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ABSTRACT
Causality plays an important role in daily processes, human reason-

ing, and artificial intelligence. There has however not been much

research on causality in multi-agent strategic settings. In this work,

we introduce a systematic way to build a multi-agent system model,

represented as a concurrent game structure, for a given structural

causal model. In the obtained so-called causal concurrent game

structure, transitions correspond to interventions on agent vari-

ables of the given causal model. The Halpern and Pearl framework

of causality is used to determine the effects of a certain value for

an agent variable on other variables. The causal concurrent game

structure allows us to analyse and reason about causal effects of

agents’ strategic decisions. We formally investigate the relation be-

tween causal concurrent game structures and the original structural

causal models.
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1 INTRODUCTION
Causality plays an important role in Artificial Intelligence [16, 21].

A specific type of causality, called ‘actual causality’, concerns causal

relations between concrete events (e.g. throwing a specific rock

shatters a specific bottle) [16]. There is still discussion on what

the best definition of actual causality is (see [13, 15, 16] and [7] for

some of those definitions). However, most approaches like [13] and

[7] use Pearl’s [21] structural model framework. In this structural

model framework, the world is modelled through variables, which

are divided in exogenous and endogenous variables. The former

are variables whose values are determined by causes outside of the

model and the latter are variables whose values are determined by

the variables inside the model (both exogenous and endogenous

variables). The functional dependencies between variables are for-

malised through structural equations. There also exists a rule-based

approach that uses logical language to capture causal relations (see
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[8] and [20]), but we focus on the structural model framework due

to its prominence in the literature [1, 7, 10, 12].

While causal models can in principle depict multi-agent systems

by making a distinction between agent and environment events,

they are less appropriate for reasoning about the abilities and strate-

gies of agents. Concurrent game structures (CGS) have been pro-

posed to reason about agent interactions and strategies [2]. These

structures are graphs where nodes correspond to states of the world

and edges, labelled with agents’ actions, correspond to state transi-

tions [5, 14]. In deterministic settings, an agent strategy specifies

the actions to take by the agent.

Let us introduce an example of a causal model. Consider a semi-

autonomous vehicle controlled jointly by a human driver and an

automatic driving assistance system. This driving assistance system

is in turn supported by an obstacle detection system that signals

to the driving assistant whether there is an obstacle in front of the

vehicle. Both the human driver and the driving assistant control

the forward movement of the vehicle, though the human driver can

always take full control. In a scenario where there is an obstacle in

front of the car, the obstacle causes the obstacle detection system

to send a signal to the driving assistant. If the human driver is in a

distracted state, this signal causes the driving assistant to avoid an

accident. This scenario can be described as a causal system, but can

also be viewed as a multi-agent system where the obstacle detection

system, the driving assistant and the human driver are all seen as

agents that make decisions based on their state observations.

The fundamental relationship between structural causal models

and multi-agent system models manifests itself in modelling phe-

nomena such as responsibility for realising a certain outcome by a

group of agents. In the literature of multi-agent systems, both struc-

tural causal models and CGS are used to define the responsibility

of a group of agents for an outcome [10, 23]. Agents in a structural

causal model are seen as responsible for an outcome if they have

caused it [10]. On the other hand, in a CGS a coalition of agents is

deemed responsible for an outcome if they had a strategy to prevent

it [23]. By establishing the relationship between structural causal

models and CGS, different modelling approaches to multi-agent

phenomena (e.g., responsibility) can be compared and unified.

In this paper, we aim to establish a formal relationship between

structural causal models and concurrent game structures by con-

structing a CGS for a given structural causal model such that if

a group of agents is an actual cause for an outcome in the causal

model, then this group had a strategy in the constructed CGS to

prevent the outcome, provided the other agents act as prescribed by

the causal model. The CGS is built by distinguishing between agent

and environment variables. We consider the values of an agent vari-

able as possible actions of the agent and interventions as agents’
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decisions. We provide several formal results on how strategies in

this causal concurrent game structure (causal CGS) relate to the

original structural causal model, establishing a formal relationship

between structural causal models and CGS. In particular, we show

that a choice of actions by a group of agents is a cause of an outcome

in a structural causal model (under the Halpern-Pearl definition

of an actual cause) if and only if this set of agents has a strategy

for the negation of the outcome in the corresponding causal CGS,

provided the other agents act according to the causal model. We

believe that our framework will be beneficial for supporting causal

inference in multi-agent systems, for example, for reasoning and

attributing responsibility for certain outcomes to groups of agents.

We will now first give some preliminaries on causality and con-

current game structures. In Section 3, we define the translation

from a structural causal model to a causal CGS, after which, in

Section 4, we show how causality in the structural causal model

relates to agent strategies in the causal CGS.

2 BACKGROUND
In this section, we introduce the structural causal model frame-

work that we will use. We also shortly introduce concurrent game

structures and give a formal definition of agent strategies.

Definition 2.1 (Structural Causal Model, Causal Setting [16]). A
structural causal modelM is a pair (S, F ), where S is a signature

and F defines a set of structural equations, relating the values of

the variables. A signature S is a tuple (U,V,R), whereU is a set

of exogenous variables,V is a set of endogenous variables and R
associates with every variable 𝑋 ∈ U ∪V a non-empty set R(𝑋 )
of possible values for 𝑋 .

A causal setting is a tuple (M, u), whereM is a causal model

and u a setting for the exogenous variables inU.

The exogenous variables are variables whose values depend on

factors outside of the model, their causes are not explained by the

model [16, 22]. On the other hand, the endogenous variables are
fully determined by the variables in the model. Note that with u,
we use the bold-face notation to denote that u is a tuple. When

we use this bold-face notation for capital letters X and Y, we are
slightly abusing notation by treating them both as tuples and as

sets. This follows Halpern’s use of the vector notation for both

concepts [16]. This means that we can write X = x to indicate that

the first element of X gets assigned the value of the first element of

x and so on, but that we can also write X′ ⊆ X.

Example 2.2. Consider the semi-autonomous vehicle example

we discussed in the introduction. We can model this example with

exogenous binary variables𝑈𝑂 , that determines whether there will

be an obstacle on the route, and 𝑈𝐴𝑡𝑡 , that determines whether the

human driver is paying attention. For the endogenous variables we

introduce the binary variables𝑂 , indicating that there is an obstacle,

𝐴𝑡𝑡 , indicating that the human driver is paying attention, 𝐻𝐷 for

whether the human driver keeps driving or brakes. Note that we

use 𝐻𝐷 when the human driver keeps driving (¬𝐻𝐷 indicates that

they brake). 𝑂𝐷𝑆 , indicating that the obstacle detection system

detects an obstacle, 𝐷𝐴, for whether the driving assistant keeps

driving or brakes. Note that we use 𝐷𝐴 when the driving assistant

keeps driving (¬𝐷𝐴 indicates that they brake). And 𝐶𝑜𝑙 , indicating

a collision. The setU is hence {𝑈𝑂 ,𝑈𝐴𝑡𝑡 } and the setV is hence

{𝑂,𝐴𝑡𝑡, 𝐻𝐷,𝑂𝐷𝑆, 𝐷𝐴,𝐶𝑜𝑙}.We consider all variables to be Boolean,

so for any variable 𝑋 ∈ U ∪V , R(𝑋 ) = {0, 1}.
The following structural equations are defined for this model:

𝑂 := 𝑈𝑂 𝐴𝑡𝑡 := 𝑈𝐴𝑡𝑡

𝐻𝐷 := ¬𝑂 ∨ (𝑂 ∧ ¬𝐴𝑡𝑡) 𝑂𝐷𝑆 := 𝑂

𝐷𝐴 := 𝐻𝐷 ∧ ¬𝑂𝐷𝑆 𝐶𝑜𝑙 := 𝐷𝐴 ∧ 𝐻𝐷 ∧𝑂.

A causal network is a directed graph with nodes corresponding

to the causal variables inV (andU) with an edge from the node

labelled 𝑋 to the node labelled 𝑌 if and only if the structural equa-

tion for 𝑌 depends on 𝑋 . In other words, we put an edge from node

𝑋 to node 𝑌 if and only if 𝑋 can influence the value of 𝑌 [17]. We

call 𝑌 a descendant of 𝑋 if the graph contains a path from 𝑋 to 𝑌 .

A model that has an acyclic causal network is called strongly re-

cursive [16]. In such models, a setting u of the exogenous variables

U fully determines the values of all other (endogenous) variables.

We call a causal model with an acyclic causal network recursive

because the exogenous variables determine the values of the en-

dogenous variables in a recursive manner. As Halpern explains,

some endogenous variables only depend on exogenous variables,

we call them first-level variables [16]. They get their value directly

from the causal setting. After that, there are the second-level vari-

ables, the endogenous variables that depend on both the first-level

variables and possibly on the exogenous variables. Likewise, the

third-level variables depend on the second-level variables, and pos-

sibly on the exogenous and the first-level variables, and so on for

higher levels. We only consider strongly recursive models in this

paper.

Example 2.3. The causal network for the causal model as de-

scribed in Example 2.2 is given in Figure 1 (the exogenous variables

are not drawn). The graphmakes it easy to see that the causal model

is recursive, i.e. the causal network does not contain cycles. We

can also see the variable levels. 𝑂 and 𝐴𝑡𝑡 are first-level variables,

they only depend on the exogenous variables. 𝐻𝐷 and 𝑂𝐷𝑆 only

depend on 𝑂 and 𝐴𝑡𝑡 and hence are second-level variables. 𝐷𝐴 is a

third-level variable, as it depends on second-level variables, and𝐶𝑜𝑙

is a fourth-level variable, as it depends on both 𝐷𝐴 and lower-level

variables.

Given a signature S = (U,V,R), a formula of the form 𝑋 = 𝑥 ,

for 𝑋 ∈ V and 𝑥 ∈ R(𝑋 ) is called a primitive event [16, 17]. These
primitive events can be combinedwith the Boolean connectives∧,∨
and¬, to form a Boolean combinations of primitive events [16, 17].We

follow Halpern and use (M, u) |= 𝜙 to denote that formula 𝜙 holds
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Figure 1: The causal network for the causal model for the
semi-autonomous vehicle example described in Example 2.2.
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given the values of all variables determined by the causal setting

(M, u) (see [16] for details). A causal formula has the form [𝑌1 ←
𝑦1, ..., 𝑌𝑘 ← 𝑦𝑘 ]𝜑 , where 𝜑 is a Boolean combination of primitive

events, 𝑌1, ..., 𝑌𝑘 ∈ V with 𝑌𝑖 = 𝑌𝑗 if and only if 𝑖 = 𝑗 , and 𝑦𝑖 ∈
R(𝑌𝑖 ) for all 1 ≤ 𝑖 ≤ 𝑘 . Such a formula can be shortened to [Y←
y]𝜑 , and when 𝑘 = 0 it is written as just 𝜑 [17]. (M, u) |= [Y ←
y] (𝑋 = 𝑥) says that after an intervention that sets all variables of

Y to y, it must be the case that 𝑋 = 𝑥 holds in the causal setting

(M, u) (see [16, 17] for more details). We call y a setting for the

variables in Y. We now have the necessary background to give the

modified HP definition of causality:

Definition 2.4 (modified HP Definition [16]). X = x is an actual
cause of 𝜑 in the causal setting (M, u) if the following 3 conditions
hold:

AC1. (M, u) |= X = x and (M, u) |= 𝜑 ;

AC2. There is a setW of variables inV and a setting x′ of variables
inX s.t. if (M, u) |= W = w∗, then (M, u) |= [X← x′,W←
w∗]¬𝜑 .

AC3. 𝑋 is minimal; there is no strict subset X′ of X s.t. X′ = x′

satisfies AC1 and AC2, where x′ is the restriction of x to the

variables in X′.

If W = ∅, we call X = x a but-for cause of 𝜑 .

Example 2.5. Consider our semi-autonomous vehicle example

again. Take the causal setting where u = (1, 0), i.e. 𝑈𝑂 = 1, there

is an obstacle on the route, and𝑈𝐴𝑡𝑡 = 0, the human driver is not

paying attention. Following the equations provided in Example 2.2,

we have that (M, u) |= 𝑂 ∧ ¬𝐴𝑡𝑡 ∧ 𝐻𝐷 ∧ 𝑂𝐷𝑆 ∧ ¬𝐷𝐴 ∧ ¬𝐶𝑜𝑙 .
We want to know which agent was the cause of there being no

collision. It turns out that both𝑂𝐷𝑆 and ¬𝐷𝐴 are but-for causes of

¬𝐶𝑜𝑙 , i.e., (M, u) |= [𝑂𝐷𝑆 ← 0]𝐶𝑜𝑙 and (M, u) |= [𝐷𝐴 ← 1]𝐶𝑜𝑙 .
After all, if we intervene by turning off the object detection system

𝑂𝐷𝑆 (setting its value to 0 in our model, i.e., replacing equation

𝑂𝐷𝑆 = 1 in our model with𝑂𝐷𝑆 = 0, which is formally represented

as [𝑂𝐷𝑆 ← 0]), the driving assistant 𝐷𝐴 will no longer get a signal

that there is an obstacle on the route. This gives 𝐷𝐴 = 1, meaning

that the driving assistant will not brake. Because the human driver

is distracted in this setting, they will also not brake, and so there will

be a collision. Similarly we can also directly intervene on the driving

assistant by turning it off (setting its value to 1, not braking, in our

model by replacing the equation for 𝐷𝐴 with 𝐷𝐴 := 1, represented

by [𝐷𝐴← 1]) and there will be a collision as well.

The aim of this work is to connect this concept of structural

causal models and causality to concurrent game structures. We use

the following definition of concurrent game structures:

Definition 2.6 (Concurrent Game Structures [2]). A concurrent
game structure (CGS) is a tuple 𝐺𝑆 = ⟨𝑁,𝑄,𝑑, 𝛿,Π, 𝜋⟩ with the

following components:

• A natural number 𝑁 ≥ 1 of agents. We identify the agents
with the numbers 1, ..., 𝑁 .

• A finite set 𝑄 of states.

• For each agent 𝑎 ∈ {1, ..., 𝑁 } and each state 𝑞 ∈ 𝑄 , a natural

number 𝑑𝑎 (𝑞) ≥ 1 of moves available at state 𝑞 to agent 𝑎.

We identify the moves of agent 𝑎 at state 𝑞 with the numbers

1, ..., 𝑑𝑎 (𝑞). For each state 𝑞 ∈ 𝑄 , a move vector at 𝑞 is a tuple

⟨ 𝑗1, ..., 𝑗𝑁 ⟩ such that 1 ≤ 𝑗𝑎 ≤ 𝑑𝑎 (𝑞) for each agent 𝑎. Given

a state 𝑞 ∈ 𝑄 , we write 𝐷 (𝑞) for the set {1, ..., 𝑑1 (𝑞)} × · · · ×
{1, ..., 𝑑𝑁 (𝑞)} of move vectors. The function 𝐷 is called move
function.
• For each state 𝑞 ∈ 𝑄 and each move vector ⟨ 𝑗1, ..., 𝑗𝑁 ⟩ ∈
𝐷 (𝑞), a state 𝛿 (𝑞, 𝑗1, ..., 𝑗𝑁 ) ∈ 𝑄 that results from state 𝑞 if

every agent 𝑎 ∈ {1, ..., 𝑁 } chooses move 𝑗𝑎 . The function 𝛿

is called transition function.
• A finite set Π of propositions.
• For each state 𝑞 ∈ 𝑄 , a set 𝜋 (𝑞) ⊆ Π of propositions true at

q. The function 𝜋 is the labelling function.

When we have a CGS, we can reason about what the optimal

actions for a coalition of agents would be in a certain situation. We

often use the concept of strategies for this.

Definition 2.7 (Strategy in Concurrent Game Structures [2]). Given
a concurrent game structure 𝑆 = ⟨𝑁,𝑄,𝑑, 𝛿,Π, 𝜋⟩, a strategy for

agent 𝑎 ∈ {1, ..., 𝑁 } is a function 𝑓𝑎 , that maps any (non-empty)

finite sequence 𝜆 of states in 𝑄 to an action the agent can take at

the last state of the sequence. I.e. if 𝑞 is the last state of 𝜆, then

𝑓𝑎 (𝜆) ≤ 𝑑𝑎 (𝑞). We write 𝐹𝐴 = {𝑓𝑎 | 𝑎 ∈ 𝐴} for a set of strategies of
the agents in 𝐴 ⊆ {1, ..., 𝑁 }.

We now have all preliminaries ready to move on and combine

causality with concurrent game structures.

3 FROM CAUSAL MODEL TO CGS
The goal of this paper is to define a systematic approach to generate

a causal CGS based on a strongly recursive structural causal model.

The motivation is that we want to compare the strategic ability

of coalitions of agents to realise outcomes to causes in the causal

model. Similar translations have been attempted by [3, 12] and [18].

Gladyshev et al. make, like us, a distinction between agent and

environment variables, and they also construct a CGS that takes

the causal structure between agents’ decision and environment

variables into account [12] . However, they take a ‘zoomed out’

approach to the causal model by considering every state in the CGS

as a causal model. In contrast, in this paper, we are interested in the

specific variable values, which we will consider as specific actions

in strategic setting. Another difference with our work is that they

do not look at the relationship between causality in the original

causal model and strategies in the CGS.

A more similar approach to ours was defined by Baier et al. [3],

but they use extensive form games rather than CGS, and do not

distinguish between agent and environment variables. Furthermore,

while they do show a result relating actual causality in the causal

model to some type of strategy in their extensive form game, they

only do this for but-for causes, where we consider the modified HP

definition as well.

Hammond et al. translate the causal model to a multi-agent in-

fluence diagram (MAID) that includes utility variables, with the

primary goal of studying rational outcomes of the grand coalition

[18]. They hence take a game-theoretic approach, where we take a

logic-based approach by focusing on strategic abilities of coalitions

of agents. Nevertheless, we could also apply a game-theoretic anal-

ysis to our model, by extending our CGS to include utility variables.

This is however beyond the scope of this paper.
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3.1 Defining a Causal CGS
In this section we will propose a systematic approach to generate

a causal concurrent game structure based on a strongly recursive

structural causal model. We will use the notion of first-level, second-

level and higher-level variables as explained in the previous section

to determine in which order the agents of the causal model will get

to take actions. For this we define the notion of agent rank:

Definition 3.1. An agent ranking function of a causal modelM
is a function 𝜌 : V → {0, ..., 𝑛}, where 𝑛 is the number of distinct

variable levels for agent variables inM, such that for all 𝐴, 𝐵 ∈ 𝑉𝑎 ,
𝜌 (𝐴) > 𝜌 (𝐵) > 0 if and only if the variable level of𝐴 is higher than

the variable level of 𝐵, and 𝜌 (𝐴) = 𝜌 (𝐵) if and only if 𝐴 and 𝐵 have

the same variable level. For all 𝑋 ∈ 𝑉𝑒 , 𝜌 (𝑋 ) = 𝜌 (𝐴) − 1 if ∃𝐴 ∈ 𝑉𝑎
such that the variable level of 𝑋 is lower or equal to the variable

level of 𝐴, and there is no 𝐵 ∈ 𝑉𝑎 that has a variable level between

𝑋 and 𝐴. If such an 𝐴 does not exist, i.e. if the variable level of 𝑋

is higher than the variable level of all 𝐴 ∈ 𝑉𝑎 , then 𝜌 (𝑋 ) = 𝑛. The

agent rank of a variable 𝐴 ∈ 𝑉𝑎 is 𝜌 (𝐴).

Example 3.2. In the semi-automated vehicle example we say that

𝐻𝐷 , 𝑂𝐷𝑆 and 𝐷𝐴 are the agent variables. We have that 𝑛 = 2 as

𝐻𝐷 and 𝑂𝐷𝑆 are both second-level variables and 𝐷𝐴 is a third

level variable as Example 2.3 discusses. There are hence 2 distinct

variable levels for the agent variables. From this, it follows that

𝜌 (𝐻𝐷) = 𝜌 (𝑂𝐷𝑆) = 1 and 𝜌 (𝐷𝐴) = 2, as the variable level of 𝐷𝐴

is higher than that of 𝐻𝐷 and 𝑂𝐷𝑆 and their agent rank needs to

be higher than 0 and maximally 2. For the environment variables,

we have that 𝜌 (𝑂) = 𝜌 (𝐴𝑡𝑡) = 𝜌 (𝐻𝐷) −1 = 0, because there are no

first-level agent variables, so we need a second-level agent variable

like 𝐻𝐷 . Finally, we have that 𝜌 (𝐶𝑜𝑙) = 2, since the variable level

of 𝐶𝑜𝑙 is 4 which is higher than all agent variable levels, and hence

the agent rank of 𝐶𝑜𝑙 will be the maximum of 2.

We will first define several components of the causal CGS sep-

arately before putting them all together. From now on, we will

assume that all causal models are recursive and have variables

which can only attain finitely many values. Moreover we assume

that a set of agent variables 𝑉𝑎 ⊆ V is given.

Definition 3.3 (States of a causal CGS). Given a causal setting

(M, u), let 𝑛 = max𝑌 ∈𝑉𝑎 𝜌 (𝑌 ) be the maximum value of the agent

ranks for the agents in 𝑉𝑎 and let 𝑚𝑖 =
∏

𝑌 ∈𝑉𝑎,
𝜌 (𝑌 )≤𝑖

|R(𝑌 ) | be the

number of possible combinations of action values for agents with

an agent rank of no more than 𝑖 . The set of states of a causal CGS,
𝑄 , generated based on (M, u), is given by:

𝑄 = {𝑞0,0} ∪ {𝑞𝑖, 𝑗 | 1 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑗 < 𝑚𝑖 }.

We call 𝑞0,0 the starting state of the causal CGS. Later, we will
see that the evaluation in a state 𝑞𝑖, 𝑗 follows from the actions of

agents whose agent variables have agent rank 𝑖 or less.

Example 3.4. Wewill use the causalmodel for the semi-automated

vehicle example to define a causal CGS (see Figure 1). See Example

3.2 for the agent rank of all variables of the causal model. We start

with the setting (M, u) with u = (𝑈𝑂 = 1,𝑈𝐴𝑡𝑡 = 0). The set of
states is then 𝑄 = {𝑞0,0, 𝑞1,0, 𝑞1,1, 𝑞1,2, 𝑞1,3, 𝑞2,0, 𝑞2,1, 𝑞2,2, 𝑞2,3, 𝑞2,4,
𝑞2,5, 𝑞2,6, 𝑞2,7}. Note that:∏

𝑌 ∈𝑉𝑎,𝜌 (𝑌 )≤1 |R(𝑌 ) | =
∏

𝑌 ∈{𝐻𝐷,𝑂𝐷𝑆 } |R(𝑌 ) | = |{0, 1}×{0, 1}| =

4 and

∏
𝑌 ∈𝑉𝑎,𝜌 (𝑌 )≤2 |R(𝑌 ) | =

∏
𝑌 ∈{𝐻𝐷,𝑂𝐷𝑆,𝐷𝐴} |R(𝑌 ) | = 8, so

for 𝑖 = 1, we have 𝑗 ∈ {0, . . . , 3} and for 𝑖 = 2, we have 𝑗 ∈ {0, . . . , 7}.
These are all the states, because the maximum value of the agent

rank 𝜌 is 2.

We will now define the agent actions in those states.

Definition 3.5 (Actions in a causal CGS). Given a causal setting

(M, u) and 𝑄 the corresponding set of states as defined by Def-

inition 3.3. The possible actions for an agent 𝑘 ∈ {1, ..., 𝑁 } in a

state 𝑞𝑖, 𝑗 ∈ 𝑄 are 𝑑𝑘 (𝑞𝑖, 𝑗 ) = R(𝐴𝑘 ), where 𝐴𝑘 is the agent variable

controlled by agent 𝑘 , and 𝜌 (𝐴𝑘 ) = 𝑖 + 1. Otherwise 𝑑𝑘 (𝑞𝑖, 𝑗 ) = {0}.
The intuition behind this definition is that agent variables that

are earlier on a causal path will earlier get to take an action as the

agent variables later on a causal path depend on them. The order

of agent variables on a causal path can be seen as representing a

protocol that determines when each agent has to take its action. We

write 𝑎𝑘 to denote an action of agent 𝑘 ∈ 𝑁 and a𝑖, 𝑗 = ⟨𝑎1, ..., 𝑎𝑁 ⟩ to
denote an action profile taken in a certain state 𝑞𝑖, 𝑗 , i.e., all actions

taken by all agents in state 𝑞𝑖, 𝑗 . It is important to note that for a

given index 𝑖 all states 𝑞𝑖, 𝑗 have the same action profiles that can

be taken in them, regardless of the value of 𝑗 . We denote this set

with A𝑖 . Instead of 𝑑𝑘 for agent 𝑘 , we will sometimes write 𝑑𝐴𝑘
for

the agent variable 𝐴𝑘 corresponding to agent 𝑘 .

Example 3.6. We continue with the situation as in Example 3.4.

The available actions for each agent in each state are:

𝑑𝐻𝐷 (𝑞0,0) = 𝑑𝑂𝐷𝑆 (𝑞0,0) = {0, 1}, 𝑑𝐷𝐴 (𝑞0,0) = ∅,
𝑑𝐻𝐷 (𝑞1, 𝑗 ) = 𝑑𝑂𝐷𝑆 (𝑞1, 𝑗 ) = ∅, 𝑑𝐷𝐴 (𝑞1, 𝑗 ) = {0, 1},
∀𝑗 ∈ {0, . . . , 3}, and
𝑑𝐻𝐷 (𝑞2, 𝑗 ) = 𝑑𝑂𝐷𝑆 (𝑞2, 𝑗 ) = ∅, 𝑑𝐷𝐴 (𝑞2, 𝑗 ) = ∅,
∀𝑗 ∈ {0, . . . , 7}.

These actions must of course lead to transitions to new states.

Definition 3.7 (Transitions in a causal CGS). Given a causal setting
(M, u), 𝑄 the corresponding set of states as defined by Definition

3.3 and actions as defined by Definition 3.5, the state following from

the action profile a𝑖, 𝑗 ∈ A𝑖 , with 𝑖 < max𝑋 ∈𝑉𝑎 𝜌 (𝑋 ), is given by

the transition function 𝛿 , where 𝛿 (𝑞𝑖, 𝑗 , a𝑖, 𝑗 ) = 𝑞𝑖+1, 𝑗 ′ and |A𝑖 | · 𝑗 ≤
𝑗 ′ ≤ |A𝑖 | · ( 𝑗 + 1) − 1, under the condition that if a𝑖, 𝑗 ≠ a′

𝑖, 𝑗
,

then 𝛿 (𝑞𝑖, 𝑗 , a𝑖, 𝑗 ) ≠ 𝛿 (𝑞𝑖, 𝑗 , a′𝑖, 𝑗 ). If 𝑖 = max𝑋 ∈𝑉𝑎 𝜌 (𝑋 ), we define

𝛿 (𝑞𝑖, 𝑗 , a𝑖, 𝑗 ) = 𝑞𝑖, 𝑗 . In this case, there is only one possible action

profile a𝑖, 𝑗 consisting of only the 0 action.

This definition simply says that every unique action profile in

a state leads to a unique new state. This leads to the causal CGS

having a tree structure. It is impossible to return to an earlier state

and every node can only branch out

Example 3.8. Continuing with our running example, we will

write ⟨1, 0, 0⟩ for the action profile ⟨𝐻𝐷 = 1,𝑂𝐷𝑆 = 0, 𝐷𝐴 = 0⟩. We

get that the transitions are:

𝛿 (𝑞0,0, ⟨0, 0, 0⟩) = 𝑞1,0, 𝛿 (𝑞0,0, ⟨0, 1, 0⟩) = 𝑞1,1,

𝛿 (𝑞0,0, ⟨1, 0, 0⟩) = 𝑞1,2, 𝛿 (𝑞0,0, ⟨1, 1, 0⟩) = 𝑞1,3,

𝛿 (𝑞1,0, ⟨0, 0, 0⟩) = 𝑞2,0, 𝛿 (𝑞1,0, ⟨0, 0, 1⟩) = 𝑞2,1,

𝛿 (𝑞1,1, ⟨0, 0, 0⟩) = 𝑞2,2, 𝛿 (𝑞1,1, ⟨0, 0, 1⟩) = 𝑞2,3,

𝛿 (𝑞1,2, ⟨0, 0, 0⟩) = 𝑞2,4, 𝛿 (𝑞1,2, ⟨0, 0, 1⟩) = 𝑞2,5,

𝛿 (𝑞1,3, ⟨0, 0, 0⟩) = 𝑞2,6, 𝛿 (𝑞1,3, ⟨0, 0, 1⟩) = 𝑞2,7,

𝛿 (𝑞2, 𝑗 , ⟨0, 0, 0⟩) = 𝑞2, 𝑗 ∀𝑗 ∈ {0, . . . , 7}.
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Now that we have states, actions and transitions, we just need

the evaluations of the states. The evaluation of a state will depend

on an initial causal setting and the actions the agents have taken

up to this state. The agents fully determine the values of the agent

variables, the environment variables follow from these values and

the context that was used to define the causal CGS.

Definition 3.9 (Evaluation of states in a causal CGS). Given a

causal setting, (M, u), the set of all possible propositions for the
generated causal CGS is Π = {𝑋 = 𝑥 | 𝑋 ∈ V, 𝑥 ∈ R(𝑋 )}. The
valuation of each state 𝑞𝑖, 𝑗 ∈ 𝑄 , with 𝑄 the set of states of the

causal CGS according to Definition 3.3, is defined recursively by

the labelling function 𝜋 , as:

𝜋 (𝑞0,0) = {𝑌 = 𝑦 | (M, u) |= 𝑌 = 𝑦}
𝜋 (𝛿 (𝑞𝑖, 𝑗 , a𝑖, 𝑗 )) = {𝑌 = 𝑦 | (MX𝑖,𝑗←x𝑖,𝑗 ,A𝑖,𝑗←a𝑖,𝑗 , u) |= 𝑌 = 𝑦},

where a𝑖, 𝑗 is an action profile for state 𝑞𝑖, 𝑗 , A𝑖, 𝑗 ← a𝑖, 𝑗 := {𝐴𝑘 ←
𝑎𝑘 | 𝐴𝑘 ∈ 𝑉𝑎, 𝜌 (𝐴𝑘 ) = 𝑖 + 1 and 𝑎𝑘 ∈ a𝑖, 𝑗 } is an intervention con-

structed based on action profile a𝑖, 𝑗 , and X𝑖, 𝑗 ← x𝑖, 𝑗 is recursively
defined by: X𝑖+1, 𝑗 ′ ← x𝑖+1, 𝑗 ′ := X𝑖, 𝑗 ← x𝑖, 𝑗 ∪ A𝑖, 𝑗 ← a𝑖, 𝑗 , if
𝛿 (𝑞𝑖, 𝑗 , a𝑖, 𝑗 ) = 𝑞𝑖+1, 𝑗 ′ with X0,0 ← x0,0 = ∅.

Definition 3.9 says that an agent action leads to an intervention

on the causal setting the causal CGS was based upon. We can see

A𝑖, 𝑗 ← a𝑖, 𝑗 as the intervention that directly follows from the agent

action(s) taken in the state 𝑞𝑖, 𝑗 , X𝑖, 𝑗 ← x𝑖, 𝑗 stores the previous

interventions that were made leading up to the state 𝑞𝑖, 𝑗 . We will

illustrate this in the following example.

Example 3.10. We continue with the situation as in Example 3.8.

We start with the causal setting where 𝑈𝑂 = 1 and 𝑈𝐴𝑡𝑡 = 0, so

𝜋 (𝑞0,0) = {𝑂,¬𝐴𝑡𝑡, 𝐻𝐷,𝑂𝐷𝑆,¬𝐷𝐴,¬𝐶𝑜𝑙}. To determine 𝜋 (𝑞1,0) =
𝜋 (𝛿 (𝑞0,0, ⟨0, 0, 0⟩)), we need A0,0 ← a0,0 = {𝐻𝐷 ← 0,𝑂𝐷𝑆 ← 0}.
This gives us that𝜋 (𝑞1,0) = {𝑌 = 𝑦 | (M𝐻𝐷←0,𝑂𝐷𝑆←0, u) |= 𝑌 = 𝑦}
= {𝑂,¬𝐴𝑡𝑡,¬𝐻𝐷,¬𝑂𝐷𝑆,¬𝐷𝐴,¬𝐶𝑜𝑙}. Similarly we can determine

that𝜋 (𝑞1,1) = {𝑂,¬𝐴𝑡𝑡,¬𝐻𝐷,𝑂𝐷𝑆,¬𝐷𝐴,¬𝐶𝑜𝑙},𝜋 (𝑞1,2) = {𝑂,¬𝐴𝑡𝑡,
𝐻𝐷,¬𝑂𝐷𝑆, 𝐷𝐴,𝐶𝑜𝑙} and𝜋 (𝑞1,3) = {𝑂,¬𝐴𝑡𝑡, 𝐻𝐷,𝑂𝐷𝑆,¬𝐷𝐴,¬𝐶𝑜𝑙}.

Let us now look at 𝜋 (𝑞2,1) = 𝜋 (𝛿 (𝑞1,0, ⟨0, 0, 1⟩)).We needX1,0 ←
x1,0 = (X0,0 ← x0,0 ∪ A0,0 ← a0,0) = ∅ ∪ {𝐻𝐷 ← 0,𝑂𝐷𝑆 ← 0}
as we determined above. The new A1,0 ← a1,0 = {𝐷𝐴← 1}
and so 𝜋 (𝑞2,1) = {𝑌 = 𝑦 | (M𝐻𝐷←0,𝑂𝐷𝑆←0,𝐷𝐴←1, u) |= 𝑌 = 𝑦} =
{𝑂,¬𝐴𝑡𝑡,¬𝐻𝐷,¬𝑂𝐷𝑆, 𝐷𝐴,¬𝐶𝑜𝑙}. The valuations for the other states
are determined similarly (and are shown in Figure 2).

Now that we have these four definitions, we can give the full

definition of a causal CGS.

Definition 3.11 (Causal CGS). Given a causal setting, (M, u), a
causal concurrent game structure is defined as a tuple𝐺𝑆 = ⟨𝑁,𝑄,𝑑,

𝛿,Π, 𝜋⟩ where 𝑁 = |𝑉𝑎 |, every agent only controls one agent vari-

able, 𝑄 is a set of states, as defined by Definition 3.3. For every

agent 𝑘 ∈ {1, ..., 𝑁 }, 𝑑𝑘 (𝑞𝑖, 𝑗 ) gives the moves available to this agent

in state 𝑞𝑖, 𝑗 ∈ 𝑄 , as given by Definition 3.5. The transition function

𝛿 is defined as in Definition 3.7. The set of possible propositions Π
and the valuation function 𝜋 are given by Definition 3.9.

We can now add the results of the previous examples together

and give a full causal CGS for the semi-automated vehicle example.

Example 3.12. Using Definition 3.11, we define 𝑁 = |𝑉𝑎 | =
|{𝐻𝐷,𝑂𝐷𝑆, 𝐷𝐴}| = 3. This gives us a full causal CGS, illustrated

in Figure 2.
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Figure 2: The causal CGS of the semi-automated vehicle ex-
ample. We only show the initial values of the variables of
agent rank 0 in the starting state. In the middle states we
only show the variables with agent rank corresponding to
that state. We also do not show the transitions to the same
state in the leaf-states.

3.2 Properties of Causal Concurrent Game
Structures

We already mentioned that a causal CGS has a tree structure. In the

rest of this paper, we will call states 𝑞𝑖, 𝑗 , with 𝑖 = max𝑋 ∈V 𝜌 (𝑋 ),
the leaf-states. We will call actions in states where an agent does not

control a variable, i.e.𝑎𝑘 = 0, when𝑑𝑘 (𝑞𝑖, 𝑗 ) = {0}, with 𝜌 (𝑋 ) ≠ 𝑖+1,
no-op actions. It is also useful to define an action path for a state

𝑞𝑖, 𝑗 , that contains all the non no-op actions that led to the state. In

other words, the action path contains only the actions that agents

took in a state where they could actually choose an action. We will

denote this sequence of actions as 𝛼 [𝑞𝑖, 𝑗 ]. Formally, for 0 ≤ 𝑘 ≤ 𝑁 ,

an action 𝑎𝑘 is in this set of actions 𝛼 [𝑞𝑖, 𝑗 ] if and only if 𝜌 (𝐴𝑘 ) ≤ 𝑖

and there exists an action profile a𝑖′, 𝑗 ′ , containing 𝑎𝑘 , such that

𝑞𝑖′, 𝑗 ′ ∈ 𝜆[𝑞𝑖, 𝑗 , 𝑖] (the history of 𝑞𝑖, 𝑗 ) and 𝛿 (𝑞𝑖′, 𝑗 ′ , a𝑖′, 𝑗 ′ ) ∈ 𝜆[𝑞𝑖, 𝑗 , 𝑖].
In other words, an action is on the action path for a state 𝑞𝑖, 𝑗 , if the

state 𝑞𝑖′, 𝑗 ′ in which the action is taken lies on the history of 𝑞𝑖, 𝑗 ,

and the successor of 𝑞𝑖′, 𝑗 ′ can be reached when taking this action.

Our first result is on the size of the causal CGS.

Proposition 3.13. LetM = (S, F ) be a causal model. The size
of the causal CGS generated byM is linear in the size of the extension
of F .

Proof. Consider a structural causal model M = (S, F ). Ob-
serve that F specifies the value of each variable for all possible

combinations of values of all other variables. Hence F corresponds

to a table of size |V| ×∏𝑋 ∈V |R(𝑋 ) | (the number of cells), which

is actually the extension of F . We now show that the number of

states in the causal CGS is 𝑂 (∏𝑌 ∈𝑉𝑎 |R(𝑌 ) |).
By Definition 3.3 we have that the number of states of the

causal CGS, is given by |𝑄 | = 1 + ∑𝑛
𝑖=1

∏
𝑌 ∈𝑉𝑎,
𝜌 (𝑌 )≤𝑖

|R(𝑌 ) |, where
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𝑛 = max𝑌 ∈𝑉𝑎 𝜌 (𝑌 ). The number of leaf-states is hence given by∏
𝑌 ∈𝑉𝑎 |R(𝑌 ) | =: |𝑅(𝑉𝑎) |. The number of states for 𝑖 = 𝑛 − 1 will

be at most half |𝑅(𝑉𝑎) |, as there will be at least one variable of

rank 𝑛 that is hence not included in

∏
𝑌 ∈𝑉𝑎,

𝜌 (𝑌 )≤𝑛−1
|R(𝑌 ) |, and this

variable will have at least two possible values. We can continue

this argument until 𝑖 = 1, which shows us that |𝑄 | is bounded by

1 + 1

2
𝑛−1 |𝑅(𝑉𝑎) | + · · · + 1

2
|𝑅(𝑉𝑎) | + |𝑅(𝑉𝑎) | ≤ 2|𝑅(𝑉𝑎) |. Hence the

number of states in the causal CGS is 𝑂 (∏𝑌 ∈𝑉𝑎 |R(𝑌 ) |). Since a
causal CGS is a tree and each state has at most one predecessor,

the number of transitions (the size of 𝛿) is also 𝑂 (∏𝑌 ∈𝑉𝑎 |R(𝑌 ) |),
hence linear in the size of F in the original model. □

The statement in the following lemma is a direct consequence

of the way the valuation of states is determined in a causal CGS. It

states that a variable value cannot change in states corresponding

to a higher agent rank than the agent rank of the variable itself.

Lemma 3.14. Let 𝐺𝑆 be a causal CGS generated by the causal
modelM. For any endogenous causal variable 𝑋 ∈ V ofM, with
𝜌 (𝑋 ) = 𝑖 , it holds that (𝑋 = 𝑥) ∈ 𝜋 (𝑞𝑖, 𝑗 ) for some state 𝑞𝑖, 𝑗 of
𝐺𝑆 , if and only if (𝑋 = 𝑥) ∈ 𝜋 (𝑞𝑖′, 𝑗 ′ ) for all states 𝑞𝑖′, 𝑗 ′ that are
descendants of 𝑞𝑖, 𝑗 .

Proof. Let (𝑋 = 𝑥) ∈ 𝜋 (𝑞𝑖, 𝑗 ). Variable values can change in a

state due to interventions, but the only new interventions done in

states descended from 𝑞𝑖, 𝑗 are interventions on variables with an

agent rank higher than 𝑖 . 𝑋 has agent rank 𝑖 , so by the definition

of agent rank none of those variables can be ancestors of 𝑋 . They

are hence unable to influence the value of 𝑋 . Therefore (𝑋 = 𝑥) ∈
𝜋 (𝑞𝑖′, 𝑗 ′ ) for all states 𝑞𝑖′, 𝑗 ′ descended from 𝑞𝑖, 𝑗 .

Now, let (𝑋 = 𝑥) ∈ 𝜋 (𝑞𝑖′, 𝑗 ′ ) for all states𝑞𝑖′, 𝑗 ′ that are descended
from 𝑞𝑖, 𝑗 . The value of 𝑋 was not changed in any of those states,

because the value of 𝑋 can only change due to an intervention on

𝑋 or an ancestor variable of 𝑋 , so only due to variables of agent

rank smaller or equal to 𝜌 (𝑋 ). The only interventions on variables

that happen in the descendants of 𝑞𝑖, 𝑗 are on variables of agent

rank higher than 𝜌 (𝑋 ), hence 𝑋 must have had the same value in

𝑞𝑖, 𝑗 , i.e. (𝑋 = 𝑥) ∈ 𝜋 (𝑞𝑖, 𝑗 ). □

We define the notion of correspondence to talk about how states

in a causal CGS connect to a causal model.

Definition 3.15 (Correspondence). We say that a state 𝑞𝑖, 𝑗 of a

causal CGS corresponds to a causal setting (MY←y, u), where Y ⊆
V , if for all causal variables 𝑋 ofM, (𝑋 = 𝑥) ∈ 𝜋 (𝑞𝑖, 𝑗 ) if and only

if (MY←y, u) |= 𝑋 = 𝑥 .1

We will sometimes say that a causal setting (MY←y, u) corre-
sponds to a state 𝑞𝑖, 𝑗 of a causal CGS and mean the same thing.

Note that the set Y could also be empty. Hence the causal model

MY←y
in Definition 3.15 could also beM.

We can show that a leaf-state of a causal CGS corresponds to

a causal setting (MY←y, u), where Y← y depends on the action

path that leads to the leaf-state. This connects the definition of

causal CGS to the theory of causal models.

1
So the causal variable 𝑋 has value 𝑥 in the causal setting (MY←y, u) .

Proposition 3.16. Let 𝐺𝑆 be a causal CGS generated by a causal
setting (M, u). If 𝑞𝑛,𝑚 is a leaf-state of 𝐺𝑆 , then 𝑞𝑛,𝑚 corresponds
to the causal setting (MY←y, u), where Y← y = {𝐴𝑘 ← 𝑎𝑘 | 𝐴𝑘 ∈
𝑉𝑎 and 𝑎𝑘 ∈ 𝛼 [𝑞𝑛,𝑚]}, with 𝛼 [𝑞𝑛,𝑚] the action path for 𝑞𝑛,𝑚 .

Proof. By Definition 3.9, (𝑋 = 𝑥) ∈ 𝜋 (𝑞𝑛,𝑚) if and only if

(MX𝑖,𝑗←x𝑖,𝑗 ,A←a, u) |= 𝑋 = 𝑥 , where A← a are the actions taken
in the state before 𝑞𝑛,𝑚 , and X𝑖, 𝑗 ← x𝑖, 𝑗 are all previously taken

actions. Hence Y← y = (A← a) ∪X𝑖, 𝑗 ← x𝑖, 𝑗 and the proposition
is proven. □

This gives us a solid grasp on how a causal CGS relates to the

causal model that generates it. We will use this in the next section

when we talk about the connection between agent strategies in a

causal CGS and causality in this structural causal model.

4 CAUSALITY IN CAUSAL CGS
Now that we have defined causal concurrent game structures and

shown what their states represent, it is time to look at how we can

use them. In this section, we will show some relations between

causal CGS and the modified HP definition of actual causality, but

we first introduce the notion of a causal strategy profile.

From now on, we will denote the set of all agents in a model by

Σ. Specifically, for a causal CGS, Σ = {𝑘 | 𝑋𝑘 ∈ 𝑉𝑎}. This set will
also be called the grand coalition at times. We will use the notation

𝐹𝑋𝑘=𝑥 to denote the strategy for agent 𝑘 where it takes action 𝑥 as

its non no-op action. Formally,

𝐹𝑋𝑘=𝑥 (𝑞𝑖, 𝑗 ) =
{
𝑥 if 𝜌 (𝑋𝑘 ) = 𝑖 + 1
0 else

For a set of agents X, we write 𝐹X=x to indicate the set of strategies
{𝐹𝑋𝑘=𝑥 | 𝑋𝑘 ∈ X, 𝑥 ∈ x}. Let 𝐹𝐴 be a strategy for a set of agents 𝐴,

and 𝐹𝐵 a strategy for a set of agents 𝐵. Following notation in [9],

we will write 𝐹𝐴 ◦ 𝐹𝐵 to denote a strategy profile for the agents in

𝐴 ∪ 𝐵 that follows strategy 𝐹𝐴 for agents in 𝐴 and strategy 𝐹𝐵 for

agents in 𝐵\𝐴.
We define the causal strategy profile as a way to capture the

‘normal’ behaviour of agents when they would follow the causal

model.

Definition 4.1 (Causal Strategy Profile). Given a causal setting

(M, u) and the causal CGS generated by this setting. Define the

causal strategy profile 𝐹M as 𝐹M = {𝐹𝑋𝑘
| 𝑘 ∈ Σ}, where 𝐹𝑋𝑘

(𝑞𝑖, 𝑗 ) =
0 if 𝜌 (𝑋𝑘 ) ≠ 𝑖 + 1, and 𝐹𝑋𝑘

(𝑞𝑖, 𝑗 ) = 𝑥𝑘 otherwise, where 𝑥𝑘 is such

that (M, u) |= [X← x]𝑋𝑘 = 𝑥𝑘 , with X = {𝑋𝑘 ′ | 𝜌 (𝑋𝑘 ′ ) < 𝜌 (𝑋𝑘 )}
and x = {𝑥𝑘 ′ | 𝑥𝑘 ′ ∈ 𝛼 [𝑞𝑖, 𝑗 ]}.

Recall that 𝛼 [𝑞𝑖, 𝑗 ] is the action path up to state 𝑞𝑖, 𝑗 . If we want

an agent 𝑘 to follow a strategy 𝐹𝑘 and the rest of the agents to

follow the causal strategy profile, we denote this as 𝐹𝑘 ◦ 𝐹M . If a

set of agents follows the causal strategy profile, that means that in

every state, the agents take the actions that assign those values to

the agent variables that they would also have gotten in the causal

setting on which the causal CGS is based, given the actions of the

other agents.

Example 4.2. In the semi-automated vehicle example, given the

setting where 𝑈𝑂 = 1 and 𝑈𝐴𝑡𝑡 = 0, the causal strategy profile

𝐹M is such that the human driver does not brake, but the obstacle
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detection system detects the obstacle. The driving assistant brakes

in this case, but whenever one of the 𝐻𝐷 or𝑂𝐷𝑆 performs another

action, 𝐷𝐴 does not brake. The causal strategy profile for a causal

CGS generated by this causal setting is given in Figure 3.
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{¬𝐻𝐷,𝑂𝐷𝑆 }

{𝐻𝐷,¬𝑂𝐷𝑆 }

{𝐻𝐷,𝑂𝐷𝑆 }

{𝑂,¬𝐴𝑡𝑡,¬𝐻𝐷,¬𝑂𝐷𝑆,¬𝐷𝐴,¬𝐶𝑜𝑙 }

{𝑂,¬𝐴𝑡𝑡,¬𝐻𝐷,¬𝑂𝐷𝑆,𝐷𝐴,¬𝐶𝑜𝑙 }

{𝑂,¬𝐴𝑡𝑡,¬𝐻𝐷,𝑂𝐷𝑆,¬𝐷𝐴,¬𝐶𝑜𝑙 }

{𝑂,¬𝐴𝑡𝑡,¬𝐻𝐷,𝑂𝐷𝑆,𝐷𝐴,¬𝐶𝑜𝑙 }

{𝑂,¬𝐴𝑡𝑡,𝐻𝐷,¬𝑂𝐷𝑆,¬𝐷𝐴,¬𝐶𝑜𝑙 }

{𝑂,¬𝐴𝑡𝑡,𝐻𝐷,¬𝑂𝐷𝑆,𝐷𝐴,𝐶𝑜𝑙 }

{𝑂,¬𝐴𝑡𝑡,𝐻𝐷,𝑂𝐷𝑆,¬𝐷𝐴,¬𝐶𝑜𝑙 }

{𝑂,¬𝐴𝑡𝑡,𝐻𝐷,𝑂𝐷𝑆,𝐷𝐴,𝐶𝑜𝑙 }

Figure 3: The causal CGS of the semi-automated vehicle exam-
ple. The dotted lines indicate actions that are not following
the causal strategy profile.

In the following lemma, we relate deviations from the causal

strategy profile to interventions in the structural causal model that

generated the causal CGS. This can be used to relate agent strategies

in the causal CGS to causality in the causal model.

Lemma 4.3. Let 𝐺𝑆 be a causal CGS based on a causal setting
(M, u). If 𝑞𝑛,𝑚 is the leaf-state of 𝐺𝑆 that results from the strategy
profile 𝐹X=x ◦ 𝐹M , then 𝑞𝑛,𝑚 corresponds to (MX←x, u).

Sketch of Proof. The whole proof can be found in the full

version of the paper on arXiv [19], here we just give a sketch

of the approach. This lemma can be proven by induction on the

agent rank of 𝑋 . For the base step, if 𝜌 (𝑋 ) = 0, it means that

𝑋 is an environment variable and does not depend on any other

endogenous variables. We use Lemma 3.14 and this fact to show that

(MX←x, u) |= 𝑋 = 𝑥 . The induction hypothesis (IH) will suppose

that for all 𝑋 ∈ V s.t. 𝜌 (𝑋 ) ≤ 𝑖 , (𝑋 = 𝑥) ∈ 𝜋 (𝑞𝑛,𝑚) if and only

if (MX←x, u) |= 𝑋 = 𝑥 . The inductive step will then consider the

cases where𝑋 ∈ 𝑉𝑎 and𝑋 ∈ 𝑉𝑒 separately. In the first case,𝑋 can be

inX, which means that it gets its value 𝑥 directly from x. Otherwise,
it gets its value from 𝐹M , we use the definition of 𝐹M and the IH to

show that (𝑋 = 𝑥) ∈ 𝜋 (𝑞𝑛,𝑚) ⇔ (MX←x, u) |= 𝑋 = 𝑥 . If 𝑋 ∈ 𝑉𝑒
we use what we have just shown and the IH to show the same

thing. □

The following corollary follows directly from this lemma, it

shows that there is a leaf-state in a causal CGS that corresponds to

the original causal setting.

Corollary 4.4. Let𝐺𝑆 be a causal CGS based on a causal setting
(M, u). If 𝑞𝑛,𝑚 is the leaf-state resulting from all agents following
the causal strategy profile 𝐹M , then 𝑞𝑛,𝑚 corresponds to (M, u).

Proof. This is a special case of Lemma 4.3, where X = ∅. □

We can check whether this result holds in our semi-automated

vehicle example. We see in Figure 3 that if all agents follow the

causal strategy profile, they end up in state 𝑞2,6 with 𝜋 (𝑞2,6) =
{𝑂,¬𝐴𝑡𝑡, 𝐻𝐷,𝑂𝐷𝑆,¬𝐷𝐴,¬𝐶𝑜𝑙}. The causal CGS was based on the

causal setting where there is an obstacle on the road and the

driver is not paying attention, in this case we have (M, u) |=
𝑂,¬𝐴𝑡𝑡, 𝐻𝐷,𝑂𝐷𝑆,¬𝐷𝐴,¬𝐶𝑜𝑙 which does correspond to state 𝑞2,6,

as Corollary 4.4 predicted.

With Lemma 4.3 we can show that if a set of agents X causes 𝜑

according to the modified HP definition, with a given witness, then

in the causal CGS generated by the causal setting that holds this

witness fixed, these agents have a strategy to guarantee ¬𝜑 in a

leaf-state, provided that all other agents follow the causal strategy

profile and vice versa.

Proposition 4.5. Let Γ = {𝑘 | 𝑋𝑘 ∈ X} be a set of agents, x a
setting for the variables in X, and let (M, u) be a causal setting with
(M, u) |= 𝜑 . X = x is, according to the modified HP definition, a
cause of causal formula 𝜑 in this causal setting (M, u), with witness
W = w∗ if and only if in the causal CGS generated by the causal
setting, (MW←w∗ , u), Γ has a strategy 𝐹Γ such that, ¬𝜑 will hold in
the leaf-state 𝑞𝑛,𝑚 resulting from the strategy profile 𝐹Γ ◦ 𝐹M .

Proof. We first prove the cause to strategy direction. In this

case, X = x is a cause of 𝜑 , with witness W = w∗ so there exists

an alternative value for X, x′ such that (M, u) |= [X← x′,W←
w∗]¬𝜑 . Let 𝐹Γ = {𝐹𝑋𝑘=𝑥 | 𝑥 ∈ x′ if 𝑋𝑘 ∈ X}. By Lemma 4.3, the

leaf-state 𝑞𝑛,𝑚 corresponds to (MX←x′,W←w∗ , u), and we have

that (MX←x′,W←w∗ , u) |= ¬𝜑 and hence ¬𝜑 holds in 𝑞𝑛,𝑚 .

Now for the other direction, let 𝐹Γ be the strategy such that

¬𝜑 will hold in the leaf-state 𝑞𝑛,𝑚 that results from the strategy

profile 𝐹Γ ◦ 𝐹M in the causal CGS generated by the causal setting

(MW←w∗ , u). Let x be such that (M, u) |= X = x and let x′ be such
that X = x′ ⊆ 𝜋 (𝑞𝑛,𝑚). By Lemma 4.3, 𝑞𝑛,𝑚 must correspond to

(MX←x′,W←w∗ , u). Hence (M, u) |= [X ← x′,W ← w∗]¬𝜑 and

by definition we have that (M, u) |= X = x ∧ 𝜑 . Moreover, x ≠ x′,
because if they were the same it would not be the case that setting

X to x′ would give a different result than the original causal setting

(the determinism axiom of the causal reasoning axioms [16]). Hence

X = x is a cause of 𝜑 according to the modified HP definition, with

witness W = w∗. □

This result cannot be used to find causes in a causal CGS, because

one would already need to know the witness. However, we have

another result for the causal setting where the witness was not

held fixed, provided the witness consists of only agent variables.

The following proposition states that in that case, the set of agents

consisting of both the cause and the witness variables has a strategy

to guarantee ¬𝜑 in a leaf-state, provided all other agents follow the

causal strategy profile and vice versa.

Proposition 4.6. Let Γ = {𝑘 | 𝑋𝑘 ∈ X ∪W, and X ∪W ⊆ 𝑉𝑎}
be a set of agents, x,w∗ are settings for the variables in X,W respec-
tively, and let (M, u) be a causal setting with (M, u) |= 𝜑 . X = x is,
according to the modified HP definition, a cause of causal formula
𝜑 in this causal setting (M, u), with witnessW = w∗ if and only if
in the causal CGS generated by this causal setting, Γ has a strategy
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𝐹Γ such that, ¬𝜑 will hold in the leaf-state 𝑞𝑛,𝑚 resulting from the
strategy profile 𝐹Γ ◦ 𝐹M .

Sketch of Proof. The proof for this proposition is very similar

to the proof for Proposition 4.5. The main difference is that the

strategy for the witness variables also needs to be defined. The full

proof can be found in the full version of the paper [19]. □

As but-for causes have no witness, they give a stronger result.

Corollary 4.7. Let Γ = {𝑘 | 𝑋𝑘 ∈ X} be a set of agents, x a
setting for the variables in X, and let (M, u) be a causal setting with
(M, u) |= 𝜑 . X = x is a but-for cause of causal formula 𝜑 in this
causal setting (M, u) if and only if in the causal CGS generated by
the causal setting, (M, u), Γ has a strategy 𝐹Γ such that, ¬𝜑 will hold
in the leaf-state 𝑞𝑛,𝑚 resulting from the strategy profile 𝐹Γ ◦ 𝐹M

Proof. A but-for cause is a special case of the modified HP

definition whereW = ∅. This statement is hence a special case of

propositions 4.5 and 4.6. □

Example 4.8. In our running semi-automated vehicle example,

both 𝑂𝐷𝑆 and ¬𝐷𝐴 are but-for causes of ¬𝐶𝑜𝑙 , there being no

collision (in the causal setting that there is an obstacle and the

human driver is not paying attention). In the case of 𝑂𝐷𝑆 we can

define 𝐹𝑂𝐷𝑆 to be the strategy where the obstacle detection system

will not pass on a signal to the driving assistant. If all other agents

follow the causal strategy profile, they will reach state 𝑞2,5. Indeed

𝐶𝑜𝑙 ∈ 𝜋 (𝑞2,5). Similarly, in the case of ¬𝐷𝐴, we can define 𝐹𝐷𝐴 to

be the strategy where the driving assistant does not brake. When

the other agents follow 𝐹M , they will end up in 𝑞2,7. In that state it

is indeed true that 𝐶𝑜𝑙 ∈ 𝜋 (𝑞2,7).

In this section we have shown how agent strategies in a causal

CGS relate to the causal relations in the causal setting the causal

CGS was based on. In order to do this, we have introduced the

notion of a causal strategy profile, a strategy for the grand coalition

that makes sure the agents do exactly those actions they would do

if all relations in the causal model would be followed.

5 CONCLUSION AND DISCUSSION
This paper investigates the relation between two formalisms that

can be used to model multi-agent systems: structural causal models

as introduced by Pearl [21] and concurrent game structures. This is

done by proposing a systematic way to translate structural causal

models to the co-called causal CGS. In such a causal CGS, agents will

get to take their actions at a point corresponding to their position

in the structural causal model. The causal CGS is defined in such a

way that the leaf-states correspond to interventions on the original

structural causal model.

In this paper, we have used the variable levels as defined by

Halpern to determine the position of the variables in the causal

model [16]. However, we can use any function that maps the en-

dogenous variables to the positive integers as long as the function

assigns a lower rank to a variable than to its descendants. In general,

there are multiple of these functions possible for a given structural

causal model. The formal results of this paper will hold for all such

functions, though the structure of the resulting causal CGS may

change due to the specific function used.

We can also relax the assumption that each agent controls exactly

one agent variable. We assumed this to simplify the presentation

of the causal CGS, but it is not a strict requirement. In principle an

agent could control several variables and perform multiple actions,

at several time steps, in the causal CGS.

A limitation of our approach is that in general, we are only able

to give a result for actual causes if we already know the witness.

For but-for causes, we are able to use the agents’ abilities in the

causal CGS to determine the but-for causes, but in general, this is not

possible. Another limitation is that the causal CGS is generated with

respect to a specific causal setting, hence the results only apply to a

single context. This means that if the context is uncertain, multiple

causal CGS have to be made to evaluate all possible outcomes.

However, it is possible that this problem can be solved by using a

version of an epistemic CGS. This can be researched in the future.

So far, we have only looked at deterministic and recursive causal

models to define the causal CGS. However, causal relations are often

probabilistic and cyclic in many practical use cases. Modelling such

cases requires probabilistic and non-recursive causal models to, for

example, capture the mutual dependencies between agents. In order

to deal with probabilities, wewill have to either employ probabilistic

CGS, or use another type of model (e.g. Markov games). Moreover,

allowing cyclic dependencies would make the evaluation of the

states difficult, as the variable values would depend on each other.

We think that this could possibly be dealt with by adding a temporal

component to the model, but this needs more research.

Another direction of future work would be to use this framework

to compare different approaches to defining responsibility in multi-

agent settings. Some existing works define responsibility based on

causal relations between agents and an outcome (like [1, 10, 11] and

[6]), while other work is based on whether agents had a strategy to

avoid the outcome (like [4] and [23]). The definition of causal CGS

might help to combine both directions of research.Moreover, we can

also look at how our approach compares to rule-based approaches to

causality. Since Lorini’s [20] work shows a correspondence between

his rule-based framework for causal reasoning and the structural

equations framework, it seems possible that his framework can also

be shown to have a connection to our causal CGS.

This research could be used in multi-agent systems with a clear

causal structure. Examples of this are traffic control environments,

like planes that cannot land when another is departing, trains that

cannot travel over the same track at the same time, or traffic lights

on a junction that cannot all turn to green at the same time. Other

applications could be in the analysis of multi-player games, after

all, players could cause other players to make a certain move, or

even energy management systems, where supply and demand of

electricity influence each other. In these situations this research

could be used to help making decisions, or after something has

gone wrong to help attributing responsibility for this.
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