

𝑠1
1

𝑠1
2

𝑠2
11

𝑠2
12

𝑠2
21

𝑠2
22

𝑎1 𝑎2

𝑎1 𝑎2 𝑎1 𝑎2

Figure 1: Example of trajectory tree for horizon 𝐻 = 2, with
starting state 𝑠0, and actions 𝑎1, 𝑎2. Rewards are not shown.

We denote by CEM-NS (“NS” for “non-stationary”) the algorithm

that computes 𝜋 as its answer.

4.2 Set of Worlds
The unknowns in𝑀 are the transition probabilities for each (𝑠, 𝑎, 𝑡) ∈
𝑆 ×𝐴 × [𝐻 ]. Hence the minimum amount of information required

to build a complete estimate of𝑀 is exactly one transition for each

(𝑠, 𝑎, 𝑡) tuple. In our notation, the resulting estimate would be 𝑀

with 𝑁 = 1—a deterministic MDP that is a “sample” of 𝑀 . This

estimate would allow the agent to evaluate any arbitrary behaviour,

albeit with significant error. The conventional view is that as more

transitions are observed, they make the point estimate 𝑀 more

accurate. In our complementary view, larger 𝑁 simply means more

samples of𝑀 , each sample still an atomic (deterministic) MDP.

Recall that𝐷 contains𝑁 transitions for each (𝑠, 𝑎, 𝑡) ∈ 𝑆×𝐴×[𝐻 ].
Take [𝑁 ] def

={1, 2, . . . , 𝑁 }, so each collected transition for (𝑠, 𝑎, 𝑡) is
indexed by some number 𝑖 ∈ [𝑁 ]. Let 𝑥 ∈ 𝑋

def

= [𝑁 ] |𝑆 | |𝐴 |𝐻
be a

string of length |𝑆 | |𝐴|𝐻 on the alphabet [𝑁 ]. We view 𝑥 as a code

specifying a process to construct a deterministic MDP. The input to

the process is the random data 𝐷 ; hence the resulting MDP𝑀𝑥 is a

random variable. Concretely, 𝑥 picks out a particular transition from

the 𝑁 collected in 𝐷 for each (𝑠, 𝑎, 𝑡) tuple. If 𝑥 (𝑠, 𝑎, 𝑡) = 𝑖 ∈ [𝑁 ]
for some (𝑠, 𝑎, 𝑡) ∈ 𝑆 ×𝐴 × [𝐻 ], then the transition function 𝑇𝑥 of

𝑀𝑥 puts the entire transition probability from (𝑠, 𝑎, 𝑡) on the state

𝑠′ ∈ 𝑆 observed in the 𝑖-th sample of (𝑠, 𝑎, 𝑡).
We refer to each 𝑥 ∈ 𝑋 as a “world”, defined by the code de-

scribed above, and specifying a random deterministic MDP𝑀𝑥 =

(𝑆,𝐴,𝑇𝑥 , 𝑅, 𝐻,𝛾). Thus 𝑋 is the “set of all worlds”, of size 𝑁 |𝑆 | |𝐴 |𝐻
.

For any fixed 𝐷 , the collection of 𝑁 |𝑆 | |𝐴 |𝐻
induced MDPs would

generally be a multi-set, since multiple worlds 𝑥 ∈ 𝑋 can induce the

same MDP. Example 1 illustrates the definition of𝑋 and the process

of sampling MDPs from 𝐷 . A world is the semantic counterpart of

a trajectory tree, since it allows for any policy to be evaluated. The

syntactic difference is that a world associates a sample with every

(𝑠, 𝑎, 𝑡) ∈ 𝑆 ×𝐴× [𝐻 ], whereas a trajectory tree associates a sample

with each (state, action, state, action, . . . ) sequence visited while

constructing the tree.

.

Example 1. Consider MDP 𝑀 with states 𝑆 = {𝑠0, 𝑠1}, actions
𝐴 = {𝑎0, 𝑎1}, and horizon 𝐻 = 3. The table below describes a possible
configuration of data 𝐷 resulting from sampling each (state, action,
time-step) tuple 𝑁 = 3 times.

𝑠 𝑠0 𝑠0 𝑠0 𝑠0 𝑠0 𝑠0 𝑠1 𝑠1 𝑠1 𝑠1 𝑠1 𝑠1

𝑎 𝑎0 𝑎0 𝑎0 𝑎1 𝑎1 𝑎1 𝑎0 𝑎0 𝑎0 𝑎1 𝑎1 𝑎1

𝑡 0 1 2 0 1 2 0 1 2 0 1 2

Samples 𝑖 = 1 𝑠1 𝑠1 𝑠1 𝑠1 𝑠1 𝑠1 𝑠0 𝑠1 𝑠0 𝑠1 𝑠0 𝑠0
of 𝑖 = 2 𝑠0 𝑠0 𝑠1 𝑠0 𝑠1 𝑠1 𝑠1 𝑠1 𝑠1 𝑠0 𝑠0 𝑠1
𝑠′ 𝑖 = 3 𝑠1 𝑠0 𝑠0 𝑠1 𝑠1 𝑠1 𝑠0 𝑠1 𝑠1 𝑠1 𝑠0 𝑠1

Each sample 𝑖 ∈ [𝑁 ] contains the next state. Each world is speci-
fied by a 12-length string over the alphabet {1, 2, 3}. If we interpret
this string in the sequence of the columns in the table, the world
𝑥 = 132121123211 induces MDP 𝑀𝑥 with transition probabilities
𝑇𝑥 (𝑠0, 𝑎0, 0, 𝑠1) = 1, 𝑇𝑥 (𝑠0, 𝑎0, 1, 𝑠0) = 1, 𝑇𝑥 (𝑠0, 𝑎0, 2, 𝑠1) = 1, and so
on. Notice that 𝑥 ′ = 122121123211, which differs from 𝑥 only in its
second position, would induce the same MDP since the second and
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third samples of (𝑠0, 𝑎0, 1) both lead to 𝑠0. The total number of worlds
is 3 |𝑆 | |𝐴 |𝐻 = 531441; for 𝐷 in our example the number of unique
MDPs induced is 28 = 256, since only 8 of the 12 (𝑠, 𝑎, 𝑡) triples have
samples with both possible next states.

4.3 Evaluating Policies on the Set of Worlds
The value of policy 𝜋 : 𝑆 × [𝐻 ] → 𝐴 on MDP𝑀𝑥 corresponding to

world 𝑥 ∈ 𝑋 is given by

𝑉 𝜋
𝑥 (𝑠, 𝑡) = 𝑅(𝑠, 𝜋 (𝑠, 𝑡), 𝑡) + 𝛾

∑︁
𝑠′

𝑇𝑥 (𝑠, 𝜋 (𝑠, 𝑡), 𝑡, 𝑠′)𝑉 𝜋
𝑥 (𝑠′, 𝑡 + 1) (3)

for (𝑠, 𝑡) ∈ 𝑆 × [𝐻 ]. We note𝑉 𝜋
𝑥 to be an unbiased estimator of 𝑉 𝜋

.

Lemma 2 (Worlds provide unbiased estimates). For 𝑥 ∈ 𝑋 ,
𝜋 : 𝑆 × [𝐻 ] → 𝐴, and (𝑠, 𝑡) ∈ 𝑆 × [𝐻 ]:

E[𝑉 𝜋
𝑥 (𝑠, 𝑡)] = 𝑉 𝜋 (𝑠, 𝑡).

Proof. Fix 𝑥 ∈ 𝑋 and 𝜋 : 𝑆 × [𝐻 ] → 𝐴. As base case of an

inductive argument, note that for 𝑠 ∈ 𝑆 , E[𝑉 𝜋
𝑥 (𝑠, 𝐻 )] def

= E[0] = 0 =

𝑉 𝜋 (𝑠, 𝐻 ). Assume that for some 𝑡 ∈ [𝐻 ], for 𝑠 ∈ 𝑆 , E[𝑉 𝜋
𝑥 (𝑠, 𝑡 +1)] =

𝑉 𝜋 (𝑠, 𝑡 + 1).
Now, in (3),𝑇𝑥 (𝑠, 𝜋 (𝑠, 𝑡), 𝑡, 𝑠′) is the outcome of a sample for time

step 𝑡 , but the samples for computing𝑉 𝜋
𝑥 (𝑠′, 𝑡 + 1) are all from time

steps 𝑡 + 1 and higher. Hence, random variables 𝑇𝑥 (𝑠, 𝜋 (𝑠, 𝑡), 𝑡, 𝑠′)
and 𝑉 𝜋

𝑥 (𝑠′, 𝑡 + 1) are independent, implying that for 𝑠 ∈ 𝑆 ,

E[𝑉 𝜋
𝑥 (𝑠, 𝑡)] = E[𝑅(𝑠, 𝜋 (𝑠, 𝑡), 𝑡)]+

𝛾
∑︁
𝑠′

E
[
𝑇𝑥 (𝑠, 𝜋 (𝑠, 𝑡), 𝑡, 𝑠′)

]
E
[
𝑉 𝜋
𝑥 (𝑠′, 𝑡 + 1)

]
= 𝑅(𝑠, 𝜋 (𝑠, 𝑡), 𝑡) + 𝛾

∑︁
𝑠′

𝑇 (𝑠, 𝜋 (𝑠, 𝑡), 𝑡, 𝑠′)𝑉 𝜋 (𝑠′, 𝑡 + 1),

since (1) 𝑇𝑥 (𝑠, 𝜋 (𝑠, 𝑡), 𝑡, 𝑠′) is 1 with probability 𝑇 (𝑠, 𝜋 (𝑠, 𝑡), 𝑡, 𝑠′),
and otherwise 0; and (2) from the induction hypothesis, E[𝑉 𝜋

𝑥 (𝑠, 𝑡 +
1)] = 𝑉 𝜋 (𝑠, 𝑡 + 1) . The RHS is the same as in the Bellman equation

on𝑀 for 𝜋 ; hence E[𝑉 𝜋
𝑥 (𝑠, 𝑡)] = 𝑉 𝜋 (𝑠, 𝑡). □

Our upcoming analysis will depend on generalising value func-

tions to sets of worlds. We define the value function of a set as the

average over its members.

Definition 3. For 𝑍 ⊆ 𝑋 , 𝜋 : 𝑆 × [𝐻 ] → 𝐴, (𝑠, 𝑡) ∈ 𝑆 × [𝐻 ],

𝑉 𝜋
𝑍
(𝑠, 𝑡) def

=
1

|𝑍 |
∑︁
𝑧∈𝑍

𝑉 𝜋
𝑧 (𝑠, 𝑡).

At this point, we can already conceive a recipe based on the classical

TTM method to construct a near-optimal policy for𝑀 . To imple-

ment the idea of Kearns et al. [13], consider the 𝑁 -sized subset of

worlds 𝑋 ′ ⊆ 𝑋 , given by 𝑋 ′ =
{
1
|𝑆 | |𝐴 |𝐻 , 2 |𝑆 | |𝐴 |𝐻 , . . . , 𝑁 |𝑆 | |𝐴 |𝐻 }

.

By design, no two worlds in 𝑋 ′
share any samples; hence they

can provide 𝑁 independent value function estimates for each pol-

icy. From Hoeffding’s Inequality [8], the value function of each

policy would be 𝜖-optimal with probability 1 − 𝛿/|Π | for 𝑁 =

𝑂

(
(𝑉max )2

𝜖2
log

|Π |
𝛿

)
. Thus, an algorithm that returns an “optimal

policy” for 𝑋 ′
from a set of policies Π would meet our PAC crite-

rion with about 𝑂

(
|𝑆 | |𝐴 |𝐻 (𝑉max )2

𝜖2
log

|Π |
𝛿

)
samples [10, 13]. Unfor-

tunately, it is not easy to compute an optimal policy for 𝑋 ′
if the

policy class Π is the (usual) set of Markovian, non-stationary poli-

cies. The structure of 𝑋 ′
is such that in general, history-dependent

policies can perform strictly better than Markovian policies. On the

other hand, it is straightforward to compute an optimal Markovian,

non-stationary policy for the entire universe of worlds 𝑋 . In fact,

as formalised in the following lemma, value functions of policies

turn out to be identical on 𝑀 and on 𝑋 . Therefore, the output of

CEM-NS—𝜋—is itself an optimal policy for 𝑋 !

Lemma 4 (Consistency of 𝑋 and𝑀). For 𝜋 : 𝑆 × [𝐻 ] → 𝐴 and
(𝑠, 𝑡) ∈ 𝑆 × [𝐻 ],

𝑉 𝜋
𝑋
(𝑠, 𝑡) = 𝑉 𝜋

𝑀
(𝑠, 𝑡).

The proof of this important lemma is given in Appendix A.
1
The

idea is to expand 𝑉 𝜋
𝑋

and use the fact that each sample in 𝐷 occurs

in exactly the same number of worlds 𝑥 ∈ 𝑋 , whereupon it emerges

that 𝑉 𝜋
𝑋

satisfies the Bellman equations for 𝜋 on𝑀 .

The crux of our paper is in the contrast between 𝑋 ′
and 𝑋 .

Although 𝑉 𝜋
𝑥 is an unbiased estimate of 𝑉 𝜋

for each 𝑥 ∈ 𝑋 and

𝜋 : 𝑆 × [𝐻 ] → 𝐴, the deviation of their average 𝑉 𝜋
𝑋

from 𝑉 𝜋

cannot be bounded directly using Hoeffding’s inequality, since 𝑉 𝜋
𝑥

and 𝑉 𝜋
𝑥 ′ could be dependent for worlds 𝑥, 𝑥 ′ ∈ 𝑋 . For example, the

worlds 1
|𝑆 | |𝐴 |𝐻

and 12
|𝑆 | |𝐴 |𝐻−1

use the same sample for (𝑠0, 𝑎0, 0).
In spite of this dependence, can we still piggyback on the analytical

framework of TTM? Our answer is affirmative, and forms the basis

of our view of CEM as an application of TTM.

4.4 Batches of Mutually-Disjoint Worlds
We consider 𝑁 -sized “batches” within 𝑋 that do lead to indepen-

dent samples of 𝑀 . Define worlds 𝑥, 𝑥 ′ ∈ 𝑋 to be disjoint if for
all (𝑠, 𝑎, 𝑡) ∈ 𝑆 × 𝐴 × [𝐻 ], 𝑥 (𝑠, 𝑎, 𝑡) ≠ 𝑥 ′ (𝑠, 𝑎, 𝑡). In other words,

𝑥 and 𝑥 ′ are disjoint if they do not share any samples. A batch
𝑏 ⊆ 𝑋 is a set of some 𝑁 mutually disjoint elements of 𝑋 . The set

{132212312132, 221323121321, 313131233213} is a batch in Exam-

ple 1, as also is set 𝑋 ′
from Section 4.3. For 𝑥 ∈ 𝑋 , let 𝐵𝑥 be the

set of all batches in which 𝑥 is present, and let 𝐵 be the set of all

batches. Simple counting (provided in Appendix B) shows that for

𝑥 ∈ 𝑋 , |𝐵𝑥 | = (𝑁 − 1)! |𝑆 | |𝐴 |𝐻−1
, and |𝐵 | = 𝑁 !

|𝑆 | |𝐴 |𝐻−1
. Recall that

𝑉 𝜋
𝑋

is the average value function of 𝜋 over worlds 𝑥 ∈ 𝑋 . At the

heart of our proof is the following equation, which shows 𝑉 𝜋
𝑋

also

as the average of the value functions of 𝜋 over batches 𝑏 ∈ 𝐵.

𝑉 𝜋
𝑋
(𝑠, 𝑡) = 1

|𝑋 |
∑︁
𝑥∈𝑋

𝑉 𝜋
𝑥 (𝑠, 𝑡) = 1

|𝑋 |
∑︁
𝑏∈𝐵

∑︁
𝑥∈𝑏

1

|𝐵𝑥 |
𝑉 𝜋
𝑥 (𝑠, 𝑡)

=
𝑁

|𝑋 | (𝑁 − 1)! |𝑆 | |𝐴 |𝐻−1

∑︁
𝑏∈𝐵

∑
𝑥∈𝑏 𝑉

𝜋
𝑥 (𝑠, 𝑡)

𝑁

=
1

|𝐵 |
∑︁
𝑏∈𝐵

𝑉 𝜋
𝑏
(𝑠, 𝑡). (4)

The significance of (4) is that for each batch 𝑏 ∈ 𝐵, 𝑉 𝜋
𝑏

is indeed

an average of 𝑁 independent random variables, whose deviation

from their expected value can be bounded using Hoeffding’s in-

equality. Since 𝑉 𝜋
𝑋

is a convex combination of 𝑉 𝜋
𝑏
, 𝑏 ∈ 𝐵, we can

apply Hoeffding’s (less-used) result on the sums of dependent ran-

dom variables [8, see Section 5]. We restate Hoeffding’s result as

1
Appendices (A through F) are provided with the longer version of this paper [11].

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

1083



the following lemma. The commonly-used version of Hoeffding’s

inequality for independent random variables [8, see Theorem 2] is

obtained by taking𝑚 = 1.

Lemma 5. [Hoeffding’s inequality for average of certain dependent
random variables] Fix positive integers ℓ and𝑚. For 𝑖 ∈ {1, 2, . . . ℓ},
𝑗 ∈ {1, 2, . . . ,𝑚}, let𝑈𝑖, 𝑗 be a real-valued random variable supported
on [𝛼, 𝛽] ⊂ R; suppose 𝑈𝑖, 𝑗 and 𝑈𝑖, 𝑗 ′ are independent for 𝑗, 𝑗 ′ ∈
{1, 2, . . . ,𝑚} if 𝑗 ≠ 𝑗 ′. Note that 𝑈𝑖, 𝑗 and 𝑈𝑖′, 𝑗 ′ could be dependent if
𝑖 ≠ 𝑖′, for 𝑖, 𝑖′ ∈ {1, 2, . . . , ℓ}, and 𝑗, 𝑗 ′ ∈ {1, 2, . . . ,𝑚}. Define

𝑈𝑖
def
=

1

𝑚

𝑚∑︁
𝑗=1

𝑈𝑖, 𝑗 and𝑈
def
=

ℓ∑︁
𝑖=1

𝑝𝑖𝑈𝑖

for some 𝑝1, 𝑝2, . . . , 𝑝ℓ ∈ [0, 1] satisfying ∑ℓ
𝑖=1 𝑝𝑖 = 1. For 𝛾 > 0,

P{𝑈 ≥ E[𝑈 ] + 𝛾} ≤ exp

(
−2𝑚𝛾2

(𝛽 − 𝛼)2

)
and

P{𝑈 ≤ E[𝑈 ] − 𝛾} ≤ exp

(
−2𝑚𝛾2

(𝛽 − 𝛼)2

)
.

For convenient reference, we give a proof of this lemma in Ap-

pendix C (the original proof is from Hoeffding [8, see Section 5]).

We are ready for our main result, which uses Lemma 5 to legitimise

CEM’s approach of optimising behaviour uniformly over every

possible batch, in contrast with TTM’s approach of doing so for a

single, arbitrary batch.

Theorem 6 (Sample complexity of CEM-NS). The CEM-NS
algorithm provides the relevant PAC guarantee for non-stationary
MDP𝑀 with parameters 𝜖 ∈ (0,𝑉𝑚𝑎𝑥 ), 𝛿 ∈ (0, 1) if run with

𝑁 =

⌈
2(𝑉max)2

𝜖2
ln

|𝑆 | |𝐴| |𝑆 |𝐻
𝛿

⌉
.

Proof. Recall that CEM-NS returns 𝜋 , which depends on the

data𝐷 , and hence is random. Lemma 4 gives us that 𝜋 is optimal for

𝑋 . Now, if 𝜋 is not 𝜖-optimal for𝑀 , it means that either (i) 𝑋 under-

estimates 𝑉 𝜋★ (𝑠, 0) by at least
𝜖
2
, or (ii) 𝑋 over-estimates 𝑉 𝜋 (𝑠, 0)

by at least
𝜖
2
for some non-𝜖-optimal policy 𝜋 : 𝑆 × [𝐻 ] → 𝐴 and

state 𝑠 ∈ 𝑆 . From (4), we have that 𝑉 𝜋
𝑋
(𝑠, 0) =

∑
𝑏∈𝐵

1

|𝐵 |𝑉
𝜋
𝑏
(𝑠, 0),

where 𝑉 𝜋
𝑏
(𝑠, 0) for each 𝑏 ∈ 𝐵 is a sum on 𝑁 independent random

variables with mean𝑉 𝜋 (𝑠, 0) (from Lemma 2). Define 𝛿 ′
def

= 𝛿

|𝑆 | |𝐴 | |𝑆 |𝐻 .

We apply Lemma 5 to get P
{
𝑉 𝜋★

𝑋
(𝑠, 0) ≤ 𝑉 𝜋★ (𝑠, 0) − 𝜖

2

}
≤ 𝛿 ′ and

P
{
𝑉 𝜋
𝑋
(𝑠, 0) ≥ 𝑉 𝜋 (𝑠, 0) + 𝜖

2

}
≤ 𝛿 ′ for 𝑠 ∈ 𝑆 and 𝜋 : 𝑆×𝐻 → 𝐴. Since

there are |𝑆 | states and |𝐴| |𝑆 |𝐻 policies, a union bound establishes

that 𝜋 is 𝜖-optimal with probability at least |𝑆 | |𝐴| |𝑆 |𝐻𝛿 ′ = 𝛿 . □

Since each (𝑠, 𝑎, 𝑡) ∈ 𝑆 ×𝐴× [𝐻 ] is sampled 𝑁 times by CEM-NS,

and since 𝑉max ≤ 𝐻 , the algorithm’s overall sample complexity is

𝑂

(
|𝑆 | |𝐴|𝐻3

𝜖2

(
log

1

𝛿
+ |𝑆 |𝐻 log |𝐴|

))
.

Recall that Li et al. [16] show a bound of �̃�

(
|𝑆 | |𝐴 |𝐻 4

𝜖2
log

1

𝛿

)
samples

for CEM-NS. In the regime that 𝛿 is made small after fixing other

parameters, our bound is tighter by a factor of𝐻 . This is a significant

result since the coefficient of log
1

𝛿
now has a cubic dependence

on the horizon—which we show is unavoidable by providing an

explicit lower bound in Section 6.

5 STATIONARY MDPS
In this section, we analyse CEM when applied to stationary MDP

𝑀 . We now use𝑀 , 𝜋 , and 𝑋 to denote corresponding objects in the

stationary setting.

5.1 Certainty-Equivalence: CEM-S Algorithm
We continue with the same definition of𝑀 = (𝑆,𝐴,𝑇 , 𝑅, 𝐻,𝛾), only
now assuming that𝑇 and 𝑅 do not depend on the time step 𝑡 (which

we drop from our notation). Consistent with previous literature,

we also assume 𝐻 = ∞. Since there is no time-dependence, we take

that each tuple (𝑠, 𝑎) ∈ 𝑆 ×𝐴 is sampled 𝑁 times, 𝑁 ≥ 1, in the data

𝐷 . For (𝑠, 𝑎, 𝑠′) ∈ 𝑆 × 𝐴 × 𝑆 , let count(𝑠, 𝑎, 𝑠′) denote the number

of transitions observed in 𝐷 to reach 𝑠′ by taking 𝑎 from 𝑠 . The

empirical MDP𝑀 = (𝑆,𝐴,𝑇 , 𝑅, 𝐻,𝛾) therefore satisfies

𝑇 (𝑠, 𝑎, 𝑠′) = count(𝑠, 𝑎, 𝑠′)
𝑁

for 𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴. It is well-known that every stationary, infinite-

horizon MDP admits a deterministic optimal policy. The optimal

value function 𝑉★

𝑀
and optimal policy 𝜋 : 𝑆 → 𝐴 satisfy

𝑉★

𝑀
(𝑠) = max

𝑎∈𝐴

(
𝑅(𝑠, 𝑎) + 𝛾

∑︁
𝑠′∈𝑆

𝑇 (𝑠, 𝑎, 𝑠′)𝑉★

𝑀
(𝑠′)

)
;

𝜋 (𝑠) ∈ argmax

𝑎∈𝐴

(
𝑅(𝑠, 𝑎) + 𝛾

∑︁
𝑠′∈𝑆

𝑇 (𝑠, 𝑎, 𝑠′)𝑉★

𝑀
(𝑠′)

)
for 𝑠 ∈ 𝑆 . 𝑉★

𝑀
and 𝜋 may be computed from 𝐷 by value iteration,

policy iteration, or linear programming [17]. Our upcoming sample-

complexity bound would only get scaled by a constant factor, say,

if an
𝜖
2
-optimal policy is computed for 𝑀—and this computation

needs only a polynomial number of arithmetic operations in |𝑆 |,
|𝐴|, 1

1−𝛾 , and log
1

𝜖 . To keep the exposition uncluttered, we assume

that our certainty-equivalence implementation—denoted CEM-S

(“S” for “stationary”)—indeed computes and returns 𝜋 exactly.

5.2 Truncated Horizon
The assumption of a finite horizon 𝐻 in the non-stationary setting

meant that our worlds would also have this same horizon 𝐻 . Since

we have taken 𝐻 = ∞ for stationary 𝑀 , we require an interme-

diate step to apply the framework of a set of worlds. Consider a

finite horizon MDP 𝑀
𝐻

= (𝑆,𝐴,𝑇 , 𝑅, 𝐻,𝛾) that is identical to 𝑀

other than for having a finite horizon 𝐻
def

=

⌈
1

1−𝛾 ln

(
4𝑉max

𝜖

)⌉
. The

corresponding empirical MDP is 𝑀
𝐻

= (𝑆,𝐴,𝑇 , 𝑅, 𝐻,𝛾). Since the
infinite-discounted sum from each state is constrained to [0,𝑉max],
the truncation loss E𝜋 [

∑∞
𝑡=𝐻

𝛾𝑡𝑟𝑡 ] must lie in [0, 𝛾𝐻𝑉max] ⊆ [0, 𝜖
4
]

on both𝑀 and𝑀 .

Proposition 7 (Bounded truncation loss). For 𝜋 : 𝑆 → 𝐴,
𝑠 ∈ 𝑆 :

𝑉 𝜋 (𝑠) − 𝜖

4

≤ 𝑉 𝜋
𝑀

𝐻
(𝑠, 0) ≤ 𝑉 𝜋 (𝑠);𝑉 𝜋

𝑀
(𝑠) − 𝜖

4

≤ 𝑉 𝜋

𝑀
𝐻

(𝑠, 0) ≤ 𝑉 𝜋

𝑀
(𝑠) .

The truncated horizon 𝐻 has no relevance to the CEM-S algo-
rithm itself; the algorithm is based on the true (infinite) horizon
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of𝑀 . However, our analysis works on𝑀
𝐻
, using worlds of length

|𝑆 | |𝐴|𝐻 to encode samples. Proposition 7 enables us to relate the

extent of sub-optimality over a finite horizon 𝐻 with that on an

infinite horizon.

5.3 Set of Worlds
Each world 𝑥 in our set of worlds 𝑋 is an |𝑆 | |𝐴|𝐻 -length string on

the alphabet [𝑁 ]. It associates a transition sample from 𝐷 for each

(𝑠, 𝑎, 𝑡) ∈ 𝑆 × 𝐴 × [𝐻 ]. However, since 𝑀
𝐻
is stationary, samples

are not distinguished based on time step in the data 𝐷 . Hence, if 𝐷

in Example 1 had come from a stationary MDP, we would ignore

𝑡 and pool together all 𝑁 = 9 samples for each (state, action) pair.

Thus, for the pair (𝑠0, 𝑎0), the sequence of samples (read row by

row from top to bottom, and left to right within each row) would

be 𝑠1, 𝑠1, 𝑠1, 𝑠0, 𝑠0, 𝑠1, 𝑠1, 𝑠0, 𝑠0. The world 𝑥 = 571634978542 would

induce a deterministic MDP with probabilities of 1 for the twelve

transitions (𝑠0, 𝑎0, 0, 𝑠0), (𝑠0, 𝑎0, 1, 𝑠1), (𝑠0, 𝑎0, 2, 𝑠1), (𝑠0, 𝑎1, 0, 𝑠1),
(𝑠0, 𝑎1, 1, 𝑠1), (𝑠0, 𝑎1, 2, 𝑠0), (𝑠1, 𝑎0, 0, 𝑠1), (𝑠1, 𝑎0, 1, 𝑠0), (𝑠1, 𝑎0, 2, 𝑠1),
(𝑠1, 𝑎1, 0, 𝑠0), (𝑠1, 𝑎1, 1, 𝑠0), and (𝑠1, 𝑎1, 2, 𝑠0). In general there are

𝑁 |𝑆 | |𝐴 |𝐻
worlds 𝑥 ∈ 𝑋 .

In the stationary setting, it is seen that 𝑋 evaluates policies

identical to𝑀
𝐻
.

Lemma 8 (Consistency of 𝑋 and 𝑀
𝐻
). For 𝜋 : 𝑆 × [𝐻 ] → 𝐴

and (𝑠, 𝑡) ∈ 𝑆 × [𝐻 ],
𝑉 𝜋
𝑋
(𝑠, 𝑡) = 𝑉 𝜋

𝑀
𝐻

(𝑠, 𝑡).

The proof of Lemma 8 is identical to that of Lemma 4, and given

in Appendix A. The lemma and upcoming results also apply to

stationary policies (the “𝑡” comes from the finite horizon of𝑀
𝐻
).

5.4 Biased and Unbiased Worlds
Recall that in the non-stationary setting, not all 𝑥 ∈ 𝑋 were mu-

tually disjoint—which means their induced MDPs had dependent

transitions. We resolved this issue by partitioning 𝑋 into 𝑁 -sized

batches of mutually-disjoint worlds. In the stationary setting, we

could encounter an issue of dependence even within a single world

𝑥 ∈ 𝑋 . Consider the world 𝑥 = 4416823295 from Example 1: this

world is constrained to set both 𝑇𝑥 (𝑠0, 𝑎0, 0, 𝑠0) and 𝑇𝑥 (𝑠0, 𝑎0, 1, 𝑠0)
based on the the same sample, namely the 4

th
one collected for

(𝑠0, 𝑎0). Consequently,𝑇𝑥 (𝑠0, 𝑎0, 0, 𝑠0) is dependent on𝑉 𝜋
𝑥 (𝑠0, 1) for

any policy 𝜋 that takes 𝑎0 from 𝑠0 at time step 1. We can no longer

claim E[𝑉 𝜋
𝑥 ] = 𝑉 𝜋

𝑀
𝐻

(like we did while analysing CEM-NS, in the

proof of Lemma 2).

To proceed, we partition𝑋 into sets𝑋
biased

and𝑋
unbiased

. The set

𝑋
biased

contains all worlds 𝑥 ∈ 𝑋 for which there exist (𝑠, 𝑎, 𝑡, 𝑡 ′) ∈
𝑆 × 𝐴 × [𝐻 ] × [𝐻 ], 𝑡 ≠ 𝑡 ′, such that 𝑥 (𝑠, 𝑎, 𝑡) = 𝑥 (𝑠, 𝑎, 𝑡 ′). Such
worlds induce MDPs that provide possibly biased value estimates.

The complementary set𝑋
unbiased

def

= 𝑋 \𝑋
biased

contains worlds that

do provide an unbiased estimate of the value function of each policy

𝜋 : 𝑆 × [𝐻 ] → 𝐴 on𝑀
𝐻
.

Lemma 9 (Worlds in 𝑋unbiased provide unbiased estimates).

For 𝑥 ∈ 𝑋
unbiased

, 𝜋 : 𝑆 × [𝐻 ] → 𝐴, (𝑠, 𝑡) ∈ 𝑆 × [𝐻 ],
E[𝑉 𝜋

𝑥 (𝑠, 𝑡)] = 𝑉 𝜋
𝑀

𝐻
(𝑠, 𝑡) .

The proof is identical to the one of Lemma 2, relying on the

independence of random variables𝑇𝑥 (𝑠, 𝜋 (𝑠), 𝑡, 𝑠′) and𝑉 𝜋
𝑥 (𝑠′, 𝑡 + 1)

for 𝑥 ∈ 𝑋
unbiased

.

Without any useful handle on worlds 𝑥 ∈ 𝑋
biased

, our strategy

is to show that the size of 𝑋
biased

as a fraction of |𝑋 | vanishes with
𝑁 , implying that 𝑉 𝜋

𝑋biased

influences 𝑉 𝜋
𝑋

only marginally when 𝑁 is

sufficiently large. The following lemma is proven in Appendix D.

Lemma 10 (Error from biased worlds vanishes with 𝑁 ). For
𝜋 : 𝑆 × [𝐻 ] → 𝐴, (𝑠, 𝑡) ∈ 𝑆 × [𝐻 ]:���𝑉 𝜋

𝑋
(𝑠, 𝑡) −𝑉 𝜋

𝑋unbiased

(𝑠, 𝑡)
��� ≤ |𝑆 | |𝐴|𝐻 (𝐻 − 1)𝑉max

𝑁
.

Finally, just as we grouped 𝑥 ∈ 𝑋 into mutually-disjoint batches

in Section 4, we do the same for 𝑥 ∈ 𝑋
unbiased

in the stationary

setting. We do not consider worlds in 𝑋
biased

for this grouping.

Recall that worlds 𝑥 and 𝑥 ′ are disjoint if and only if 𝑥 (𝑠, 𝑎, 𝑡) ≠

𝑥 ′ (𝑠, 𝑎, 𝑡) for all (𝑠, 𝑎, 𝑡) ∈ 𝑆 ×𝐴 × [𝐻 ]. Assume for simplicity that

𝑁 is a multiple of 𝐻 , and define 𝑁 ′ = 𝑁 /𝐻 . Calculations provided

in Appendix B show that (1) |𝑋
unbiased

| = 𝑁 !
|𝑆 | |𝐴|

(𝑁−𝐻 )!|𝑆 | |𝐴| , (2) the set

of all batches 𝐵 (each batch containing 𝑁 ′
mutually-disjoint worlds

𝑥 ∈ 𝑋
unbiased

) is of size
𝑁 !

|𝑆 | |𝐴|
𝑁 ′

!
, and (3) the set of all batches 𝐵𝑥 that

contain any particular world 𝑥 ∈ 𝑋
unbiased

is of size
(𝑁−𝐻 )!|𝑆 | |𝐴|

(𝑁 ′−1)! .

Substituting into a working similar to (4), we observe

𝑉 𝜋
𝑋unbiased

(𝑠, 𝑡) = 1

|𝐵 |
∑︁
𝑏∈𝐵

𝑉 𝜋
𝑏
(𝑠, 𝑡) (5)

for 𝜋 : 𝑆 × [𝐻 ] → 𝐴, (𝑠, 𝑡) ∈ 𝑆 × [𝐻 ], which facilitates the use of

Lemma 5 on 𝑉 𝜋
𝑋unbiased

.

We have all the elements ready for an upper bound on the sample

complexity of CEM-S.

Theorem 11 (Sample complexity of CEM-S). The CEM-S al-
gorithm provides the relevant PAC guarantee for stationary MDP𝑀
with parameters 𝜖 ∈ (0,𝑉𝑚𝑎𝑥 ), 𝛿 ∈ (0, 1) if run with

𝑁 = max

(⌈
32(𝑉max)2

𝜖2
ln

|𝑆 | |𝐴| |𝑆 |
𝛿

⌉
,

⌈
8|𝑆 | |𝐴| (𝐻 − 1)𝑉max

𝜖

⌉)
𝐻.

The proof (given in detail in Appendix E) follows the same core

structure as of the non-stationary case in Theorem 6, but requires

additional steps to account for the truncated horizon 𝐻 and the

partition of 𝑋 into sets 𝑋
biased

and 𝑋
unbiased

. We infer that the

sample complexity of CEM-S is

𝑂

(
|𝑆 | |𝐴|

(1 − 𝛾)3𝜖2

(
log

1

(1 − 𝛾)𝜖

) (
log

1

𝛿
+ |𝑆 | |𝐴|𝜖 log 1

1 − 𝛾

))
.

Unlike existing upper bounds [1, 3] that only hold for restricted

ranges of 𝜖 , this bound applies to the entire range of problem pa-

rameters. Observe that the coefficient of log( 1
𝛿
) is �̃�

(
|𝑆 | |𝐴 |

(1−𝛾 )3𝜖2
)
.

Thus, we have the novel result that for arbitrary, fixed values of |𝑆 |,
|𝐴|, 𝜖 , and 𝛾 , CEM-S is optimal up to logarithmic factors as 𝛿 → 0.

The notion of optimality in the limit as 𝛿 → 0 has also been applied

in other PAC learning contexts [7].
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6 SAMPLE-COMPLEXITY LOWER BOUND FOR
FINITE-HORIZON MDPS

In this section, we furnish a lower bound on the sample complexity

required for any PAC algorithm on finite-horizonMDPs. This bound,

shown by constructing a family of stationary MDPs, applies to

both stationary and to non-stationary MDPs. The basic structure is

taken from Azar et al. [3], who provide a similar lower bound for

infinite-horizon MDPs with discounting. The main change required

is to substitute terms depending on discount factor 𝛾 with terms

depending on horizon𝐻 . We also note that the lower bound of Azar

et al. [3] applies only to a restricted class of algorithms that make

“independent” predictions for “independent” state-action pairs [3,

see Lemma 18]. To obtain a more general result, we also borrow

from the proof structure used by Mannor and Tsitsiklis [18] for

best-arm identification in stochastic multi-armed bandits.

At each step, algorithmL has a history of (state, action, time step)

triples that have already been sampled, along with their observed

outcomes (next states). The algorithm must either (1) stop and

publish �̂� (𝑠, 𝑎, 0) for each (𝑠, 𝑎) ∈ 𝑆 ×𝐴, or (2) specify a probability

distribution over all (𝑠, 𝑎, 𝑡) ∈ 𝑆 ×𝐴 × [𝐻 ]. If the latter, an (𝑠, 𝑎, 𝑡)
triple is sampled, its outcome recorded, and the process moves

to the next step. For 𝜖 > 0, the output of L is 𝜖-correct if for all

(𝑠, 𝑎) ∈ 𝑆 ×𝐴, |𝑄★(𝑠, 𝑎, 0) − �̂� (𝑠, 𝑎, 0) | ≤ 𝜖 . In turn, for 𝛿 > 0, L is

an (𝜖, 𝛿)-PAC algorithm if on each input MDP, the probability that

L stops and returns an 𝜖-correct output is at least 1 − 𝛿 .

Observe that we provide a lower-bound for accurately estimating

𝑄-values; this is mainly for being consistent with Azar et al. [3]. It

is easily shown that the same lower bound holds (up to a constant

factor) for estimating an 𝜖-optimal policy with probability 1 − 𝛿 . In

our working, we use 𝑄★(𝑠, 𝑎) and �̂� (𝑠, 𝑎) to denote 𝑄★(𝑠, 𝑎, 0) and
�̂� (𝑠, 𝑎, 0), respectively. Below is our formal statement.

Theorem 12. Fix set of states 𝑆 , set of actions𝐴 arbitrarily, and let
horizon 𝐻 > 200. There exist an MDP (𝑆,𝐴,𝑇 , 𝑅, 𝐻,𝛾 = 1), constants
𝑐1 > 0, 𝑐2 > 0 such that for all 𝜖 ∈ (0, 1),𝛿 ∈ (0, 0.5), any (𝜖, 𝛿)−𝑃𝐴𝐶
algorithm L has an expected sample complexity of at least

𝑐1 |𝑆 | |𝐴|𝐻3

𝜖2
ln

(𝑐2
𝛿

)
on this MDP.

The full proof of this theorem is provided in Appendix F. The

proof relies on a purposefully-designed family of MDPs constructed

by Azar et al. [3]. These authors consider two specific MDPs, 𝑀0

and𝑀1, whose 𝑄-functions are more than 2𝜖 apart, and hence any

estimate cannot simultaneously be 𝜖-correct for both MDPs. On

the other hand, since the MDPs are sufficiently close, an agent

cannot distinguish them based on observed samples alone unless

the sample size is sufficiently large. Consequently, unless a sufficient

number of samples are observed, an algorithm must necessarily be

non-(𝜖, 𝛿)-PAC.
Our proof follows this same structure, except (1) we use a finite

horizon𝐻 for theMDP family, and (2) we consider
𝑘
3
+1MDPswhere

𝑘 is the number of state-action pairs. The latter adaptation lets us

extend the lower bound to arbitrary algorithms. In our proof, there

is a base MDP 𝑀0 and for each state-action pair 𝑖 that represents

a choice, an MDP𝑀𝑖 that differs from𝑀0 only at this state-action

pair. We lower-bound the ratio of the likelihood of observing the

same data from these MDPs in terms of the number of samples. If

the sample complexity is “small”, the likelihood ratio bound allows

us to show that if a certain event has a high probability under MDP

𝑀0, it also has a high probability under𝑀𝑖 . By choosing this event

to be the event that |�̂�−𝑄∗
0
| < 𝜖 , we argue that if an algorithm gives

an 𝜖-correct answer with probability at least 1 − 𝛿 on𝑀0, it gives

this same (but now not 𝜖-correct) answer on𝑀𝑖 with probability at

least 1 − 𝛿 . Hence an algorithm cannot be PAC unless the sample

complexity is “large”—as quantified in Theorem 12.

7 CONCLUSION
In this paper, we bring to light a surprising connection between

the well known certainty-equivalence method (CEM) for PAC RL,

and the trajectory tree method (TTM) for decision-time planning.

We show that CEM implicitly computes a policy that simultane-

ously optimises over all possible “batches” of worlds, whereas TTM

explicitly sets up a single batch of trajectory trees (functionally

akin to worlds) to compute its policy. Noticing this connection, we

establish upper bounds for CEM using only Hoeffding’s inequality,

yet which improve upon current bounds in the regime of small

𝛿 . Our results are especially significant in the finite-horizon (non-

stationary) setting, where in spite of making a weaker assumption

on the rewards, we show the minimax-optimality of CEM in the

small-𝛿 regime.

Our new perspective sets up several possible directions for future

work, including (1) the derivation of instance-specific upper bounds

for sequential PAC RL algorithms, and (2) generalising the idea to

formalisms that use function approximation. Finally, (3) it would be

worth investigating the applicability of our analytical framework

to related on-line learning problems, such as exploration in con-

tinuing tasks without “reset” access [4, 21], the episodic off-policy

setting [22], and regret minimisation [2, 5].
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