
Practical Abstractions for Model Checking
Continuous-Time Multi-Agent Systems
Yan Kim

Interdisciplinary Centre for Security, Reliability, and Trust,

SnT, University of Luxembourg

Esch-sur-Alzette, Luxembourg

yan.kim@uni.lu

Wojciech Jamroga

Institute of Computer Science, Polish Academy of Science

Warsaw, Poland

Interdisciplinary Centre for Security, Reliability, and Trust,

SnT, University of Luxembourg

Esch-sur-Alzette, Luxembourg

w.jamroga@ipipan.waw.pl

Wojciech Penczek

Institute of Computer Science, Polish Academy of Science

Warsaw, Poland

w.penczek@ipipan.waw.pl

Laure Petrucci

LIPN, CNRS UMR 7030, Université Sorbonne Paris Nord

Villetaneuse, France

laure.petrucci@lipn.univ-paris13.fr

ABSTRACT
Model checking of temporal logics in a well established technique

to verify and validate properties of multi-agent systems (MAS).

However, practical model checking requires input models of man-

ageable size. In this paper, we extend the model reduction method

by variable-based abstraction, proposed recently by Jamroga and

Kim, to the verification of real-time systems and properties. To

this end, we define a real-time extension of MAS graphs, extend

the abstraction procedure, and prove its correctness for the univer-

sal fragment of Timed Computation Tree Logic (TCTL). Besides

estimating the theoretical complexity gains, we present an exper-

imental evaluation for a simplified model of the Estonian voting

system and verification using the Uppaal model checker.

KEYWORDS
model checking abstraction; real-time systems; timed automata

ACM Reference Format:
Yan Kim, Wojciech Jamroga, Wojciech Penczek, and Laure Petrucci. 2025.

Practical Abstractions for Model Checking Continuous-Time Multi-Agent

Systems. In Proc. of the 24th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23,
2025, IFAAMAS, 10 pages.

1 INTRODUCTION
Temporal logics have been extensively used to formalize properties

of agent systems, including reachability, liveness, safety, and fair-

ness [26]. Moreover, temporal model checking is a popular approach

to formal verification of MAS [4, 19]. However, the verification is

known to be hard, both theoretically and in practice. State-space

explosion is a major obstacle here, as models of real-world systems

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowe (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

are huge and infeasible even to generate, let alone verify. In conse-

quence, model checking of MAS w.r.t. their modular representations
ranges from PSPACE-complete to undecidable [13, 53].

Much work has been done to contain the state-space explosion

by smart representation and/or reduction of input models. Sym-

bolic model checking based on SAT- or BDD-based representations

of the state/transition space [36, 42, 44, 45, 47, 48, 50] fall into the

former group. Model reduction methods include partial-order re-

duction [28, 41, 49], equivalence-based reductions [2, 6, 25], and

state abstraction [21], see below for a detailed discussion.

In this paper, we extend the idea of variable-based abstraction [38,
39] to the verification of real-time multi-agent systems [1, 3, 12, 52].
Similarly to [38, 39], our abstraction operates entirely on the high-

level, modular representation of an asynchronous MAS. That is,

it takes a concrete modular representation of a MAS as input, and

generates an abstract modular representation as output. Moreover,

it produces the abstract representation without generation of the

explicit state model, thus avoiding the usual computational bottle-

neck.

Related Work. State abstraction was introduced in [21], and stud-

ied intensively in the context of temporal verification [14, 16, 16–

18, 23, 31, 54]. However, those works propose lossless abstraction

that typically obtain up to an order of magnitude reduction of the

state space and output models that are still too large for practical

verification. Here, we focus on lossy may abstractions, based on

user-defined equivalence relations [20, 22, 27, 29–32, 35, 46].

May/must abstractions for strategic properties have been inves-

tigated in [5, 8, 9, 24, 43]. In all those cases, the abstraction method

is defined directly on the concrete model, i.e., it requires to first

generate the concrete global states and transitions, which is ex-

actly the bottleneck that we want to avoid. In contrast, our method

operates on modular (and compact) model specifications, both for

the concrete and the abstract model. Data abstraction methods for

infinite-state MAS [7, 10] come close in that respect, but they still

generate explicit state models. Even closer, [38, 39] proposed re-

cently a user-friendly abstraction scheme via removal of variables

in the modular agent templates. However, all the above approaches

deal only with the verification of untimed models and properties.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1117

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Timed models of MAS and their verification have been studied

for over 30 years now, see e.g. [1, 3, 12] and especially [52] for

an overview. Time-abstracting bisimulation for timed automata

was studied in [56]. In this paper, we extend the ideas and results

from [38] to models of real-time asynchronous MAS of [3].

The study of MAS using Uppaal was conducted in [33] and [34].

However, its authors tackled a different problem — strategy syn-

thesis, in a different setting — stochastic timed games. In some

ways, their methods can be seen as complementary to ours, as they

first synthesize the (witness) strategy and then check its validity;

whereas we mainly focus on the verification of safety properties.

2 REASONING ABOUT REAL-TIME MAS
We start with extending the (untimed) representations of asynchro-

nous MAS in [38] to their timed counterparts.

We first adopt the usual definitions of clocks in timed systems,

e.g. [1]. Let X = {𝑥1, . . . , 𝑥𝑛X } be a finite set of clock variables. A

clock valuation is a mapping 𝜐 : X ↦→ R+.1 Given a valuation 𝜐, a

delay 𝛿 ∈ R+ and 𝑋 ⊆ X, 𝜐 + 𝛿 denotes the valuation 𝜐′, such that

𝜐′ (𝑥) = 𝜐 (𝑥) + 𝛿 for all 𝑥 ∈ X, and 𝜐 [𝑋 = 0] denotes the valuation
𝜐′′, such that 𝜐′′ (𝑥) = 0 for all 𝑥 ∈ 𝑋 and 𝜐′′ (𝑥) = 𝜐 (𝑥) for all
𝑥 ∈ X \ 𝑋 .

The set CX of clock constraints over X is inductively defined by

the following grammar:

𝔠𝔠 ::= ⊤ | 𝑥𝑖 ∼ 𝑐 | 𝑥𝑖 − 𝑥 𝑗 ∼ 𝑐 | 𝔠𝔠 ∧ 𝔠𝔠,

where ⊤ denotes the truth value, ∀𝑖, 𝑗∈{1,...,𝑛X }𝑥𝑖 , 𝑥 𝑗 ∈ X, 𝑐 ∈ N,
and ∼ ∈ {<, ≤,=, ≥, >}.

Let V = {𝑣1, . . . , 𝑣𝑛V } be a finite set of discrete (typed) nu-

meric variables over finite domains. By EvalV we denote the set

of evaluations over the set of (discrete) variables V; an evaluation

𝜂 ∈ EvalV maps every variable 𝑣 ∈ V to a literal from their domain

𝜂 (𝑣) ∈ 𝑑𝑜𝑚𝑎𝑖𝑛(𝑣). Expressions are constructed from variables V
and literals

⋃𝑛V
𝑖=1

𝑑𝑜𝑚𝑎𝑖𝑛(𝑣𝑖) using the arithmetic operators. Atomic

formulas/conditions are built from expressions and relation sym-

bols. They can be further combined with logical connectives to

form predicates. The set of all possible predicates over the variables

V is denoted by CondV .

The sets of all valuations satisfying 𝔠𝔠 ∈ CX and all evaluations

satisfying 𝑔 ∈ CondV shall be denoted by J𝔠𝔠K and J𝑔K respectively.
For 𝑣 ∈ V , 𝑘 ∈ 𝑑𝑜𝑚𝑎𝑖𝑛(𝑣), by 𝑔[𝑣 = 𝑘] we denote the substitution
of all occurrences of the variable 𝑣 in𝑔with the literal𝑘 ; analogously,

for𝑉 ⊆ V , 𝐾 = {𝑘𝑣 ∈ 𝑑𝑜𝑚𝑎𝑖𝑛(𝑣) | 𝑣 ∈ 𝑉 }, by 𝑔[𝑉 = 𝐾] we denote
𝑔[𝑣 = 𝑘𝑣 | 𝑣 ∈ V].

For simplicity, we assume that both X andV have (some) order-

ing fixed. In the sequel, the terms variables and clocks will mean

discrete variables and continuous variables respectively.

2.1 Multi-Agent Graphs with Clocks
In this section, we first introduce the specification of an individual

agent, and a set of agents. The associated model is then defined, as

well as its behaviour.

Definition 2.1 (TAG). A timed agent graph (TAG) is a 10-tuple

𝐺 = (V, Loc, 𝑙0, 𝑔0,Act, Effect,Chan,X,I, 𝐸), where:

1
By R+ we denote the set of non-negative real numbers.

Figure 1: Timed agent graph for the Voter

Figure 2: Timed agent graph for the Authority

Figure 3: Timed agent graph for the Coercer

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1118

• V is a finite set of variables,

• Loc is a finite set of locations, 𝑙0 ∈ Loc is the initial location,
• 𝑔0 ∈ CondV is the initial condition, s.t. J𝑔0K

��
V is a singleton,

2

• Act is a set of actions, where 𝜏 ∈ Act stands for “do nothing”,

• Effect : Act × EvalV ↦→ EvalV is the effect function, such that

Effect (𝜏, 𝜂) = 𝜂 for any 𝜂 ∈ EvalV ,

• Chan is a finite set of asymmetric one-to-one synchronisation

channels; by Sync we denote the set of synchronisation labels of
the form “𝑐ℎ!” and “𝑐ℎ?” for emitting and receiving on a channel

𝑐ℎ ∈ Chan respectively, and “−” for no synchronisation,

• X is a finite set of clocks,

• I : Loc ↦→ CX is a location invariant,

• 𝐸 ⊆ Loc × CondV × CX × Sync × Act × P(X) × Loc is a finite
set of labelled edges, which define the local transition relation.

Following the common practice, the notation 𝑙
𝑔,𝔠𝔠,𝜍,𝛼,𝑋
↩−−−−−−−→ 𝑙 ′

shall be used as a shorthand for (𝑙, 𝑔, 𝔠𝔠, 𝜍, 𝛼, 𝑋, 𝑙 ′) ∈ 𝐸. Given a

synchronisation label 𝜍 , its complement denoted by 𝜍 is defined as

𝑐ℎ! = 𝑐ℎ?, 𝑐ℎ? = 𝑐ℎ! and 𝜍 = 𝜍 when 𝜍 = −.

Example timed agent graphs for a voting and coercion scenario

are shown in Figs. 1, 2, and 3. The scenario is explained in more

detail in Section 5. In order to improve readability, the truth valued

invariants, as well as the edge label components for 𝑔 = ⊤, 𝔠𝔠 = ⊤,
𝜍 = −, 𝑋 = ∅, and 𝛼 = 𝜏 are not explicitly depicted.

Definition 2.2 (TMAS Graph). A timed multi-agent system graph
is a multiset

3
of timed agent graphs 𝑀𝐺 = ⦃𝐺1, . . . ,𝐺N

⦄ with

distinguished
4
set of shared variablesVsh. For simplicity, we assume

that𝑀𝐺 has (some) fixed ordering of its elements.

2.2 Models of Timed MAS Graphs
A combined TMAS graph merges the agent graphs in 𝑀𝐺 into a

single agent graph whose nodes represent the possible tuples of

locations in𝑀𝐺 .

Definition 2.3 (Combined TMAS Graph). Given a TMAS graph

𝑀𝐺 = ⦃𝐺1, . . . ,𝐺N
⦄ with the set of shared variables Vsh, where

𝐺𝑖 = (V𝑖 , Loc𝑖 , 𝑙𝑖
0
, 𝑔𝑖

0
,Act𝑖 , Effect𝑖 ,Chan𝑖 ,X𝑖 ,I𝑖 , 𝐸𝑖), 1 ≤ 𝑖 ≤ N ,

the combined TMAS graph of𝑀𝐺 is defined as a timed agent graph

𝐺𝑀𝐺 = (V, Loc, 𝑙0, 𝑔0,Act, Effect,Chan,X,I, 𝐸), where Chan = ∅,

V =
⋃N

𝑖=1
V𝑖

, Loc =
∏N

𝑖=1
Loc𝑖 , 𝑙0 = (𝑙1

0
, . . . , 𝑙N

0
), X =

⋃N
𝑖=1

X𝑖
,

and 𝑔0 = (𝑔1
0
∧ . . . ∧ 𝑔N

0
). The location invariant is defined as

I(𝑙1, . . . , 𝑙N) = I1 (𝑙1) ∧ . . . ∧ IN (𝑙N) and the set of actions

Act = {𝛼𝑢1 ◦ . . . ◦ 𝛼𝑢𝑘 | 𝛼𝑖 ∈ Act𝑖 , 𝑖 ∈ {𝑢1, . . . , 𝑢𝑘 } ⊆ {1, . . . ,N}},
The effect function Effect : Act × EvalV ↦→ EvalV is defined by:

Effect (𝛼, 𝜂) =
{
𝜂 [V𝑖 = Effect𝑖 (𝛼,𝜂 |V𝑖) (V𝑖)] if 𝛼 ∈ Act𝑖

Effect (𝛼𝑖 , Effect (𝛼 𝑗 , 𝜂)) if 𝛼 = 𝛼𝑖 ◦ 𝛼 𝑗

where 𝜂 [𝑋 = 𝑌] denotes the evaluation 𝜂′, such that 𝜂′ |𝑋 = {𝑌 }
and 𝜂′ |V\𝑋 = 𝜂 |V\𝑋 .

2
In other words, J𝑔0K ≠ ∅ and (𝜂1, 𝜂2 ∈ J𝑔0K) ⇒ (∀𝑣∈V𝜂1 (𝑣) = 𝜂2 (𝑣)) .

3
In order to avoid any possible confusion with the ordinary sets, we shall denote a

multiset container using the “⦃” and “⦄” brackets.

4
Note that the set of shared variables must be explicitly pointed (rather than, for

example, being derived from those occurring in two or more agent graphs) due to the

possibility of a TMAS graph containing multiple instances of the same agent graph,

which in turn may have both shared and non-shared variables.

Given a pair of agents 𝐺𝑖
and 𝐺 𝑗

of distinct indices 𝑖 ≠ 𝑗 with

(𝑙1, 𝑔1, 𝔠𝔠1, 𝜍, 𝛼1, 𝑋1, 𝑙 ′
1
) ∈ 𝐸𝑖 , (𝑙2, 𝑔2, 𝔠𝔠2, 𝜍, 𝛼2, 𝑋2, 𝑙 ′

2
) ∈ 𝐸 𝑗 , the set of

labelled edges 𝐸 is obtained inductively by applying the rules:

𝑙1 ↩
𝑔1,𝔠𝔠1,𝑐ℎ!,𝛼1,𝑋1−−−−−−−−−−−−→ 𝑙 ′

1
, 𝑙2 ↩

𝑔2,𝔠𝔠2,𝑐ℎ?,𝛼2,𝑋2−−−−−−−−−−−−−→ 𝑙 ′
2

𝑙1, 𝑙2 ↩
𝑔1∧𝑔1,𝔠𝔠1∧𝔠𝔠2,−,𝛼2◦𝛼1,𝑋1∪𝑋2−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑙 ′

1
, 𝑙 ′
2

𝑙1 ↩
𝑔1,𝔠𝔠1,−,𝛼1,𝑋1−−−−−−−−−−−→ 𝑙 ′

1

𝑙1, 𝑙2 ↩
𝑔1,𝔠𝔠1,−,𝛼1,𝑋1−−−−−−−−−−−→ 𝑙 ′

1
, 𝑙2

𝑙1 ↩
𝑔1,𝔠𝔠1,𝑐ℎ?,𝛼1,𝑋1−−−−−−−−−−−−−→ 𝑙 ′

1
, 𝑙2 ↩

𝑔2,𝔠𝔠2,𝑐ℎ!,𝛼2,𝑋2−−−−−−−−−−−−→ 𝑙 ′
2

𝑙1, 𝑙2 ↩
𝑔1∧𝑔1,𝔠𝔠1∧𝔠𝔠2,−,𝛼1◦𝛼2,𝑋1∪𝑋2−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑙 ′

1
, 𝑙 ′
2

𝑙2 ↩
𝑔2,𝔠𝔠2,−,𝛼2,𝑋2−−−−−−−−−−−→ 𝑙 ′

2

𝑙1, 𝑙2 ↩
𝑔2,𝔠𝔠2,−,𝛼2,𝑋2−−−−−−−−−−−→ 𝑙1, 𝑙

′
2

The model further unfolds the combined TMAS graphs by ex-

plicitly representing the reachable valuations of model variables.

Definition 2.4 (Model). The model of a timed agent graph 𝐺 over

𝐴𝑃 is a 5-tuple M(𝐺) = (St, ini,−→, 𝐴𝑃, 𝐿), where:
• St = Loc × EvalV × R𝑛X

+ is a set of global states,

• ini = (𝑙0, 𝜂0, 𝜐0) ∈ St, such that 𝜂0 ∈ J𝑔0K and ∀0≤𝑖≤𝑛X𝜐0 (𝑥𝑖) =
0, is an initial global state,

• −→⊆ St × St is the transition relation composed of:

– delay-transitions: (𝑙, 𝜂,𝜐) 𝛿−−→ (𝑙, 𝜂,𝜐 + 𝛿) for 𝛿 ∈ R+ with

𝜐,𝜐 + 𝛿 ∈ JI(𝑙)K,
– action-transitions: (𝑙, 𝜂,𝜐) 𝛼−−→ (𝑙 ′, 𝜂′, 𝜐′) for 𝑙 𝑔,𝔠𝔠,−,𝛼,𝑋

↩−−−−−−−−→ 𝑙 ′

with𝜐 ∈ JI(𝑙)K,𝜐′ ∈ JI(𝑙 ′)K,𝜂 ∈ J𝑔K,𝜐 ∈ J𝔠𝔠K,𝜂′ = Effect (𝛼, 𝜂)
and 𝜐′ = 𝜐 [𝑋 = 0],

• 𝐴𝑃 ⊆ (CondV ∪ Loc) is a finite set of atomic propositions,

• 𝐿 : St ↦→ P(𝐴𝑃) is a labelling function, such that

𝐿(𝑙, 𝜂,𝜐) ⊆ ({𝑔 ∈ CondV | 𝜂 ∈ J𝑔K} ∪ {𝑙}).
The model M of a TMAS graph 𝑀𝐺 is given by the model of its

combined TMAS graph, i.e. M(𝑀𝐺) = M(𝐺𝑀𝐺).

We now formally define paths of the model. For this paper, we

consider only progressive5 paths that are free from the timelocks

and deadlocks. In general, this is the property that valid models

of the system should have. Furthermore, such a condition can be

checked both statically and dynamically (see e.g., [52]).

Definition 2.5. A path from the state 𝑠0 ∈ St of the model 𝑀

is an infinite sequence of states 𝜋 = 𝑠0𝑠1𝑠2 . . ., such that 𝑠𝑖 ∈ St,

𝑠2𝑖
𝛿𝑖−−→ 𝑠2𝑖+1

𝛼𝑖−−→ 𝑠2𝑖+2, where 𝛿𝑖 ∈ R+, 𝛼𝑖 ∈ Act, for every 𝑖 ≥ 0

and

∑
𝑖∈N 𝛿𝑖 = ∞. Given 𝑖 ≥ 0, by 𝜋 [𝑖] = 𝑠𝑖 and 𝜋 [𝑖 :] = 𝑠𝑖𝑠𝑖+1 . . .

we denote 𝑖-th state and 𝑖-th suffix of 𝜋 respectively. An initial path
of a model𝑀 is a path 𝜋 that starts with the initial state ini, that is
𝜋 [0] = ini. The set of all paths of𝑀 is denoted by Paths𝑀 , the set

of all paths starting in 𝑠 ∈ St by Paths𝑀 (𝑠).6
A state 𝑠 ∈ St is reachable in 𝑀 iff there exists an initial path

𝜋 ∈ Paths𝑀 , such that 𝜋 [𝑖] = 𝑠 for some 0 ≤ 𝑖 < ∞. The set of all

reachable states in𝑀 is denoted by Reach(𝑀).
An evaluation 𝜂 ∈ EvalV is reachable at 𝑙 ∈ Loc iff there is

reachable state of the form (𝑙, 𝜂,𝜐) ∈ Reach(𝑀) for some 𝜐 ∈ R𝑛X
+ .

A local domain is a function 𝑑 : Loc ↦→ P(EvalV) that maps

every location 𝑙 ∈ Loc to the set of its reachable evaluations, that is

𝑑 (𝑙) = {𝜂 ∈ EvalV | (𝑙, 𝜂,𝜐) ∈ Reach(𝑀)}.

5
Also called time-divergent.

6
When a model𝑀 is clear from the context, the subscript𝑀 is omitted.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1119

2.3 Logical Reasoning about TMAS Graphs
We shall now define the branching-time (timed) logic TCTL★ [11]

that generalizes TCTL [1], CTL [15].

For a set of atomic propositions 𝐴𝑃 , the syntax of TCTL★ state

formulae 𝜑 and path formulae𝜓 is given by the following grammar:

𝜑 ::= 𝑝 | ¬𝜑 | 𝜑 ∨ 𝜑 | A𝜓 | E𝜓,

𝜓 ::= 𝜑 | ¬𝜓 | 𝜓 ∨𝜓 | 𝜓 U𝐼 𝜓,

where 𝑝 ∈ 𝐴𝑃 , 𝐼 is an interval inR+ with integer bounds of the form
[𝑎, 𝑏], (𝑎, 𝑏], [𝑎, 𝑐), (𝑎, 𝑐) for 𝑎, 𝑏 ∈ N, 𝑐 ∈ N ∪ {∞}. The temporal

operator U stands for “until”, the path quantifiers A and E stand

for “for all paths” and “exists a path” respectively. Intuitively, an

interval 𝐼 constrains the modal operator it subscribes to. Boolean

connectives and additional constrained temporal operators “some-

time” (denoted by F𝐼) and “always” (denoted by G𝐼) can be derived

as usual. In particular, F𝐼𝜑 ≡ ⊤U𝐼 𝜑 , G𝐼𝜑 ≡ ¬F𝐼¬𝜑 . We will some-

times omit the subscript for 𝐼 = [0,∞), writing U as a shorthand

for U [0,∞) .
From the above, we can define other important logics:

TCTL restriction of TCTL★, where every occurrence of temporal

operators is always preceded with a path quantifier,

TACTL restriction of TCTL, where negation can only be applied

to propositions and only the A path operator is used,

CTL★ obtained from TCTL★ with only trivial subscript intervals

𝐼 = [0,∞), adding modal operator “next” to the syntax,

ACTL★ restriction of CTL★, where negation can only be applied

to propositions and only the A path operator is used.

Let 𝜋 = 𝑠
0
𝑠
𝛿0
0
𝑠
1
𝑠
𝛿1
1
. . . be a path of the model 𝑀 , s.t. 𝑠

𝑖

𝛿𝑖−−→ 𝑠
𝛿𝑖
𝑖

and 𝑠
𝛿𝑖
𝑖

𝛼𝑖−−→ 𝑠
𝑖+1 for 𝑖 ≥ 0, where 𝑠𝛿

𝑖
= (𝑙𝑖 , 𝜂𝑖 , 𝜐𝑖 + 𝛿) for 𝛿 ∈ R+ and

𝑠
𝑖
= 𝑠0

𝑖
, and let 𝜋 (𝑖, 𝛿) = 𝑠𝛿

𝑖
𝑠
𝛿𝑖
𝑖
𝑠
𝑖+1𝑠

𝛿𝑖+1
𝑖+1 . . . denote the suffix of 𝜋 for

𝑖 ≥ 0 and 𝛿 ≤ 𝛿𝑖 , such that 𝑠
𝛿
𝑖

𝛿𝑖−𝛿−−−−→ 𝑠
𝛿𝑖
𝑖
. The semantics of TCTL★

is as follows:
7

𝑀, 𝑠 |= 𝑝 iff 𝑝 ∈ 𝐿(𝑠)
𝑀, 𝑠 |= A𝜓 iff𝑀, 𝜋 |= 𝜓 , for all 𝜋 ∈ Paths(𝑠)
𝑀, 𝑠 |= E𝜓 iff𝑀, 𝜋 |= 𝜓 , for some 𝜋 ∈ Paths(𝑠)

𝑀, 𝜋 |= 𝜑 iff𝑀, 𝜋 [0] |= 𝜑

𝑀, 𝜋 |= 𝜓1 U𝐼 𝜓2 iff ∃𝑖 ≥ 0. ∃𝛿 ≤ 𝛿𝑖 .
(
(∑𝑗<𝑖 𝛿 𝑗 + 𝛿) ∈ 𝐼

)
, and

𝑀, 𝜋 (𝑖, 𝛿) |= 𝜓2, and
∀𝛿 ′ < 𝛿. 𝑀, 𝜋 (𝑖, 𝛿 ′) |= 𝜓1, and
∀𝑗 < 𝑖 .∀𝛿 ′ ≤ 𝛿 𝑗 . 𝑀, 𝜋 (𝑗, 𝛿 ′) |= 𝜓1 .

The model 𝑀 satisfies the TCTL★ (state) formula 𝜑 (denoted by

𝑀 |= 𝜑) iff𝑀, ini |= 𝜑 .

3 SIMULATION FOR TMAS GRAPHS
We now propose a notion of simulation between timed MAS graphs,

that is later used to establish correctness of our abstraction scheme.

Definition 3.1. Let𝑀𝑖 = (St𝑖 , ini𝑖 ,−→𝑖 , 𝐴𝑃𝑖 , 𝐿𝑖), 𝑖 = 1, 2. A model

𝑀2 simulatesmodel𝑀1 over𝐴𝑃 ⊆ 𝐴𝑃1∩𝐴𝑃2 (denoted𝑀1 ≾𝐴𝑃 𝑀2)

if there exists a simulation relation R ⊆ St1 × St2 such that:

7
The omitted clauses for the Boolean connectives are immediate.

(i) (ini1, ini2) ∈ R, and
(ii) for all (𝑠1, 𝑠2) ∈ R:

(a) 𝐿1 (𝑠1) ∩𝐴𝑃 = 𝐿2 (𝑠2) ∩𝐴𝑃 , and
(b) if 𝑠1 −→1 𝑠

′
1
, then ∃𝑠′

2
∈ St2 s.t. 𝑠2 −→2 𝑠

′
2
and (𝑠′

1
, 𝑠′
2
) ∈ R.

If additionally (𝑠1, 𝑠2) ∈ R ⇒ (𝜐1 = 𝜐2), where 𝑠𝑖 = (𝑙𝑖 , 𝜂𝑖 , 𝜐𝑖)
for 𝑖 = 1, 2, then R is called the timed simulation relation [11].

Theorem 3.2. If there is timed simulation R ⊆ St1 × St2 over
𝐴𝑃 ⊆ 𝐴𝑃1 ∩𝐴𝑃2, then for any formula 𝜑 ∈ TACTL★ over 𝐴𝑃 :

𝑀2 |= 𝜑 implies 𝑀1 |= 𝜑.

Proof (Sketch). The results showing that simulation preserves

ACTL and ACTL★ are well established [1, 51], this can be proven

using structural induction on formula (cf. [4, 52]). Almost the same

line of reasoning can be applied to timed simulation and TACTL★.
Here, we show that for a more interesting case, when 𝜑 is of the

form A𝜓1 U𝐼 𝜓2; the remaining cases are shown analogously as

in ACTL★.
Let R ⊆ St1 × St2 be a timed simulation for (𝑀1, 𝑀2), and 𝜋 =

𝑠
𝑖,0
𝑠
𝛿𝑖,0
𝑖,0
𝑠
𝑖,1
𝑠
𝛿𝑖,1
𝑖,1

. . . denote a path of the model 𝑀𝑖 for 𝑖 = 1, 2, such

that 𝑠
𝑖, 𝑗

𝛿𝑖,𝑗−−→ 𝑠
𝛿𝑖,𝑗
𝑖, 𝑗

and 𝑠
𝛿𝑖,𝑗
𝑖, 𝑗

𝛼𝑖,𝑗−−−→ 𝑠
𝑖, 𝑗+1, where 𝑠𝑖, 𝑗 = (𝑙𝑖, 𝑗 , 𝜂𝑖, 𝑗 , 𝜐𝑖, 𝑗)

and 𝑠𝛿
𝑖,𝑗

= (𝑙𝑖, 𝑗 , 𝜂𝑖, 𝑗 , 𝜐𝑖, 𝑗 + 𝛿), and let 𝜋𝑖 (𝑗, 𝛿) = 𝑠
𝛿

𝑖,𝑗
𝑠
𝛿𝑖,𝑗
𝑖, 𝑗
𝑠
𝑖, 𝑗+1𝑠

𝛿𝑖,𝑗+1
𝑖, 𝑗+1 . . .

denote the suffix of 𝜋 for 𝑗 ≥ 0 and 𝛿 ≤ 𝛿𝑖, 𝑗 , s.t. 𝑠𝛿𝑖,𝑗
𝛿𝑖,𝑗−𝛿−−−−−→ 𝑠

𝛿𝑖,𝑗
𝑖, 𝑗

.

Let 𝜋1 ∈ Paths𝑀1
(ini1) be an arbitrarily chosen path. From Defi-

nition 3.1 we construct a matching to 𝜋1 path 𝜋2 ∈ Paths𝑀2
(ini2),

s.t. (𝑠
1, 𝑗
, 𝑠
2, 𝑗
), (𝑠𝛿1, 𝑗

1, 𝑗
, 𝑠
𝛿2, 𝑗
2, 𝑗

) ∈ R for all 𝑗 ≥ 0. Since R is a timed

simulation, it follows that 𝜐1, 𝑗 = 𝜐2, 𝑗 and 𝛿1, 𝑗 = 𝛿2, 𝑗 for all 𝑗 ≥ 0.

From 𝑀2, ini2 |= A𝜓1 U𝐼 𝜓2, we know that for 𝜋2 ∈ Paths𝑀2
(ini2)

the following holds: ∃ 𝑗 ≥ 0. ∃𝛿 ≤ 𝛿2, 𝑗 . (
∑
𝑘< 𝑗 𝛿2,𝑘 + 𝛿) ∈ 𝐼 , and

𝑀2, 𝜋2 (𝑗, 𝛿) |= 𝜓2, and ∀𝛿 ′ < 𝛿. 𝑀2, 𝜋2 (𝑗, 𝛿 ′) |= 𝜓1, and ∀𝑘 <

𝑗 .∀𝛿 ′ < 𝛿
2,𝑘 . 𝑀2, 𝜋2 (𝑘, 𝛿 ′) |= 𝜓1; consequently, for 𝜋1 it follows

that: 𝛿 ≤ 𝛿1, 𝑗 and (∑𝑘< 𝑗 𝛿1,𝑘 + 𝛿) ∈ 𝐼 , and by induction that

𝑀1, 𝜋1 (𝑗, 𝛿) |= 𝜓2, and ∀𝛿 ′ < 𝛿. 𝑀1, 𝜋1 (𝑗, 𝛿 ′) |= 𝜓1, and ∀𝑘 <

𝑗 .∀𝛿 ′ < 𝛿
1,𝑘 . 𝑀1, 𝜋1 (𝑘, 𝛿 ′) |= 𝜓1. Since 𝜋1 was chosen arbitrar-

ily, the same reasoning can be applied to any path in Paths𝑀1
(ini1);

hence we have𝑀1, ini1 |= A𝜓1 U𝐼 𝜓2.

□

Given a timed agent graph 𝐺 , its time-insensitive variant 𝐺⊖ is

a timed agent graph that is an almost identical copy of 𝐺 except

that the set of clocks X is set to ∅. Essentially, it also means that

in 𝐺⊖, for any 𝑙 ∈ Loc an invariant function is such that I(𝑙) = ⊤,
and for any (𝑙, 𝑔, 𝔠𝔠, 𝜍, 𝛼, 𝑋, 𝑙 ′) ∈ 𝐸, 𝔠𝔠 and 𝑋 are replaced with ⊤
and ∅ respectively.

For a TMAS graph𝑀𝐺 = ⦃𝐺1, . . . ,𝐺N
⦄, a time-insensitive vari-

ant𝑀𝐺⊖ is given through the time-insensitive variant of the agent

graphs composing it, that is𝑀𝐺⊖ = ⦃𝐺1

⊖, . . . ,𝐺
N
⊖⦄

Lemma 3.3. Any evaluation 𝜂 ∈ EvalV reachable at 𝑙 ∈ Loc for
an agent graph 𝐺 must also be reachable at 𝑙 for 𝐺⊖.

Proof. Follows directly from Definition 2.4. □

Corollary 3.4. Given a pair of agent graphs𝐺1 and𝐺2 with their
local domain functions 𝑑1 and 𝑑2, such that 𝑑𝑖 : Loc𝑖 ↦→ P(EvalV𝑖

)
maps every location 𝑙 ∈ Loc𝑖 to the set of its reachable evaluations, i.e.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1120

Algorithm 1: Abstraction of TMAS graph𝑀𝐺 wrt F
1 in𝐺𝑀𝐺⊖ compute an over-approx. of local domain 𝑑 for Args𝑅F
2 foreach timed agent graph𝐺𝑖 ∈ 𝑀𝐺 do
3 compute an abstract timed agent graph Amay

F (𝐺𝑖) w.r.t.
𝑑𝑖 = {𝑙𝑖 ↦→ ⋃

𝑙 ∈Loc1×...×{𝑙𝑖 }×...×LocN 𝑑 (𝑙) }
4 return Amay

F (𝑀𝐺) = ⦃Amay
F (𝐺1), . . . , Amay

F (𝐺N)⦄

Algorithm2:An over-approx. of the local domain for𝑊 ⊆ V
OverApproxLocalDomain(𝐺 = 𝐺𝑀𝐺 ,𝑊 = Args𝑅 (𝑓))

1 foreach 𝑙 ∈ Loc do
2 𝑙 .𝑑 := ∅
3 𝑙 .𝑝 := ∅
4 𝑙 .color := white
5 𝑙0 .𝑑 := {𝜂 (𝑊) | 𝜂 ∈ J𝑔0K}
6 𝑄 := ∅
7 Enqueue(𝑄, 𝑙0)
8 while𝑄 ≠ ∅
9 𝑙 := ExtractMax(𝑄)

10 VisitLoc(𝑙,𝑊)
11 if 𝑙 .color ≠ black then
12 foreach 𝑙 ′ ∈ Succ (𝑙) do
13 𝑄 := Enqueue(𝑄, 𝑙 ′)
14 𝑙 ′ .𝑝 := 𝑙 ′ .𝑝 ∪ {𝑙 }
15 𝑙 .color := black

16 return {𝑙 ↦→ 𝜂 | 𝑙 ∈ Loc, 𝜂 ∈ EvalV , 𝜂 (𝑊) ∈ 𝑑.𝑙 }
VisitLoc(𝑙,𝑊)

17 𝜅 := 𝑙 .𝑑

18 foreach 𝑙 ′ ∈ 𝑙 .𝑝, 𝑙 ′
𝑔,𝔠𝔠,−,𝛼,𝑋
↩−−−−−−−→𝑙 do

19 𝑙 .𝑑 := 𝑙 .𝑑 ∪ ProcEdge(𝑙 ′, 𝑔, 𝔠𝔠, −, 𝛼,𝑋, 𝑙,𝑊)
20 𝑙 .𝑝 = ∅
21 if 𝜅 ≠ 𝑙 .𝑑 then
22 𝑙 .color := grey
23 𝜆 := 𝑙 .𝑑

24 foreach 𝑙
𝑔,𝔠𝔠,−,𝛼,𝑋
↩−−−−−−−→𝑙 do

25 𝑙 .𝑑 := 𝑙 .𝑑 ∪ ProcEdge(𝑙, 𝑔, 𝔠𝔠, −, 𝛼,𝑋, 𝑙,𝑊)
26 if 𝜆 ≠ 𝑙 .𝑑 then
27 𝑙 .color := grey
28 go to 23

ProcEdge(𝑙, 𝑔, 𝔠𝔠, −, 𝛼,𝑋, 𝑙 ′,𝑊)
29 𝐻pre := {𝜂 ∈ J𝑔K | 𝜂 (𝑊) ∈ 𝑙 .𝑑 }
30 𝐻post := {Effect (𝛼,𝜂) | 𝜂 ∈ 𝐻pre}
31 return {𝜂 (𝑊) | 𝜂 ∈ 𝐻post}

enqueue
immediate-
neighbours

process
incoming
edges

process
self-loops

𝑑𝑖 (𝑙) = {𝜂 ∈ EvalV𝑖
| (𝑙, 𝜂,𝜐) ∈ Reach(M(𝐺𝑖))}, for 𝑖 = 1, 2, in case

𝐺2 = 𝐺1⊖ is a time-insensitive variant of𝐺1, then its local domain 𝑑2
is an over-approximation of the local domain 𝑑1, that is 𝑑1 (𝑙) ⊆ 𝑑2 (𝑙)
for all 𝑙 ∈ Loc1 = Loc2.

4 VARIABLE ABSTRACTION FOR TIMED MAS
This section presents the abstraction method that is defined for the

modular representation as TMAS graph and intended to reduce the

state space of the induced abstract model.

Algorithm 3: Abstraction procedure

ComputeAbstraction(𝐺 , 𝑑 , 𝑓 , Sc)
1 𝑍0 := (𝑓 (J𝑔0K

��
𝑊

)) (𝑍)
2 𝑔0 := 𝑔0 ∧ (𝑍=𝑍0)
3 𝜂0 ∈ J𝑔0K
4 𝐸𝑎 := ∅
5 foreach 𝑒 := 𝑙

𝑔,𝔠𝔠,𝜍,𝛼,𝑋
↩−−−−−−→ 𝑙 ′ do

6 if {𝑙, 𝑙 ′ } ∩ Sc = ∅ then
7 𝐸𝑎 := 𝐸𝑎 ∪ {𝑒 }
8 else
9 foreach 𝜂 ∈ 𝑑 (𝑙) do
10 𝛼 ′

:= 𝛼

11 if 𝑙 ∈ Sc then
12 𝛼 ′

:= (𝑊 := 𝜂 (𝑊)) .𝛼 ′

13 𝛼 ′
:= (𝑍 := (𝜂0 (𝑍))) .𝛼 ′

14 if 𝑙 ′ ∈ Sc then
15 𝛼 ′

:= 𝛼 ′ .(𝑍 := (𝑓 (𝜂 |𝑊)) (𝑍))
16 𝛼 ′

:= 𝛼 ′ .(𝑊 := 𝜂0 (𝑊))
17 𝑔′ := 𝑔[𝑊 = 𝜂 (𝑊)]
18 𝐸𝑎 := 𝐸𝑎 ∪ { (𝑙, 𝑔′, 𝔠𝔠, 𝜍, 𝛼 ′, 𝑋, 𝑙 ′) }

19 𝐸 := 𝐸𝑎

20 V := V ∪ 𝑍

21 return𝐺

out-of-scope
edge

4.1 Definition
As in [39], the abstraction process is composed of two subroutines:

computation of the local domain approximation followed by ab-

stract model generation.
8
The intuition behind this is informally

presented in Algorithm 1.

Formally, the abstraction Amay
F for TMAS graph 𝑀𝐺 is spec-

ified by the set of pairs F = {(𝑓1, Sc1), . . . , (𝑓𝑛F , Sc𝑛F)}, where
𝑓𝑖 : Eval𝑊𝑖

↦→ Eval𝑍𝑖
is an abstract mapping function, such that

𝑊𝑖 ⊆ V , 𝑍𝑖 ∩V = ∅ and 𝑖 ≠ 𝑗 ⇒ 𝑍𝑖 ∩𝑍 𝑗 = ∅, and Sc𝑖 ⊆ Loc is the
effective scope, for any 1 ≤ 𝑖, 𝑗 ≤ 𝑛F . Intuitively, the scope enables
applying a finer-grain abstractions, only for the certain fragment of

the system.We denote the domain and range of mapping function 𝑓𝑖
by Args𝑅 (𝑓𝑖) =𝑊𝑖 and Args𝑁 (𝑓𝑖) = 𝑍𝑖 . For simplicity, in the sequel

we restrict the presentation to the case of singleton F = {(𝑓 , Sc)}
— the changes needed for the general case are merely technical and

shall become apparent afterwards.

Intuitively, the abstraction obtains significant improvements un-

der the following conditions: the verified property is *independent*

from the variables being removed (so that the abstraction is con-

clusive), and the removed variables are largely *independent* from

those being kept (so that it significantly reduces the state space).

The *independence* is of semantic nature, and we see no easy way

to automatically select such variables. At this stage, it seems best

to follow a domain expert advice.

As follows from the discussion in the extended version of [39],

lower-approximation of local domain is usually of little use in prac-

tice, as it can only map a location with a singleton or an empty set.

Therefore, here we focus only on the may-abstraction procedure

8
Essentially, the former subroutine might be skipped, when the required approximation

is provided by the user.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1121

for the TMAS graph that is based on the over-approximation of

local domain.

Local domain approximation. The OverApproxLocalDomain
from Algorithm 2 on the input takes a timed agent𝐺 (usually being

a combined TMAS graph) and a subset of its variables𝑊 ⊆ V , and

then traverses the locations of 𝐺 in a priority-BFS manner comput-

ing for each location the set of its possibly reachable evaluations of

𝑊 . With each visit to a location, an algorithm attempts to refine the

approximation, until stability (in terms of set-inclusion) is obtained.

Starting from the initial one, every location must be visited at least

once, and shall be re-visited again whenever any of its predecessors

gets their approximation updated. As the number of locations and

edges, and cardinality of the variables domains are all finite, the

procedure is guaranteed to terminate.

Let 𝑑max := max{|𝑑𝑜𝑚𝑎𝑖𝑛(𝑣) | | 𝑣 ∈𝑊 }, 𝑘 = |V|, 𝑟 = |𝑊 |, 𝑛 =

|Loc |,𝑚 = |𝐸 |. The initialization loop on lines 1–4 takes 𝑂 (𝑛) and
line 5 𝑂 (𝑟). With generic heap implementation of priority queue,

lines 6 and 7 run in Θ(log𝑛) and Θ(1) respectively. The loop on

lines 8–15 repeats at most 𝑑𝑟max times for each of 𝑛 locations until

stable approximation is obtained. Line 9 is in 𝑂 (log𝑛), lines 11–15
in 𝑂 (𝑛2). Upon visiting all 𝑛 locations 𝑑𝑟max times, VisitLoc calls
to ProcEdge at most𝑚𝑑𝑟max times. Hence, given the set-union is

in 𝑂 (𝑑𝑟max) and Effect can be computed in 𝑂 (1), the running time

of the whole OverApproxLocalDomain is 𝑂 (𝑚𝑑𝑟max (𝑘 + 𝑑𝑟max) +
𝑛3𝑑𝑟max). It needs 𝑂 (𝑛) space for priority queue, 𝑂 (𝑚𝑑𝑟max) for
auxiliary look-up tables (e.g., for the pre-computation of J𝑔K) and
𝑂 (𝑛𝑑𝑟max + 𝑛2) for storing locations with their attributes. Hence,

OverApproxLocalDomain is in 𝑂 (𝑑𝑟max (𝑛 +𝑚) + 𝑛2) space.
Abstraction generation. The abstraction computation procedure

is described in Algorithm 3. In the main loop (lines 5–18) the edges

of timed agent graph𝐺 are transformed according to F = {(𝑓 , Sc)}
as follows:

• the edges entering or within Sc have their actions appended
with (1) update of the target variable𝑍 and (2) updatewhich sets

the values of the source variables𝑊 to their defaults (resetting

those),

• the edges leaving or within Sc have actions prepended with (1)

update of source variables𝑊 (a temporarily one to be assumed

for the original action) and (2) update which resets the values

of the target variable 𝑍 .

Note that due to introduction of a scope, the variables in𝑋 cannot

be genuinely removed for a proper subset of locations — instead,

their evaluation are fixed to some constant value within the states,

where the corresponding location label falls under the scope.

The lines 1–4 run in 𝑂 (𝑟), the outer loop on lines 5–17 repeats

exactly𝑚 times, the “if-else” condition check involves set operation

and runs in 𝑂 (𝑛). For the worst-case analysis we shall assume

that it always proceeds with “else” block. The inner loop on the

lines 8–17 repeats at most 𝑑𝑟max times. Assuming that operations

on lines 11–12, 14–15 are in 𝑂 (1) time,
9
we can conclude that

ComputeAbstraction runs in 𝑂 (𝑟 +𝑚(𝑛 +𝑚𝑑𝑟max)). It requires at

9
In general, having a complex or lengthy edge labels is considered a bad practice,

which significantly degrades the model readability; realistically, the lengths of edge

labels can be assumed to be relatively small.

most 𝑂 (𝑚𝑑𝑟max) for storing new edges, and 𝑂 (𝑛) for F 10
. Hence,

space complexity of ComputeAbstraction is in 𝑂 (𝑚𝑑𝑟max + 𝑛).

4.2 Correctness
Theorem 4.1. Let𝑀1 = M(𝑀𝐺),𝑀2 = M(Amay

F (𝑀𝐺)), where
Args𝑅 (F) = 𝑊 ⊆ V , Args𝑁 (F) = 𝑍 , 𝑍 ∩ V = ∅. Then, for any
𝑉 ⊆ (V \𝑊) and 𝐴𝑃 ⊆ Cond𝑉 ∪ Loc, the relation R ⊆ St1 × St2,
defined by (𝑙1, 𝜂1, 𝜐1)R(𝑙2, 𝜂2, 𝜐2) iff 𝑙1 = 𝑙2, 𝜐1 = 𝜐2 and either (𝑙1 ∈
Sc) ∧ (𝜂1 (𝑉) = 𝜂2 (𝑉)), or 𝜂1 (V) = 𝜂2 (V), is the timed simulation
over 𝐴𝑃 between𝑀1 and𝑀2.

Proof. First, we show that condition (i) from Definition 3.1

holds. By construction ofAmay
F (𝑀𝐺) from Algorithm 3, an abstract

initial condition is of the form 𝑔0 ∧ 𝑔𝑍0
(cf. Line 2), where 𝑔𝑍0

determines for 𝑍 its initial value 𝑍0 := 𝑓 (J𝑔0K
��
𝑊
) (𝑍), that is 𝑔𝑍0

≡
(𝑍=𝑍0) (cf. Line 1). Let ini𝑖 = (𝑙0, 𝜂𝑖 , 𝜐𝑖), where ∀0≤ 𝑗≤𝑛X𝜐𝑖 (𝑥 𝑗) = 0

for 𝑖 = 1, 2, and 𝜂1 ∈ J𝑔0K, 𝜂2 ∈ J𝑔0 ∧ 𝑔𝑍0
K. Observe that 𝜂2 ∈ J𝑔0K

also holds, that is 𝜂1 (V) = 𝜂2 (V) (and therefore also 𝜂1 (𝑉) =

𝜂2 (𝑉)), and thus (ini1, ini2) ∈ R.
Next, we show that condition (ii) fromDefinition 3.1 holds as well.

Note that (ii-a) trivially holds due to the considered propositions

in 𝐴𝑃 ranging over 𝑉 ⊆ (V \𝑊) only, and the fact that R implies

that related states agree on the evaluations for 𝑉 . Therefore, for

any (𝑠1, 𝑠2) ∈ R we have that 𝐿1 (𝑠1) ∩ 𝐴𝑃 = 𝐿2 (𝑠1) ∩ 𝐴𝑃 , and so

only (ii-b) remains to be shown.

Let 𝑠𝑖 , 𝑠
′
𝑖
∈ St𝑖 , 𝑠𝑖 = (𝑙𝑖 , 𝜂𝑖 , 𝜐𝑖), 𝑠′𝑖 = (𝑙 ′

𝑖
, 𝜂′

𝑖
, 𝜐′
𝑖
) for 𝑖 = 1, 2, (𝑠1, 𝑠2) ∈

R and 𝑠1 −→1 𝑠
′
1
. From Definition 2.4, this must be either a delay-

transition or an action transition.

In the former case, 𝑠1
𝛿−−→1 𝑠

′
1
for some 𝛿 ∈ R+, s.t. (by Defini-

tion 2.4) 𝑙1 = 𝑙
′
1
, 𝜂1 = 𝜂

′
1
, 𝜐′

1
= 𝜐1 + 𝛿 , and 𝜐1, 𝜐1 + 𝛿 ∈ JI1 (𝑙1)K. From

(𝑠1, 𝑠2) ∈ R we know that 𝑙1 = 𝑙2 and 𝜐1 = 𝜐2. From Algorithm 3 it

follows that I1 = I2, implying that 𝜐2, 𝜐2 + 𝛿 ∈ JI2 (𝑙1)K, so there

must exist a (corresponding) delay-transition 𝑠2
𝛿−−→2 𝑠

′
2
, where

𝜐′
2
= 𝜐2 + 𝛿 , 𝑙2 = 𝑙 ′

2
, 𝜂2 = 𝜂

′
2
. Hence, we have (𝑠2, 𝑠′

2
) ∈ R.

In the latter case, 𝑠1
𝛼1−−→1 𝑠

′
1
for some 𝑒1 = 𝑙1

𝑔1,𝔠𝔠1,−,𝛼1,𝑋1

↩−−−−−−−−−−−→1 𝑙
′
1
,

s.t. 𝜂1 ∈ J𝑔1K, 𝜐1 ∈ J𝔠𝔠1K, 𝜂′
1
= Effect (𝛼1, 𝜂1), 𝜐′

1
∈ JI(𝑙 ′

1
)K and

𝜐′
1
= 𝜐1 [𝑋1 = 0]. By Algorithm 3, each (concrete) labelled edge

𝑒 = (𝑙, 𝑔, 𝔠𝔠, 𝜍, 𝛼, 𝑋, 𝑙 ′) ∈ 𝐸 (cf. Line 5) is associated with the set

of matching (abstract) labelled edges {𝑒𝑎 (𝜂 (𝑊)) | 𝜂 ∈ 𝑑 (𝑙)} ⊆ 𝐸𝑎
(cf. Line 9) of the form 𝑒𝑎 (𝑘) = (𝑙, 𝑔[𝑊 = 𝑘], 𝔠𝔠, 𝜍, 𝛼post (𝑘) ◦ 𝛼 ◦
𝛼pre (𝑘), 𝑋, 𝑙 ′) (cf. Line 18), such that:

• 𝛼pre (𝑘) corresponds to the consecutive assignment statements

𝑍 := 𝑍0 and𝑊 := 𝑘 if 𝑙 ∈ Sc (cf. Lines 11 to 13), and to 𝜏 (“do

nothing” instruction) otherwise,

• 𝛼post (𝑘) corresponds to the consecutive assignment statements

𝑍 := (𝑓 (𝜂 |𝑊)) (𝑍) and𝑊 := 𝜂0 (𝑊) for 𝜂0 ∈ J𝑔0K, if 𝑙 ′ ∈ Sc
(cf. Lines 14 to 16), and to 𝜏 otherwise.

Since (𝑠1, 𝑠2) ∈ R, 𝜐1 ∈ J𝔠𝔠K, and 𝜐′
1
∈ JI1 (𝑙 ′

1
)K, it follows that

𝜐2 ∈ J𝔠𝔠K and 𝜐2 [𝑋1 = 0] ∈ JI2 (𝑙 ′
1
)K. Furthermore, there must

exist an action-transition 𝑠2
𝛼2−−→2 𝑠

′
2
induced by a labelled edge

𝑒2 = 𝑒𝑎 (𝜂1 (𝑊)) = (𝑙2, 𝑔1 [𝑊 = 𝜂1 (𝑊)], 𝔠𝔠,−, 𝛼post
1

(𝜂1 (𝑊)) ◦ 𝛼1 ◦
𝛼
pre
1

(𝜂1 (𝑊)), 𝑋1, 𝑙 ′
2
) matching to 𝑒1, where 𝑙1 = 𝑙2, 𝑙

′
1
= 𝑙 ′

2
, (by Corol-

lary 3.4 it must be that 𝜂1 ∈ 𝑑 (𝑙1)). Since 𝜂1 ∈ J𝑔K and 𝜂1 (𝑉) =

10
The latter would be𝑂 (𝑛𝑛F) when F is not a singleton.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1122

V C
Concrete A1 A2 A3

#St M t #St M t #St M t #St M t
1 1 1.1e+2 9 0 1.1e+2 9 0 3.9e+1 9 0 3.9e+1 9 0

1 2 1.4e+2 9 0 1.4e+2 9 0 4.9e+1 9 0 4.9e+1 9 0

1 3 1.7e+2 9 0 1.7e+2 9 0 5.9e+1 9 0 5.9e+1 9 0

2 1 5.5e+3 9 0 5.5e+3 9 0 7.4e+2 9 0 4.7e+2 9 0

2 2 9.0e+3 9 0 9.0e+3 9 0 1.2e+3 9 0 7.8e+2 9 0

2 3 1.3e+4 10 0 1.3e+4 10 0 1.7e+3 9 0 1.2e+3 10 0

3 1 2.7e+5 33 1 2.7e+5 34 1 1.4e+4 10 0 5.3e+3 10 0

3 2 5.8e+5 61 2 5.8e+5 61 2 2.7e+4 11 0 1.2e+4 11 0

3 3 1.0e+6 100 3 1.0e+6 100 3 4.7e+4 13 0 2.2e+4 12 0

4 1 1.3e+7 1 182 59 1.3e+7 1 182 59 2.5e+5 30 1 5.8e+4 15 0

4 2 3.6e+7 3 247 163 3.6e+7 3 248 162 6.1e+5 63 3 1.7e+5 26 2

4 3 7.9e+7 7 113 369 7.9e+7 7 113 369 1.3e+6 122 6 4.0e+5 45 5

5 1 memout memout 4.4e+6 396 24 6.2e+5 64 5

5 2 memout memout 1.4e+7 1 187 78 2.4e+6 225 31

5 3 memout memout 3.5e+7 3 079 208 7.1e+6 621 118

6 1 memout memout 7.7e+7 6 738 541 6.3e+6 554 67

6 2 memout memout 3.0e+8 26 554 2 306 3.4e+7 3 002 523

6 3 memout memout memout 1.2e+8 10 528 2 542

7 1 memout memout memout 6.4e+7 5 408 821

7 2 memout memout memout memout

Table 1: Experimental results for model checking 𝜑1 (FAA)
on concrete and abstract models with no re-voting

𝜂2 (𝑉), it follows that 𝜂2 ∈ J𝑔[𝑊 = 𝜂1 (𝑊)]K. Moreover, given that

Effect (𝛼post (𝜂1 (𝑊))◦𝛼◦𝛼pre (𝜂1 (𝑊)), 𝜂2) = 𝜂′
2
, we have𝜂′

2

��
V [𝑊 =

𝜂′
1
(𝑊)] = Effect (𝛼, 𝜂2 |V [𝑊 = 𝜂1 (𝑊)]), or, in otherwords,𝜂′

1
(𝑉) =

𝜂′
2
(𝑉). Hence, we conclude that (𝑠2, 𝑠′

2
) ∈ R. □

5 EXPERIMENTAL EVALUATION
In this section we report the series of experiments on a voting

system case study.

5.1 Benchmark: Estonian Internet Voting
We extend the Continuous-time Asynchronous Multi-Agent Sys-

tem (CAMAS) model of the voting scenario from [3], which was

inspired by the election procedure in Estonia [55]. In particular,

we add a malicious agent (Coercer), extra variables for the Elec-

tion Authority (voting frequency and tallying), extra locations and

labelled transitions for the Voters (interaction with coercer and pos-

sible re-voting). Furthermore, we parameterize the system with the

number of voters (NV), the number of candidates (NC), the Boolean
specifying whether re-voting is allowed (RV), the type of coercer’s
behaviour (CTYPE) and punishment criteria (OBEY,DISOBEY).

We use Uppaal model checker [57] and verify various configura-

tions of the system — determined by its parameter values — with

regard to the exposure of voters to the coercion through forced

abstention or forced participation [40].

The voting scenario is standard: each voter (V) first needs to

register for the preferred voting modality: postal vote, e-vote over

the internet or traditional paper vote at a polling station; if time

constraints for the chosen modality are met, the election authority

(EA) accepts the registration and immediately provides appropri-

ate voting material to that voter (e.g., election package, e-voting

credentials, address of the assigned election commission office).

Upon receiving these materials, V proceeds with either casting the

vote for selected candidate, casting an invalid vote (e.g., by cross-

ing more than one candidate) or abstaining from voting; if time

constraints for casting the vote over the given medium are met,

then EA records the vote in the tally. Then, V can interact with the

coercer (C) once, and either get punished for not complying with

the instructions or not (and possibly get rewarded). Finally, when

the election time is over, EA closes the vote and C punishes all the

V who did not show how they voted beforehand.

As in [3], we assign each voting modality a specific time frame:

1–7 for postal vote, 6–9 for e-vote, 10–11 for paper vote, and close

the election at 11 time units.

The global (shared) variables:

• sh,prev: auxiliary variables used to pass the current and pre-

viously cast value of vote from V to EA,

The Election Authority timed agent graph’s local variables:

• tally: an array of size NC+1 storing the number of votes cast

per candidate,
11

• freq: voting frequency as the number of voters who

The Voter timed agent graph’s local variables:

• mode: (currently) chosen voting modality,

• vote: encoding of cast vote corresponding to the candidate

(1..NC), invalid vote (0) or no previously registered participa-

tion (-1).
• p: Boolean variable whether V was punished,

• np: Boolean variable whether V was not punished,
12

In our model we distinguish two types of coercers with determinis-

tic punishment/reward condition based on the shown receipt (here,

any proof of how/whether V voted). The TYPE1 coercer will pun-
ish a voter only when the DISOBEY condition matches the shown

receipt (or voter refused to show it), whereas TYPE2 will always

punish voter except when the OBEY condition matches the receipt.

In particular, the forced abstention attack (FAA) is captured by

TYPE2 coercer with OBEY=-1 (where -1 represents that voter did not
cast her vote and thus was not counted towards voting frequency);

similarly, the forced participation attack (FPA) is captured by TYPE1
coercer with DISOBEY=-1.

The FAA and FPA properties can be represented as follows:

(𝜑1) AG (𝑉 .𝑛𝑝 = ⊤ ⇒ 𝑉 .𝑣𝑜𝑡𝑒𝑑 = OBEY)

(𝜑2) AG (𝑉 .𝑛𝑝 = ⊤ ⇒ 𝑉 .𝑣𝑜𝑡𝑒𝑑 ≠ DISOBEY)

𝜑1 says that in all executions, V can avoid punishment only by

abstaining from the voting (as instructed by C). 𝜑2 says that in all

executions, V must take part in the voting to avoid getting punished.

5.2 Experiments and Results
For the experiments, we used a modified version of the open-source

tool EasyAbstract
13
, which implements the algorithms from [39]

for Uppaal, to automate generation of the abstract models for each

configuration of the system. Furthermore, we used a coarser variant

of the local domain over-approximation based on the agent graph

(or its template), where all synchronisation labels are simply dis-

carded. By doing so, we were able to further reduce the memory and

time usage. Due to FAA and FPA properties relating to the similar

subset of atomic propositions, we employed the same abstractions

in both cases:

11
A greater size was used for technical reasons and to improve the readability; note

that in practice tally[0]=0 is the global invariant.
12
Indeed, the pair of variables p and np is almost dual, however having both allows to

distinguish the (initial) case when C has not yet decided whether to punish V or not.

13
https://tinyurl.com/EasyAbstract4Uppaal

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1123

https://tinyurl.com/EasyAbstract4Uppaal

V C
Concrete A1 A2 A3

#St M t #St M t #St M t #St M t
1 1 1.1e+2 9 0 1.1e+2 9 0 4.1e+1 9 0 4.1e+1 9 0

1 2 1.5e+2 9 0 1.5e+2 9 0 5.3e+1 9 0 5.3e+1 9 0

1 3 1.9e+2 9 0 1.9e+2 9 0 6.5e+1 9 0 6.5e+1 9 0

2 1 6.1e+3 9 0 6.1e+3 9 0 8.2e+2 9 0 4.9e+2 9 0

2 2 1.1e+4 9 0 1.1e+4 9 0 1.4e+3 9 0 8.4e+2 10 0

2 3 1.7e+4 10 0 1.7e+4 10 0 2.1e+3 9 0 1.3e+3 10 0

3 1 3.3e+5 38 1 3.3e+5 38 1 1.6e+4 10 0 5.6e+3 10 0

3 2 7.5e+5 75 2 7.5e+5 75 2 3.5e+4 12 0 1.3e+4 11 0

3 3 1.4e+6 137 4 1.4e+6 137 4 6.4e+4 14 0 2.4e+4 12 0

4 1 1.7e+7 1 533 73 1.7e+7 1 534 72 3.1e+5 36 1 6.1e+4 15 0

4 2 5.2e+7 4 535 218 5.2e+7 4 535 217 8.6e+5 83 3 1.9e+5 27 2

4 3 1.2e+8 10 743 531 1.2e+8 10 743 528 1.9e+6 176 8 4.5e+5 49 6

5 1 memout memout 5.8e+6 507 30 6.5e+5 67 6

5 2 memout memout 2.1e+7 1 841 113 2.7e+6 243 34

5 3 memout memout 5.9e+7 5 020 325 7.9e+6 687 131

6 1 memout memout 1.1e+8 9 170 722 6.7e+6 583 71

6 2 memout memout memout 3.7e+7 3 253 570

6 3 memout memout memout 1.4e+8 12 190 2 843

7 1 memout memout memout 6.8e+7 5 964 874

7 2 memout memout memout memout

Table 2: Experimental results for model checking 𝜑2 (FPA)
on concrete and abstract models with no re-voting

A1: removes variables tally,freq in Election Authority TAG;

A2: in addition to A1 removes variable mode in Voter TAG(s);

A3: in addition to A2 removes variables voted,p,np in all Voter

TAGs except one.

We report experimental results in the Tables 1 to 3.
14

The first

two columns indicate the configuration, that is the number of vot-

ers (“V”) and candidates (“C”); next, the two groups of columns

aggregate the details of verification of the forced abstention at-

tack (“FAA”) and forced participation attack (“FPA”) against the

concrete and abstract (“A2” and “A3”) TMAS graphs, within each

group, when property is satisfied, the column “#St” indicates the

number of symbolic states (as defined by Uppaal), “M” the amount

of RAM used (in MiB
15
), “t” the time spent by CPU (in sec, rounded

to the nearest whole number).
16

When model checking 𝜑1 (FAA)

on models with re-voting allows, the verifier was always returning

a counter-example run within <1 sec time.

It is noteworthy that with the help of abstraction, we were able

to almost double the number of agents in the configuration before

running out of memory due to the state space explosion (from 3–4

to 6–7 voters), effectively reducing the use of memory and time

resources by up to two orders of magnitude. Note also that the

effectiveness of the method heavily depended on the choice of the

variables to remove – for instance, removing variables tally,freq
(abstraction A1) did not prove useful at all.

6 CONCLUSIONS
In this paper, we propose a new scheme for agent-based may ab-
stractions of timed MAS. The work extends the recent abstraction

method [38], which was defined only for the untimed case. We also

“lift” the algorithms of [39] to operate on MAS graphs with clocks,

time invariants, and timing guards.

14
The verification was performed on the machine with AMD EPYC 7302P 16-Core 1.5

GHz CPU, 32 GB RAM, Ubuntu 22.04, running verifyta command-line utility from

Uppaal v4.1.24 distribution. The source code of the models and auxiliary scripts for

running verification can be found on: https://github.com/aamas2025submission.

15
1 MiB = 2

20
Bytes, for more details see [37].

16
The time spent on computing the abstract TMAS graph was negligible (< 1s) in all

cases considered and is thus not included in the table.

V C
Concrete A1 A2 A3

#St M t #St M t #St M t #St M t
1 1 2.7e+02 9 0 2.7e+02 9 0 1.0e+02 9 0 1.0e+02 9 0

1 2 3.7e+02 9 0 3.7e+02 9 0 1.4e+02 9 0 1.4e+02 9 0

1 3 4.6e+02 9 0 4.6e+02 9 0 1.8e+02 9 0 1.8e+02 9 0

2 1 3.4e+04 11 0 3.4e+04 12 0 5.1e+03 9 0 1.9e+03 9 0

2 2 6.3e+04 14 0 6.3e+04 14 0 9.6e+03 10 0 3.6e+03 10 0

2 3 1.0e+05 17 0 1.0e+05 17 0 1.6e+04 10 0 5.9e+03 10 0

3 1 4.2e+06 355 16 4.2e+06 355 16 2.4e+05 29 1 3.2e+04 12 0

3 2 1.1e+07 922 44 1.1e+07 922 43 6.3e+05 62 2 8.6e+04 17 1

3 3 2.2e+07 1 877 98 2.2e+07 1 877 95 1.3e+06 119 6 1.8e+05 26 3

4 1 memout memout 1.1e+07 936 54 5.2e+05 53 4

4 2 memout memout 3.9e+07 3 356 217 1.9e+06 173 27

4 3 memout memout 1.0e+08 8 640 631 5.3e+06 461 109

5 1 memout memout memout 8.1e+06 679 88

5 2 memout memout memout 4.3e+07 3 647 750

5 3 memout memout memout 1.5e+08 12 821 3 879

6 1 memout memout memout 1.2e+08 10 151 1 617

6 2 memout memout memout memout

Table 3: Experimental results for model checking 𝜑2 (FPA)
on concrete and abstract models with re-voting allowed

Similarly to [38, 39], our abstractions transform the specification

of the system at the level of timed agent graphs, without ever gen-

erating the global model. An experimental evaluation, based on a

scalable model of Estonian elections, have shown a very promising

pattern of results. In all cases, computation of the abstract repre-

sentation by our implementation took negligible time. Moreover,

it allowed the Uppaal model checker to verify instances with state

spaces that are several orders of magnitude larger. The experiments

showed also that the effectiveness of the method depends on the

right selection of variables to be removed; ideally, they should be

provided by a domain expert.

In the future, we plan to refine Algorithm 2 and Algorithm 3,

so that the approximation of local domain is computed over the

pairs of location and zone, where the zone is an abstraction class

of clock valuations that satisfy the same set of clock constraints

occurring within the model and the formula [52]. Analogously, for

the abstract TMAS generation, the labelled edges would be assigned

the clock constraints corresponding to the possible zones of the

source-location pair. This way, we hope to obtain more refined

abstract models. It remains to be seen if the approach will turn out

computationally feasible, or lead to the generation of an enormous

(though finite) number of regions.

ACKNOWLEDGMENTS
The work has been supported by NCBR Poland and FNR Luxem-

bourg under the PolLux/FNR-CORE project SpaceVote (POLLUX-

XI/14/SpaceVote/2023 and C22/IS/17232062/SpaceVote), the PHC

Polonium project MoCcA (BPN/BFR/2023/1/00045), CNRS IRP “Le

Trójkąt”, and ANR-22-CE48-0012 project BISOUS. For the purpose

of open access, and in fulfilment of the obligations arising from the

grant agreement, the authors have applied a Creative Commons

Attribution 4.0 International (CC BY 4.0) license to any Author

Accepted Manuscript version arising from this submission.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1124

https://github.com/aamas2025submission

REFERENCES
[1] Rajeev Alur, Costas Courcoubetis, and David Dill. 1993. Model-checking in dense

real-time. Information and computation 104, 1 (1993), 2–34.

[2] Rajeev Alur, Thomas A Henzinger, Orna Kupferman, and Moshe Y Vardi. 1998.

Alternating refinement relations. In Proceedings of CONCUR (Lecture Notes in
Computer Science, Vol. 1466). 163–178.

[3] Jaime Arias, Wojciech Jamroga, Wojciech Penczek, Laure Petrucci, and Teofil

Sidoruk. 2023. Strategic (Timed) Computation Tree Logic. In Proceedings of the
International Conference on Autonomous Agents and Multiagent Systems, AAMAS.
ACM, 382–390. https://doi.org/10.5555/3545946.3598661

[4] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT

press.

[5] Thomas Ball and Orna Kupferman. 2006. An Abstraction-Refinement Framework

for Multi-Agent Systems. In Proceedings of Logic in Computer Science (LICS). IEEE,
379–388. https://doi.org/10.1109/LICS.2006.10

[6] Francesco Belardinelli, Rodica Condurache, Catalin Dima, Wojciech Jamroga,

and Michal Knapik. 2021. Bisimulations for verifying strategic abilities with an

application to the ThreeBallot voting protocol. Information and Computation 276

(2021), 104552. https://doi.org/10.1016/j.ic.2020.104552

[7] Francesco Belardinelli, Panagiotis Kouvaros, and Alessio Lomuscio. 2017. Param-

eterised Verification of Data-aware Multi-Agent Systems. In Proceedings of IJCAI.
ijcai.org, 98–104. https://doi.org/10.24963/ijcai.2017/15

[8] Francesco Belardinelli and Alessio Lomuscio. 2017. Agent-based Abstractions

for Verifying Alternating-time Temporal Logic with Imperfect Information. In

Proceedings of AAMAS. ACM, 1259–1267.

[9] Francesco Belardinelli, Alessio Lomuscio, and Vadim Malvone. 2019. An

Abstraction-Based Method for Verifying Strategic Properties in Multi-Agent

Systems with Imperfect Information. In Proceedings of AAAI. 6030–6037.
[10] Francesco Belardinelli, Alessio Lomuscio, and Fabio Patrizi. 2011. Verification of

Deployed Artifact Systems via Data Abstraction. In Proceedings of ICSOC (Lecture
Notes in Computer Science, Vol. 7084). Springer, 142–156. https://doi.org/10.1007/

978-3-642-25535-9_10

[11] Patricia Bouyer, Uli Fahrenberg, Kim Guldstrand Larsen, Nicolas Markey, Joël

Ouaknine, and JamesWorrell. 2018. Model checking real-time systems. Handbook
of model checking (2018), 1001–1046.

[12] Thomas Brihaye, François Laroussinie, Nicolas Markey, and Ghassan Oreiby.

2007. Timed Concurrent Game Structures. In Proceedings of CONCUR. 445–459.
https://doi.org/10.1007/978-3-540-74407-8_30

[13] Nils Bulling, Jurgen Dix, and Wojciech Jamroga. 2010. Model Checking Logics

of Strategic Ability: Complexity. In Specification and Verification of Multi-Agent
Systems, M. Dastani, K. Hindriks, and J.-J. Meyer (Eds.). Springer, 125–159.

[14] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia,

Marco Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. 2002.

NuSMV2: An Open-Source Tool for Symbolic Model Checking. In Proceedings of
Computer Aided Verification (CAV) (Lecture Notes in Computer Science, Vol. 2404).
359–364.

[15] Edmund M. Clarke and E. Allen Emerson. 1981. Design and Synthesis of Syn-

chronization Skeletons Using Branching Time Temporal Logic. In Proceedings of
Logics of Programs Workshop (Lecture Notes in Computer Science, Vol. 131). 52–71.

[16] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

2000. Counterexample-Guided Abstraction Refinement. In Proceedings of CAV
(Lecture Notes in Computer Science, Vol. 1855). Springer, 154–169. https://doi.org/

10.1007/10722167_15

[17] EdmundM. Clarke, OrnaGrumberg, Somesh Jha, Yuan Lu, andHelmut Veith. 2003.

Counterexample-guided abstraction refinement for symbolic model checking. J.
ACM 50, 5 (2003), 752–794. https://doi.org/10.1145/876638.876643

[18] Edmund M. Clarke, Orna Grumberg, and David E. Long. 1994. Model Checking

and Abstraction. ACM Transactions on Programming Languages and Systems 16,
5 (1994), 1512–1542.

[19] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem

(Eds.). 2018. Handbook of Model Checking. Springer. https://doi.org/10.1007/978-

3-319-10575-8

[20] Mika Cohen, Mads Dam, Alessio Lomuscio, and Francesco Russo. 2009. Ab-

straction in model checking multi-agent systems. In Proceedings of (AAMAS.
IFAAMAS, 945–952.

[21] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified

Lattice Model for Static Analysis of Programs by Construction or Approximation

of Fixpoints. In Conference Record of the Fourth ACM Symposium on Principles of
Programming Languages. 238–252. https://doi.org/10.1145/512950.512973

[22] Dennis Dams, Rob Gerth, and Orna Grumberg. 1997. Abstract Interpretation

of Reactive Systems. ACM Trans. Program. Lang. Syst. 19, 2 (1997), 253–291.

https://doi.org/10.1145/244795.244800

[23] Dennis Dams and Orna Grumberg. 2018. Abstraction and Abstraction Refinement.

In Handbook of Model Checking. Springer, 385–419. https://doi.org/10.1007/978-

3-319-10575-8_13

[24] Luca de Alfaro, Patrice Godefroid, and Radha Jagadeesan. 2004. Three-Valued

Abstractions of Games: Uncertainty, but with Precision. In Proceedings of Logic

in Computer Science (LICS). IEEE Computer Society, 170–179.

[25] JW De Bakker, Jan A. Bergstra, Jan Willem Klop, and J-J Ch Meyer. 1984. Linear

Time and Branching Time Semantics for Recursion with Merge. Theor. Comput.
Sci. 34 (1984), 135–156. https://doi.org/10.1016/0304-3975(84)90114-2

[26] E. Allen Emerson. 1990. Temporal and Modal Logic. In Handbook of Theoretical
Computer Science, J. van Leeuwen (Ed.). Vol. B. Elsevier, 995–1072.

[27] Constantin Enea and Catalin Dima. 2008. Abstractions of multi-agent systems.

International Transactions on Systems Science and Applications 3, 4 (2008), 329–337.
[28] Rob Gerth, Ruurd Kuiper, Doron Peled, and Wojciech Penczek. 1999. A Partial

Order Approach to Branching Time Logic Model Checking. In Proceedings of
ISTCS. IEEE, 130–139.

[29] Patrice Godefroid. 2014. May/Must Abstraction-Based Software Model Checking

for Sound Verification and Falsification. In Software Systems Safety. Vol. 36. IOS
Press, 1–16. https://doi.org/10.3233/978-1-61499-385-8-1

[30] Patrice Godefroid, Michael Huth, and Radha Jagadeesan. 2001. Abstraction-

based model checking using modal transition systems. In Proceedings of CONCUR
(Lecture Notes in Computer Science, Vol. 2154). Springer, 426–440.

[31] Patrice Godefroid and Radha Jagadeesan. 2002. Automatic Abstraction Using

Generalized Model Checking. In Proceedings of Computer Aided Verification (CAV)
(Lecture Notes in Computer Science, Vol. 2404). Springer, 137–150. https://doi.org/

10.1007/3-540-45657-0_11

[32] Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and SaiDeep Tetali. 2010.

Compositional may-must program analysis: unleashing the power of alternation.

In Proceedings of POPL. ACM, 43–56. https://doi.org/10.1145/1706299.1706307

[33] Rong Gu, Peter G Jensen, Danny B Poulsen, Cristina Seceleanu, Eduard Enoiu, and

Kristina Lundqvist. 2022. Verifiable strategy synthesis for multiple autonomous

agents: a scalable approach. International Journal on Software Tools for Technology
Transfer 24, 3 (2022), 395–414.

[34] Rong Gu, Peter G Jensen, Cristina Seceleanu, Eduard Enoiu, and Kristina

Lundqvist. 2022. Correctness-guaranteed strategy synthesis and compression for

multi-agent autonomous systems. Science of Computer Programming 224 (2022),

102894.

[35] Arie Gurfinkel, Ou Wei, and Marsha Chechik. 2006. Yasm: A Software Model-

Checker for Verification and Refutation. In Proceedings of CAV (Lecture Notes in
Computer Science, Vol. 4144). Springer, 170–174. https://doi.org/10.1007/11817963_
18

[36] Xiaowei Huang and Ron Van Der Meyden. 2014. Symbolic Model Checking Epis-

temic Strategy Logic. In Proceedings of AAAI Conference on Artificial Intelligence.
1426–1432.

[37] IEC 60027-2 2000. Letter symbols to be used in electrical technology — Part 2:
Telecommunications and electronics. International Standard. International Elec-
trotechnical Commission, Geneva, Switzerland.

[38] Wojciech Jamroga and Yan Kim. 2023. Practical Abstraction for Model Checking

of Multi-Agent Systems. In Proceedings of the 20th International Conference on
Principles of Knowledge Representation and Reasoning, KR. 384–394. https://doi.

org/10.24963/KR.2023/38

[39] Wojciech Jamroga and Yan Kim. 2023. Practical Model Reductions for Verification

of Multi-Agent Systems. In Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, IJCAI. ijcai.org, 7135–7139. https://doi.org/

10.24963/IJCAI.2023/834

[40] Wojciech Jamroga, Yan Kim, Peter B Roenne, and Peter YA Ryan. 2024. “You

Shall not Abstain!” A Formal Study of Forced Participation. In Proceeding of the
9th Workshop on Advances in Secure Electronic Voting, Voting.

[41] Wojciech Jamroga, Wojciech Penczek, Teofil Sidoruk, Piotr Dembiński, and

Antoni Mazurkiewicz. 2020. Towards Partial Order Reductions for Strategic

Ability. Journal of Artificial Intelligence Research 68 (2020), 817–850. https:

//doi.org/10.1613/jair.1.11936

[42] Magdalena Kacprzak, Alessio Lomuscio, andWojciech Penczek. 2004. Verification

of Multiagent Systems via Unbounded Model Checking. In Proceedings of AAMAS.
IEEE Computer Society, 638–645. https://doi.org/10.1109/AAMAS.2004.10086

[43] Panagiotis Kouvaros and Alessio Lomuscio. 2017. Parameterised Verification of

Infinite State Multi-Agent Systems via Predicate Abstraction. In Proceedings of
AAAI. 3013–3020.

[44] Alessio Lomuscio and Wojciech Penczek. 2007. Symbolic Model Checking for

Temporal-Epistemic Logics. SIGACT News 38, 3 (2007), 77–99. https://doi.org/10.

1145/1324215.1324231

[45] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. 2017. MCMAS: An Open-

Source Model Checker for the Verification of Multi-Agent Systems. International
Journal on Software Tools for Technology Transfer 19, 1 (2017), 9–30. https:

//doi.org/10.1007/s10009-015-0378-x

[46] Alessio Lomuscio, Hongyang Qu, and Francesco Russo. 2010. Automatic Data-

Abstraction in Model Checking Multi-Agent Systems. In Model Checking and
Artificial Intelligence (Lecture Notes in Computer Science, Vol. 6572). Springer,
52–68. https://doi.org/10.1007/978-3-642-20674-0_4

[47] Kenneth L. McMillan. 1993. Symbolic Model Checking: An Approach to the State
Explosion Problem. Kluwer Academic Publishers.

[48] Kenneth L. McMillan. 2002. Applying SAT Methods in Unbounded Symbolic

Model Checking. In Proceedings of Computer Aided Verification (CAV) (Lecture

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1125

https://doi.org/10.5555/3545946.3598661
https://doi.org/10.1109/LICS.2006.10
https://doi.org/10.1016/j.ic.2020.104552
https://doi.org/10.24963/ijcai.2017/15
https://doi.org/10.1007/978-3-642-25535-9_10
https://doi.org/10.1007/978-3-642-25535-9_10
https://doi.org/10.1007/978-3-540-74407-8_30
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/244795.244800
https://doi.org/10.1007/978-3-319-10575-8_13
https://doi.org/10.1007/978-3-319-10575-8_13
https://doi.org/10.1016/0304-3975(84)90114-2
https://doi.org/10.3233/978-1-61499-385-8-1
https://doi.org/10.1007/3-540-45657-0_11
https://doi.org/10.1007/3-540-45657-0_11
https://doi.org/10.1145/1706299.1706307
https://doi.org/10.1007/11817963_18
https://doi.org/10.1007/11817963_18
https://doi.org/10.24963/KR.2023/38
https://doi.org/10.24963/KR.2023/38
https://doi.org/10.24963/IJCAI.2023/834
https://doi.org/10.24963/IJCAI.2023/834
https://doi.org/10.1613/jair.1.11936
https://doi.org/10.1613/jair.1.11936
https://doi.org/10.1109/AAMAS.2004.10086
https://doi.org/10.1145/1324215.1324231
https://doi.org/10.1145/1324215.1324231
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1007/978-3-642-20674-0_4

Notes in Computer Science, Vol. 2404). 250–264.
[49] Doron A. Peled. 1993. All from One, One for All: on Model Checking Using Rep-

resentatives. In Proceedings of CAV (Lecture Notes in Computer Science, Vol. 697),
Costas Courcoubetis (Ed.). Springer, 409–423. https://doi.org/10.1007/3-540-

56922-7_34

[50] Wojciech Penczek and Alessio Lomuscio. 2003. Verifying Epistemic Properties of

Multi-Agent Systems via Bounded Model Checking. In Proceedings of AAMAS
(Melbourne, Australia). ACM Press, New York, NY, USA, 209–216.

[51] Wojciech Penczek and Agata Półrola. 2001. Abstractions and partial order reduc-

tions for checking branching properties of time Petri nets. In Applications and
Theory of Petri Nets 2001: 22nd International Conference, ICATPN 2001 Newcastle
upon Tyne, UK, June 25–29, 2001 Proceedings 22. Springer, 323–342.

[52] Wojciech Penczek and Agata Pólrola. 2006. Advances in Verification of Time Petri
Nets and Timed Automata: A Temporal Logic Approach. Studies in Computational

Intelligence, Vol. 20. Springer. https://doi.org/10.1007/978-3-540-32870-4

[53] Ph. Schnoebelen. 2003. The Complexity of TemporalModel Checking. InAdvances
in Modal Logics, Proceedings of AiML 2002. World Scientific.

[54] Sharon Shoham and Orna Grumberg. 2004. Monotonic Abstraction-Refinement

for CTL. In Proceedings of TACAS (Lecture Notes in Computer Science, Vol. 2988).
Springer, 546–560. https://doi.org/10.1007/978-3-540-24730-2_40

[55] Drew Springall, Travis Finkenauer, Zakir Durumeric, Jason Kitcat, Harri Hursti,

Margaret MacAlpine, and J Alex Halderman. 2014. Security analysis of the Esto-

nian internet voting system. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security. 703–715.

[56] Stavros Tripakis and Sergio Yovine. 2001. Analysis of timed systems using time-

abstracting bisimulations. Formal Methods in System Design 18 (2001), 25–68.

[57] Uppsala University and Aalborg University. 2002. UPPAAL. https://uppaal.org

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1126

https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/978-3-540-32870-4
https://doi.org/10.1007/978-3-540-24730-2_40
https://uppaal.org

	Abstract
	1 Introduction
	2 Reasoning about Real-Time MAS
	2.1 Multi-Agent Graphs with Clocks
	2.2 Models of Timed MAS Graphs
	2.3 Logical Reasoning about TMAS Graphs

	3 Simulation for TMAS Graphs
	4 Variable Abstraction for Timed MAS
	4.1 Definition
	4.2 Correctness

	5 Experimental Evaluation
	5.1 Benchmark: Estonian Internet Voting
	5.2 Experiments and Results

	6 Conclusions
	Acknowledgments
	References

