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ABSTRACT
The gossip problem seeks to determine the minimum number of
calls required for all agents in a network to share their secrets.
To address this problem in a distributed manner, epistemic gossip
protocols have been proposed, where each agent decides whom
to call based on their knowledge. While extensive research has
explored the feasibility of information dissemination under various
protocols and environmental conditions, a recent study introduced
a model that assumes the presence of unreliable agents. In this
model, when an agent fails, it loses both the secrets and telephone
numbers obtained from previous calls and returns to its initial state.
In this context, the robustness of some existing protocols against
data loss due to failures, as well as a sufficient condition for agents
to detect failures, has been demonstrated. The objective of this pa-
per is to complement the previous study through a comprehensive
analysis and to explore methods for designing robust epistemic gos-
sip protocols. Our contributions are threefold. First, we clarify the
necessary and sufficient conditions regarding network structure for
existing protocols to succeed (i.e., for all agents to know all secrets)
at different levels. Second, we elucidate the necessary and sufficient
conditions for failure detection. Finally, we present protocols in
which agents, upon detecting their own or others’ failures, take
actions to recover the lost data and analyze the robustness of these
protocols.
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1 INTRODUCTION
The gossip protocol determines one-to-one communications (called
calls) among agents in a network to share their secrets. The origin
of research on gossip can be traced back to the so-called gossip
problem [5, 12, 16], raised in the early 1970s (cf. also [13] for a
survey). In this problem, each agent initially knows only its own
secret, and with each call, two agents share their secrets obtained
by the previous calls. The gossip problem seeks to determine the
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minimum number of calls required for all agents to know all the
secrets (i.e., for everyone to become an expert).

In classical studies, it was assumed that there is a central con-
troller that instructs each agent on whom to call. In contrast, to
address the problem in a distributed manner, more recent studies
have introduced epistemic gossip protocols [1–4, 8, 20] where each
agent decides whom to call based on the knowledge obtained from
past communications. A common goal among these studies is to
determine which protocols and environmental conditions can en-
sure that all agents eventually become experts. In particular, most
attention has been given to the process of (possibly higher-order)
knowledge formation for agents during the course of communica-
tion.

Recently, a study [10] introduced a model that assumed the pres-
ence of unreliable agents based on the propositional S5 epistemic
logic (cf. [9]). In this model, when an agent fails, it loses the secrets
obtained from previous communications and returns to its initial
state. Under this setting, the study demonstrated the necessary and
sufficient conditions for protocols called ANY (Any call), and PIG
(Possible Information Growth) originally introduced by [21] to be
fairly successful (i.e., in a fair sequence where no further call oc-
curs, all agents become expert) and a sufficient condition for agents
to detect their own and the other agents’ failures. These results
provide new insights into the robustness of epistemic gossip proto-
cols against failures and are particularly useful for applications in
real-world distributed systems. However, a comprehensive analysis
of existing protocols has not yet been achieved. Moreover, as sug-
gested in the previous study, the property about failure detection is
valuable for designing protocols where agents detect failures and
make calls to recover lost data. However, such protocols have not
yet been thoroughly investigated.

The objective of this paper is to complement the robustness
analysis of existing protocols under the settings introduced in the
study [10] and to show the necessary and sufficient conditions for
agents to detect failures. Furthermore, we aim to explore methods
for designing robust protocols defining behavior upon detecting a
failure.

Our contributions are threefold. First, to expand the scope of
our analysis of existing protocols, in addition to ANY, CO, and PIG,
we include two additional protocols, HSS (Hear Some Secret) and
HMS (Hear My Secret). Also, we consider the four different types of
properties that ensure a protocol is successful originally introduced
by [21]. Based on this, we demonstrate the necessary and sufficient
conditions for the protocol to be successful in each of the twenty
cases.

Second, we present a sufficient condition for agents to detect
failures. In contrast to the previous study [10], which assumes that
the number of failures is at most one, our theorem holds even for
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multiple failures. Additionally, we provide a necessary condition
when the number of failures is at most one.

Finally, to enhance the robustness of protocols against failures,
we propose a method to extend a given protocol by adding the fol-
lowing conditional statements: “if an agent detects its own failure,
it calls another agent who owns the secret it lost,” and “if an agent
detects the failure of another agent, it sends its own secret to the
failed agent.” The first statement is intended to help the failed agent
recover its lost data, while the second aims to assist in the recovery
of other failed agents. These behaviors can be incorporated into the
existing protocols while preserving their original behaviors. There-
fore, we introduce ten new protocols by extending the five existing
protocols mentioned earlier using these two conditions. Further-
more, using our theorem on failure detection, we demonstrate the
robustness of these new protocols. Although these extensions do
not improve the robustness of the existing protocols. However, fu-
ture research may demonstrate the usefulness of this approach by
adjusting the behavior of agents in response to failures.

The structure of this paper is as follows. Section 2 presents re-
lated work. Section 3 overviews a logical formalization to model
the agents who may lose data due to failures, which was originally
given by [10]. Section 4 analyzes the robustness of some existing
protocols. Section 5 demonstrates the necessary and sufficient con-
ditions for agents to detect failures. Section 6 introduces protocols
extended with behaviours added for handling failures. Finally, Sec-
tion 7 concludes the paper and suggests further research.

2 RELATEDWORK
In previous studies on epistemic gossip protocols, various protocols
and environmental settings have been considered (cf. [19]).

One of the key distinctions in how information is exchanged
during a call is between the merge-then-learn and learn-then-merge
approaches. In the former (e.g., [1]), the information exchanged
during a call is merged externally before being delivered to both
parties. In the latter, each agent first obtains the information sent
by the other party before performing the merge, allowing agents to
gain more information than in the former case. Similar to [4, 21],
we adopt the learn-then-merge approach.

Studies [21, 22] introduced the concept of dynamic gossip, where
each agent has its own secret and telephone number (or number, for
short), and calls can only be made to agents whose numbers are
known. During a call, agents exchange both their secrets and their
numbers. The study [10] assumes dynamic gossip, where agents
lose not only the secrets but also the numbers they obtained if they
fail. Our model follows this setup.

Although not directly addressed in this study, previous research
has analyzed the conditions under which all agents become su-
per experts (i.e., agents who know that all agents are experts) and
the conditions under which it becomes common knowledge that
everyone is an expert [2, 18].

In addition to the study [10], a study [17] also considered unreli-
able agents and analyzed the feasibility of some existing protocols.
In their model, agents may incorrectly convey their secrets.

One of the main contribution of our work is related to failure de-
tection. In the field of distributed systems, a number of studies have
investigated the relationship between failure detection capabilities

and the achievement of system goals. A pioneering work in this
area is the study [6], which proposed a solution to the consensus
problem in asynchronous systems assuming crash failures. Since
then, many solutions have been proposed for consensus problems,
extending the analysis to include Byzantine failures [11, 14, 15].
Recently, the study [7] built on these ideas and proposed an ac-
countable Byzantine consensus algorithm.

3 FAILURE MODEL
In this section, we provide an overview of the model that assumes
the presence of unreliable agents, which may lose data previously
obtained due to failures. This failure model was orignally intro-
duced in [10], as an extension of the model presented in [21], by
incorporating the event of agent failures. In the following, we first
define the semantic model (in Section 3.1) and then define the lan-
guage and syntax of the inference system for this model based on
propositional S5 epistemic logic (in Section 3.2). Finally, we intro-
duce the protocols that are the subject of analysis in this paper (in
Section 3.3).

3.1 Semantic model
Definition 3.1 (Event). Let 𝐴 be the set of agents. Throughout

this paper, we assume that |𝐴| ≥ 3. A call from agent 𝑥 to agent
𝑦 is denoted by 𝑥𝑦, and a failure of agent 𝑥 is denoted by [𝑥].
Collectively, calls and failures are referred to as events. The set of
calls is denoted by 𝐶 , the set of failures by 𝐹 , and the set of events
by 𝐸, where 𝐸 = 𝐶 ∪ 𝐹 . For any 𝑥𝑦 ∈ 𝐶 and 𝑧 ∈ 𝐴, 𝑧 is said to be
involved in 𝑥𝑦 if 𝑧 ∈ {𝑥,𝑦}. Similarly, for any [𝑥] ∈ 𝐹 and 𝑧 ∈ 𝐴, 𝑧
is said to be involved in [𝑥] if 𝑧 = 𝑥 .

Calls can occur in two modes: asynchronous calls and synchro-
nous calls. In asynchronous calls, agents cannot perceive calls oc-
curring between other agents, whereas in synchronous calls, agents
can perceive that a call has occurred, but they cannot know who
made the call. In this paper, we focus on asynchronous calls.

Definition 3.2 (Event seqence). Let 𝐸∗ denote the set of event
sequences. We introduce the following notations for event sequence,
where 𝜎, 𝜎′, 𝜏 ∈ 𝐸∗.

• A sequence of events e1, e2, . . . is written as e1; e2; · · · . The
semicolon “;” denotes concatenation, so 𝜎 ;𝜏 denotes the se-
quence obtained by concatenating 𝜏 to the end of 𝜎 , and 𝜎 ; e
denotes the sequence obtained by appending e ∈ 𝐸 to the
end of 𝜎 .

• We write 𝜎 ⊑ 𝜏 to mean that 𝜎 is a prefix of 𝜏 (including the
case where 𝜎 = 𝜏). If 𝜎 ⊑ 𝜏 and 𝜎 ≠ 𝜏 , then we write 𝜎 ⊏ 𝜏 .

• The empty sequence is denoted by 𝜖 .
• The sequence obtained by removing all calls involving agent
𝑥 from 𝜎 is denoted by 𝜎−𝑥 .

• We write 𝑥 ∈ 𝜎 if a call involving agent 𝑥 is included in 𝜎 ,
and 𝑥 ∉ 𝜎 if no such call is included.

• The 𝑛-th event in 𝜎 is denoted by 𝜎𝑛 , and the prefix of length
𝑛 is denoted by 𝜎 |𝑛, where 𝜎 |0 = 𝜖 .

In the model proposed by [10], not only are secrets exchanged,
but information regarding the transmission paths of these secrets is
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also exchanged. This is represented by a tree structure called amem-
ory tree, defined below. In this model, agents exchange information
represented by memory trees.

Definition 3.3 (Memory tree). A memory tree is a binary tree
defined inductively as follows:

• For any 𝑥 ∈ 𝐴, ⟨𝑥⟩ is a memory tree.
• If 𝑡 and 𝑡 ′ are memory trees and 𝑥𝑦 ∈ 𝐶 , then ⟨𝑡, 𝑥𝑦, 𝑡 ′⟩ is a
memory tree.

Intuitively, memory tree ⟨𝑡, 𝑥𝑦, 𝑡 ′⟩ not only represents themerged
secrets 𝑡 and 𝑡 ′ held by 𝑥 and 𝑦, but also indicates that these secrets
were shared between 𝑥 and 𝑦 through the call 𝑥𝑦. Thus, for exam-
ple, when agent 𝑧 has the memory tree ⟨⟨𝑥, 𝑥𝑦,𝑦⟩, 𝑥𝑧⟩, 𝑧 knows not
only the secrets of 𝑥 , 𝑦, and 𝑧, but also that the secrets of 𝑥 and 𝑦
were first gathered by 𝑥 through the call 𝑥𝑦, and then passed to 𝑧
through the call 𝑥𝑧.

In the rest of this paper, T denotes the set of memory trees. The
set of leaves of a memory tree 𝑡 ∈ T is denoted by 𝑙𝑒𝑎𝑣𝑒𝑠 (𝑡), and
the root of 𝑡 is denoted by 𝑟𝑜𝑜𝑡 (𝑡). We write 𝑡 ⊆ 𝑡 ′ to indicate that
𝑡 is a subtree of 𝑡 ′.

Next, we define the 𝜎-induced memory tree for an agent 𝑥 ∈ 𝐴
after the execution of a sequence 𝜎 ∈ 𝐸∗.

Definition 3.4 (𝜎-inducedmemory tree for𝑥 ). The𝜎-induced
memory tree for agent 𝑥 is a memory tree defined by the mapping
𝑚𝑡𝑟𝑒𝑒 : 𝐴 × 𝐸∗ → T , given the sequence 𝜎 , as follows:

• If 𝜎 = 𝜖 , then𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎) = ⟨𝑥⟩ for any 𝑥 .
• If 𝜎 = 𝜎′;𝑦𝑧, then

𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎) =
{
⟨𝑚𝑡𝑟𝑒𝑒 (𝑦, 𝜎′), 𝑦𝑧,𝑚𝑡𝑟𝑒𝑒 (𝑧, 𝜎′)⟩ if 𝑥 ∈ {𝑦, 𝑧},
𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′) otherwise.

• If 𝜎 = 𝜎′; [𝑦], then

𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎) =
{
⟨𝑦⟩ if 𝑥 = 𝑦,

𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′) otherwise.

Thememory tree𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎) represents the set of secrets known
by agent 𝑥 and the transmission paths of those secrets after the
sequence 𝜎 has been executed. The set of secrets known by agent 𝑥
corresponds to 𝑙𝑒𝑎𝑣𝑒𝑠 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎)). Additionally,𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎) con-
tains information about the transmission paths of the secrets known
by 𝑥 .

Next, we define the gossip graph. A gossip graph represents the
knowledge of agents about (telephone) numbers and secrets at a
given point in time, and is defined as a triple consisting of the set of
agents 𝐴, the relation 𝑁 regarding numbers, and the set of memory
trees {𝑡𝑥 }𝑥∈𝐴 .

Definition 3.5 (Gossip graph). A gossip graph 𝐺 is a triple
(𝐴, 𝑁, {𝑡𝑥 }𝑥∈𝐴), where 𝐴 is the set of agents, 𝑁 is a binary relation
on 𝐴, and 𝑡𝑥 ∈ T for each 𝑥 ∈ 𝐴.

We define 𝑁 −1 = {(𝑥,𝑦) | (𝑦, 𝑥) ∈ 𝑁 }. The set of gossip graphs
is denoted byG. The gossip graph that represents the agents’ knowl-
edge about numbers and secrets at the initial state is called the initial
gossip graph and is defined as follows.

Definition 3.6 (Initial gossip graph). An initial gossip graph
is a gossip graph that satisfies the following conditions.

• 𝑁 is reflexive.
• 𝑡𝑥 = ⟨𝑥⟩ for all 𝑥 ∈ 𝐴.

Here, for the initial gossip graph 𝐺 = {𝐴, 𝑁, {𝑡𝑥 }𝑥∈𝐴}, if there
exists a path between any 𝑥 and 𝑦 in 𝑁 ∪𝑁 −1,𝐺 is called a weakly
connected graph. Also, if there exists a path between any 𝑥 and 𝑦 in
𝑁 , 𝐺 is called a strongly connected graph. Furthermore, in 𝐺 , if an
agent 𝑎 that satisfies the following two conditions:

(1) For any agent 𝑥 ≠ 𝑎, (𝑎, 𝑥) ∉ 𝑁 ;
(2) For any agent 𝑦 ≠ 𝑎, there exists an agent 𝑧 ≠ 𝑎,𝑦 such that

(𝑦, 𝑧) ∈ 𝑁 ;

it is called an isolated agent, and an initial gossip graph that does
not contain an isolated agent is called a non-isolated graph.

The gossip graph obtained from the initial gossip graph 𝐺 after
the execution of a sequence 𝜎 of events is called the 𝜎-induced
gossip graph, which represents the global state.

Definition 3.7 (𝜎-induced gossip graph). Given a gossip graph
𝐺 = (𝐴, 𝑁, {𝑡𝑥 }𝑥∈𝐴) and a sequence of events 𝜎 , the 𝜎-induced gos-
sip graph is denoted by𝐺𝜎 , where𝐺𝜎 = (𝐴, 𝑁𝜎 , {𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎)}𝑥∈𝐴).
The sets𝐴 and {𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎)}𝑥∈𝐴 are uniquely determined by 𝜎 and
𝐺 = (𝐴, 𝑁, {𝑡𝑥 }𝑥∈𝐴), so it suffices to define only 𝑁𝜎 as follows:

• 𝑁 𝜖 = 𝑁

• For 𝜎 ≠ 𝜖 ,
– If 𝜎 = 𝜎′;𝑥𝑦, then

𝑁𝜎 = 𝑁𝜎 ′ ∪ {(𝑚, 𝑧) | (𝑚 = 𝑥 ∧ (𝑦, 𝑧) ∈ 𝑁𝜎 ′ )
∨(𝑚 = 𝑦 ∧ (𝑥, 𝑧) ∈ 𝑁𝜎 ′ )}.

– If 𝜎 = 𝜎′; [𝑥], then
𝑁𝜎 = 𝑁𝜎 ′ \ {(𝑥, 𝑧) | (𝑥, 𝑧) ∈ 𝑁𝜎 ′ ∧ 𝑧 ≠ 𝑥}.

A call 𝑥𝑦 is said to be valid in 𝐺𝜎 if (𝑥,𝑦) ∈ 𝑁𝜎 holds in the
gossip graph 𝐺𝜎 .

With these assumptions, we define the asynchronous accessibility
relation as follows.

Definition 3.8 (Asynchronous accessibility relation). The
asynchronous accessibility relation ∼𝑥 between gossip graphs is
defined as follows:

Let 𝐺1 and 𝐺2 be gossip graphs, and suppose that 𝐺𝜎
1 =

(𝐴, 𝑁𝜎
1 , {𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎)}𝑥∈𝐴) and 𝐺𝜏

2 = (𝐴, 𝑁𝜏
2 , {𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜏)}𝑥∈𝐴).

Then, 𝐺𝜎
1 ∼𝑥 𝐺𝜏

2 holds if and only if𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎) =𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜏).

The Kripke model consisting of a tuple of a set of gossip graphs
and a set of accessibility relations is called the gossip model defined
as follows.

Definition 3.9 (Gossip model). Given a set of agents 𝐴, the
asynchronous gossip model G∼ is a triple G∼ = (G, ⟨∼𝑎⟩𝑎∈𝐴),
where G is the set of gossip graphs, and ⟨∼𝑎⟩𝑎∈𝐴 is the set of
accessibility relations for each agent 𝑎 ∈ 𝐴.

3.2 Epistemic Logic
In an epistemic gossip protocol, the condition 𝜑 (𝑥,𝑦) under which
agent 𝑥 calls agent 𝑦 is expressed in the language of epistemic logic,
and its truth is determined by the gossip model. The language used
to describe these conditions is defined as follows:
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Definition 3.10 (Language). Given a set of agents 𝐴, the lan-
guage L used to describe the conditions in epistemic gossip proto-
cols is defined as follows.

𝜑 ::= ⊤ | C(𝑎, 𝑏) | F(𝑎) | S(𝑎, 𝑏) | ¬𝜑 | (𝜑 ∧ 𝜑) | 𝐾𝑎𝜑,
where 𝑎, 𝑏, 𝑐 ∈ 𝐴. Logical connectives such as →,∨,↔ are defined
in the standard way.

In this language, C(𝑎, 𝑏) indicates that a call between 𝑎 and 𝑏 has
occurred, F(𝑎) indicates that 𝑎 has failed at least once, and S(𝑎, 𝑏)
indicates that 𝑎 knows 𝑏’s secret. Additionally, 𝐾𝑎𝜑 expresses that
𝑎 knows 𝜑 . The truth of these formulas is defined as follows.

Definition 3.11 (Truth conditions). Given an asynchronous
gossip model G∼ = (G, ⟨∼𝑎⟩𝑎∈𝐴) and any𝐺𝜎 ∈ G and any formula
𝜑 in L, the truth of 𝜑 is defined inductively as follows:

G∼,𝐺𝜎 |= ⊤ always
G∼,𝐺𝜎 |= C(𝑎, 𝑏) iff 𝑎𝑏 ∈ 𝜎
G∼,𝐺𝜎 |= F(𝑎) iff [𝑎] ∈ 𝜎
G∼,𝐺𝜎 |= S(𝑎, 𝑏) iff 𝑏 ∈ 𝑙𝑒𝑎𝑣𝑒𝑠 (𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜎))
G∼,𝐺𝜎 |= ¬𝜑 iff G∼,𝐺𝜎 ̸ |= 𝜑
G∼,𝐺𝜎 |= 𝜑1 ∧ 𝜑2 iff G∼,𝐺𝜎 |= 𝜑1 and G∼,𝐺𝜎 |= 𝜑2
G∼,𝐺𝜎 |= 𝐾𝑎𝜑 iff for all 𝐻𝜏 such that 𝐺𝜎 ∼𝑎 𝐻𝜏 ,G∼, 𝐻𝜏 |= 𝜑.

For a formula 𝜑 , we define the algorithm of the epistemic gossip
protocol as follows. In this study, we assume that all agents follow
the same protocol.

Definition 3.12 (Gossip protocol for u). A gossip protocol is
a nondeterministic algorithm of the following form:

repeat forever
select agent 𝑣 ∈ 𝐴 such that condition 𝜑 (𝑢, 𝑣) is satisfied
execute call 𝑢𝑣

where 𝜑 (𝑢, 𝑣) is a formula defined in the language introduced in
Definition 3.10.

Given a protocol P and an initial gossip graph 𝐺 , the event
sequences that may occur according to the protocol are called P∼-
permitted sequences. The set of P∼-permitted sequences is called
the extension of the protocol.

Definition 3.13 (Permitted seqence). Let P be a protocol
defined by the condition 𝜑 (𝑥,𝑦), and let𝐺 be an initial gossip graph.

• A call 𝑎𝑏 is P∼-permitted in 𝐺𝜎 if G∼,𝐺𝜎 |= 𝜑 (𝑎, 𝑏), the call
𝑎𝑏 is valid in 𝐺𝜎 , and not all agents are experts in 𝐺𝜎 .

• A failure [𝑐] is P∼-permitted in 𝐺𝜎 if there exists a call 𝑎𝑏
that is P∼-permitted in 𝐺𝜎 .

• A sequence of events 𝜎 is P∼-permitted in 𝐺 if each 𝜎𝑛+1 is
P∼-permitted in 𝐺𝜎 |𝑛 .

• The extension P∼
𝐺
of protocol P in 𝐺 is the set of sequences

that are P∼-permitted in 𝐺 .
• A sequence 𝜎 ∈ P∼

𝐺
is P∼-maximal in 𝐺 if 𝜎 is either an

infinite sequence or for every event e, 𝜎 ; e ∉ P∼
𝐺
.

For a given initial gossip graph, a protocol is said to be success-
ful if it eventually makes all agents experts. This concept can be
classified into the following four levels of strength, depending on
the rigor of the requirement.

Definition 3.14 (Successful). Let 𝐺 be an initial gossip graph,
and let P be a protocol.

• A sequence 𝜎 ∈ P∼
𝐺
is said to be successful if 𝜎 is a finite

sequence and all agents are experts in 𝐺𝜎 .
• A sequence 𝜎 ∈ P∼

𝐺
is said to be fair if 𝜎 is a finite sequence

or, for any call 𝑥𝑦, the following holds:
For every 𝑖 ∈ N, there exists a 𝑗 ≥ 𝑖 such that if the
call 𝑥𝑦 is P∼-permitted in 𝐺𝜎 | 𝑗 , then 𝜎 𝑗 = 𝑥𝑦 for some
𝑗 ≥ 𝑖 .

• A protocol P is said to be strongly successful in 𝐺 if every
maximal sequence 𝜎 ∈ P∼

𝐺
is successful.

• A protocol P is said to be fairly successful in𝐺 if there exists
at least one maximal and successful sequence 𝜎 ∈ P∼

𝐺
, and

every fair and maximal sequence 𝜎 ∈ P∼
𝐺
is successful.

• A protocol P is said to be weakly successful in 𝐺 if there
exists at least one maximal and successful sequence 𝜎 ∈ P∼

𝐺
.

• A protocol P is said to be unsuccessful in 𝐺 if there is no
successful sequence 𝜎 ∈ P∼

𝐺
.

3.3 Protocols
Finally, we list some epistemic gossip protocols introduced in [21]
below. These will be the subject of analysis in the next section.

ANY (ANY Call): 𝜑 (𝑥,𝑦) := ⊤
(While not every agent knows all secrets, randomly select a
pair 𝑥𝑦 such that 𝑥 knows 𝑦’s number and let 𝑥 call 𝑦.)

PIG (Possible Information Growth):
𝜑 (𝑥,𝑦) := ¬𝐾𝑥¬

∨
𝑧∈𝐴 (S(𝑥, 𝑧) ↔ ¬S(𝑦, 𝑧))

(Call 𝑥𝑦 can be made if 𝑥 knows 𝑦’s number and if 𝑥 considers
it possible that there is a secret known by one of 𝑥,𝑦 but not
the other.)

HSS (Hear Some Secret):𝜑 (𝑥,𝑦) := ¬𝐾𝑥¬
∨

𝑧∈𝐴 (S(𝑥, 𝑧)∧¬S(𝑦, 𝑧))
(Call 𝑥𝑦 can be made if 𝑥 knows 𝑦’s number and considers it
possible that she knows some secret that 𝑦 does not know.)

HMS (Hear My Secret): 𝜑 (𝑥,𝑦) := ¬𝐾𝑥¬¬S(𝑦, 𝑥)
(Call 𝑥𝑦 is possible if 𝑥 knows 𝑦’s number and 𝑥 considers it
possible that 𝑦 does not know 𝑥 ’s secret.)

CO′ (Modified Call Me Once): 𝜑 (𝑥,𝑦) := ¬𝐾𝑥 (C(𝑥,𝑦) ∨ C(𝑦, 𝑥))
(Agent 𝑥 may call agent 𝑦 if 𝑥 knows 𝑦’s number and 𝑥 does
not know there was a prior call between 𝑥 and 𝑦.)

Here, we introduce CO′ instead of the original CO by the fol-
lowing reason. When assuming the existence of failures, protocol
CO, defined as 𝜑 (𝑥,𝑦) := ¬C(𝑥,𝑦) ∧ ¬C(𝑦, 𝑥), cannot be evaluated
by the agent itself. To deal with this issue, the study [10] implicitly
assumed the presence of an external agent responsible for determin-
ing the truth of the statement. However, in this paper, we modify
the protocol so as to make the system fully distributed.

4 ROBUSTNESS IN EXISTING PROTOCOLS
In this section, we analyze the robustness of existing protocols
against failures, which has not been clarified in previous research.
In [10], necessary and sufficient conditions for the protocols ANY
and PIG to be fairly successful were presented. In addition to the
two protocols, we also analyze HSS, HMS and CO′. Furthermore,
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(A) Existing Protocols
Theorem Protocol Strongly Fairly Weakly Unsuccessful
4.2 ANY N iff weak [10] iff weak N
4.2 PIG N iff weak [10] iff weak N
4.1, 4.2 HSS N iff weak iff weak N
4.1, 4.2 HMS N iff weak iff weak N
4.3, 4.4 CO′ if strong if strong iff weak N

(B) Extended Protocols
Theorem Protocol Strongly Fairly Weakly Unsuccessful
6.1, 6.2, 6.4 ANY+ N if strong iff weak N
6.1, 6.2, 6.4 PIG+ N if strong iff weak N
6.1, 6.2, 6.4 HSS+ N if strong iff weak N
6.1, 6.2, 6.4 HMS+ N if strong iff weak N
6.5, 6.6 CO′+ if strong if strong iff weak N
6.1, 6.2, 6.3 ANY# N only if non-iso. iff weak N
6.1, 6.2, 6.3 PIG# N only if non-iso. iff weak N
6.1, 6.2, 6.3 HSS# N only if non-iso. iff weak N
6.1, 6.2, 6.3 HMS# N only if non-iso. iff weak N
6.5, 6.7 CO′# only if non-iso. only if non-iso. iff weak N

Table 1: Results of the analysis for (A) existing protocols and
(B) extended protocols.

with regard to the feasibility of the protocols, we consider the four
levels of successful properties: strongly successful, fairly successful,
weakly successful, and unsuccessful. Accordingly, we clarify the
conditions on the initial gossip graph for which each of the 20 cases
holds.

Our results are presented in Table 1, where “strong” (“weak”,
“non-iso.”, respectively) represents the proposition that the initial
gossip graph is strongly connected (weakly connected, non-isolated,
respectively). Also, “N” represents that there are no conditions
under which the property holds.

These results are derived from Theorems 4.1 and 4.2, shown
below. Hereafter, we assume that the number of failures is finite.

Theorem 4.1. Protocols HSS and HMS are fairly successful in
the initial gossip graph 𝐺 if and only if 𝐺 is weakly connected.

Proof. Assuming that the number of failures is finite, there exists a
prefix 𝜎′ of 𝜎 such that no agent gains any new secrets afterward.
If 𝜎 is not successful, then in 𝐺𝜎 ′

, there exist agents 𝑥 and 𝑦 such
that (𝑥,𝑦) ∈ 𝑁 and 𝑙𝑒𝑎𝑣𝑒𝑠 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′)) ≠ 𝑙𝑒𝑎𝑣𝑒𝑠 (𝑚𝑡𝑟𝑒𝑒 (𝑦, 𝜎′)).
However, if 𝜎 is fair, the call 𝑥𝑦 should eventually occur, leading to
a contradiction. □

This argument is similar to the proof of Theorem 1 in [10], which
established that the necessary and sufficient condition for protocol
ANY to be fairly successful is that the initial gossip graph 𝐺 is
weakly connected.

Theorem 4.2. Protocols ANY, PIG, HSS, andHMS are not strongly
successful in 𝐺 .

Proof. Assume that ANY is strongly successful in 𝐺 . It is clear that
𝐺 is weakly connected. Since 𝐺 is weakly connected, there exist
agents 𝑎 and 𝑏 such that (𝑎, 𝑏) ∈ 𝑁 . In this case, 𝜎 = 𝑎𝑏;𝑎𝑏; · · · is
ANY∼-permitted in 𝐺 , leading to a contradiction. □

From Theorems 4.1and 4.2, it follows that the protocols are
weakly successful if and only if the graph is weakly connected.
The reasoning is as follows: First, the necessary and sufficient con-
dition for any of these protocols to be fairly successful is that the

graph is weakly connected. Therefore, when the graph is weakly
connected, the protocols are weakly successful. Moreover, if the
condition on the graph is further relaxed (i.e., if the graph is not
connected), there will exist agents who neither know nor are known
by anyone else, making it impossible for them to call anyone or
be called. Thus, any sequence executed on such a graph will be
unsuccessful. Therefore, it is also necessary for the graph to be
weakly connected for the protocols to be weakly successful.

Finally, we show the properties of protocol CO′. First, we show
the necessary and sufficient conditions for this protocols to be
weakly successful. From this theorem, we can see that if𝐺 is weakly
connected then CO′ is not unsuccessful in 𝐺 .

Theorem 4.3. For an initial gossip graph 𝐺 , CO′ is weakly suc-
cessful in 𝐺 if and only if 𝐺 is weakly connected.

Proof. The proof follows similarly to Theorem 15 in [22], which
establishes that CO is strongly successful in 𝐺 if and only if 𝐺 is
weakly connected. □

We show sufficient conditions for CO′ to be strongly successful
in𝐺 . From this theorem, we can see that if𝐺 is strongly connected,
then all maximal sequences contained in CO′∼

𝐺 is successful, and
thus CO′ is fairly successful in 𝐺 .

Theorem 4.4. For an initial gossip graph 𝐺 , if 𝐺 is strongly
connected, then CO′ is strongly successful in 𝐺 .

Proof. Let 𝜎 be a maximal sequence contained in CO′∼
𝐺 . The failures

contained in 𝜎 occur at most finitely many times. Therefore, if we
denote the prefix of 𝜎 up to its last failure as 𝜎1, then 𝜎1 is a finite
sequence. Now, we set 𝜎 = 𝜎1;𝜎2, it follows from the definition of
CO′ that 𝜎2 does not contain the same call more than once. Hence,
𝜎 is also a finite sequence.

Since𝐺 is strongly connected, there exists a directed path 𝜋 from
any 𝑥 to 𝑦. By induction on the length of 𝜋 , we can conclude that
in 𝐺𝜎 ,𝑦 ∈ 𝑙𝑒𝑎𝑣𝑒𝑠 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎)). □

In closing this section, we compare our results with previous
research that does not assume failures. In [21], the necessary con-
ditions for some protocols, including those we analyzed, to be
successful were clarified under models without failures. Compar-
ing these results with ours, we find that for ANY and PIG, there
was no difference regardless of whether failures were allowed. On
the other hand, HSS had the property of being strongly successful
when the initial gossip graph was weakly connected in the absence
of failures. However, when failures were allowed, it was found
that HSS could not be strongly successful under the same condi-
tions. Similarly, for HMS, it was shown that this protocol could
be strongly successful in a special graph called a sun*graph in the
absence of failures, but under the same conditions with failures, it
could not be strongly successful. Finally, in [21], they demonstrated
that CO becomes strongly successful when the initial gossip graph
is weakly connected. However, [10] showed that this result does
not hold when failures are assumed. In contrast, we demonstrate
that CO′ becomes strongly successful when the initial gossip graph
is strongly connected.
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5 CONDITIONS TO DETECT FAILURES
In this section, we analyze the conditions under which agents detect
their own and others’ failures during a protocol execution. More
formally, in the execution (event sequence) 𝜎 of a given protocol,
agent 𝑎 is said to detect agent 𝑏’s (where possibly 𝑎 = 𝑏) failure if
G∼,𝐺𝜎 |= 𝐾𝑎F(𝑏) holds.

In [10], a sufficient condition was provided under the assumption
that at most one failure occurs. In this paper, we present sufficient
conditions under the assumption that multiple failures may occur.
Additionally, under the restriction that at most one failure occurs,
we also provide a necessary condition for an agent to detect a failure.
Our proof strategy is as follows: we first prove the necessary and
sufficient conditions for detecting a failure under the assumption
that at most one failure occurs (by Theorem 5.1) and then show the
sufficient condition also holds for the case of multiple failures (by
Theorem 5.2).

The mechanism by which agent 𝑏 detects 𝑎’s failure is as follows.
First, 𝑎 makes a call to 𝑐 (≠ 𝑎, 𝑏), then 𝑎 fails, and later 𝑎 makes
a call to 𝑑 (≠ 𝑎, 𝑏, 𝑐). At this point, the memory tree that 𝑎 sent
to 𝑑 does not contain the record of the call 𝑎𝑐 . Therefore, when
the two memory trees that 𝑎 sent to 𝑐 and 𝑑 eventually reach 𝑏
via other agents, 𝑏 can detect 𝑎’s failure from the inconsistency
between these two messages originating from 𝑎. By these theorems,
we formally prove that this mechanism works.

As shown in the following section, Theorem 5.2 is used to ana-
lyze the robustness of a protocol in which an agent who detects a
failure repairs it. This raises one question: whether higher-order
knowledge regarding the failure holds, specifically, whether agent 𝑎
can know that agent 𝑏 knows about 𝑐’s failure. If this holds, it could
be possible to design an advanced protocol in which, for instance,
𝑎 instructs 𝑏 to repair the data lost by 𝑐 using such higher-order
knowledge. However, Theorem 5.3 shows that this is not possible.
That is, higher-order knowledge about failures does not hold.

Before proving the theorems, we first provide the definitions of
several necessary concepts. To prove the theorems presented below,
we will need nine lemmas (Lemmas 4.1 to 4.9). However, due to
space limitations, their statements and proofs are provided only in
the Appendix (Supplementary Material).

Definition 5.1 (Single memory). Let 𝑡 be a memory tree of
height at least 1, and let 𝑎 be an agent. If one of the children of 𝑡 is
⟨𝑎⟩, then 𝑡 is said to have a single memory of 𝑎.

Definition 5.2. Let 𝑡 be a memory tree of height at least 1, and
let 𝑎 be an agent. The set 𝑠𝑢𝑏𝑎 (𝑡) is defined as 𝑠𝑢𝑏𝑎 (𝑡) = {𝑡 ′ | 𝑡 ′ ⊆
𝑡 and 𝑡 ′ has a single memory of 𝑎}.

Definition 5.3. Let 𝑎 be an agent and 𝑡 amemory tree. If 𝑠𝑢𝑏𝑎 (𝑡)
contains two or more elements, then 𝑡 is said to have multiple single
memories of 𝑎.

We now present the necessary and sufficient conditions for iden-
tifying a single failure.

Theorem 5.1. Let 𝜎 be a sequence containing at most one failure,
and let 𝑥 , 𝑎 be agents, with an asynchronous gossip model G∼ and
an initial gossip graph 𝐺 . Then G∼,𝐺𝜎 |= 𝐾𝑥F(𝑎) if and only if
𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎) contains multiple single memories of 𝑎.

Proof. (⇒) Assume G∼,𝐺𝜎 |= 𝐾𝑥F(𝑎). Write 𝜎 = 𝜎1; [𝑎];𝜎2. Sup-
pose𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎) does not contain multiple single memories of 𝑎.

(Case 1) If |𝑠𝑢𝑏𝑎 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜎2)) | = 0, and 𝑥 ≠ 𝑎, then ⟨𝑎⟩ ∉
𝑙𝑒𝑎𝑣𝑒𝑠 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜎2)). Since 𝑥 , who does not know 𝑎’s se-
cret, does not know that a call involving 𝑎 occurred before 𝑎’s
failure (by Lemma 5.3), 𝐺𝜎1;[𝑎];𝜎2 ∼𝑥 𝐺𝜎1

−𝑎 ;[𝑎];𝜎2 . Therefore, since
no agent can know about the failure of 𝑎 who has never made a
call (by Lemma 5.1), 𝐺𝜎1

−𝑎 ;[𝑎];𝜎2 ∼𝑥 𝐺𝜎1
−𝑎 ;𝜎2 , which leads to a

contradiction.

(Case 2) If |𝑠𝑢𝑏𝑎 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜎2)) | = 1, let 𝑡 be the memory
tree containing 𝑎’s single memory in𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎). Since any node
that is not a leaf in 𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎) is included in 𝜎 (by Lemma 5.6),
𝑟𝑜𝑜𝑡 (𝑡) ∈ 𝜎1; [𝑎];𝜎2.
(Case 2.1) If 𝑟𝑜𝑜𝑡 (𝑡) ∈ 𝜎1 and 𝑥 = 𝑎, then 𝑎 ∈ 𝜎2. Let the first
call involving 𝑎 be 𝑎𝑏, and we set 𝜎2 = 𝜏1;𝑎𝑏;𝜏2. In this setting,
𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜎1; [𝑎];𝜏1;𝑎𝑏) contains a single memory of 𝑎. Therefore,
since 𝑡 = 𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜎1; [𝑎];𝜏1;𝑎𝑏), it follows that 𝑎𝑏 ∈ 𝜎1. Hence,
we can write 𝜎1 = 𝜐1;𝑎𝑏;𝜐2, and𝑚𝑡𝑟𝑒𝑒 (𝑏,𝜐1;𝑎𝑏) contains a mem-
ory tree with 𝑎’s single memory. Therefore,𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜎1; [𝑎];𝜏1;𝑎𝑏)
contains multiple single memories of 𝑎, which is a contradiction.
Next, assume 𝑥 ≠ 𝑎. Here, generally, for𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜎2), if it
contains only one memory tree with 𝑎’s single memory, and the
root of that memory tree is included in 𝜎1, then an agent 𝑥 does not
know that a call involving 𝑎 has occurred (by Lemma 5.9). There-
fore, since no agent can detect failure of the agent who has never
made a call before or will never make a call in the future (by Lemma
5.2), 𝐺𝜎1;[𝑎];𝜎2 ∼𝑥 𝐺𝜎1;[𝑎];𝜎2−𝑎 , which leads to a contradiction.

(Case 2.2) Assume that 𝑟𝑜𝑜𝑡 (𝑡) ∉ 𝜎1. For𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜎2), gen-
erally, if it contains only one memory tree with 𝑎’s single memory,
and the root of that memory tree is not included in 𝜎1, then 𝑥
does not know that a call involving 𝑎 has occurred (by Lemma 5.8).
So, 𝐺𝜎1;[𝑎];𝜎2 ∼𝑥 𝐺𝜎1

−𝑎 ;[𝑎];𝜎2 . Therefore, since no agent can know
about the failure of 𝑎 who has never made a call (by Lemma 5.1),
𝐺𝜎1

−𝑎 ;[𝑎];𝜎2 ∼𝑥 𝐺𝜎1
−𝑎 ;𝜎2 , which leads to a contradiction.

(⇐) Assume |𝑠𝑢𝑏𝑎 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎)) | ≥ 2. If G∼,𝐺∼ |= ¬𝐾𝑥F(𝑎), then
there exists some 𝐺𝜏 such that 𝐺𝜎 ∼𝑥 𝐺𝜏 and G∼,𝐺𝜏 |= ¬F(𝑎).
In 𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜏), there exist two distinct memory trees, 𝑡1 and 𝑡2,
each containing a single memory of 𝑎. Here, any memory tree
contained in𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜏) that includes the single memory of 𝑎 can
be represented using a prefix of 𝜏 (by Lemma 5.5). Therefore, for
some prefixes 𝜏1 and 𝜏2 of 𝜏 , it holds that 𝑡1 = 𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜏1) and
𝑡2 =𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜏2).

Next, we distinguish cases based on the inclusion relation be-
tween 𝜏1 and 𝜏2. Here, we show only the case where 𝜏1 ⊏ 𝜏2. If
𝜏1 ⊏ 𝜏2, then𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜏1) ⊆ 𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜏2). In this case, since 𝑡2 =

𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜏2) contains a single memory of 𝑎, we must have 𝑎 ∈ 𝜏2.
Let the last call in 𝜏2 involving 𝑎 be 𝑎𝑏, and write 𝜏2 = 𝜐1;𝑎𝑏;𝜐2.
Then,𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜏2) = ⟨⟨𝑎⟩, 𝑎𝑏,𝑚𝑡𝑟𝑒𝑒 (𝑏,𝜐1)⟩, thus𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜏1) ⊆
𝑚𝑡𝑟𝑒𝑒 (𝑏,𝜐1). Thus, there exists some 𝜏3 ⊆ 𝜐1 such that 𝑡1 =
𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜏3). Therefore, 𝑡1 = 𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜏3) ⊆ 𝑚𝑡𝑟𝑒𝑒 (𝑎,𝜐1) = ⟨𝑎⟩,
which is a contradiction. □

The proof of Theorem 5.1 (⇐) remains valid even when the
number of failures is allowed to be any finite number. Therefore,
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this proof provides sufficient conditions for failure identification in
more general cases as follows.

Theorem 5.2. Let 𝜎 be a sequence, and let 𝑥 and 𝑎 be agents,
with an asynchronous gossip model G∼ and an initial gossip graph
𝐺 . If𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎) contains multiple single memories of 𝑎, then
G∼,𝐺𝜎 |= 𝐾𝑥F(𝑎).
Proof. In the proof of Theorem 5.1 (⇐), the assumption that the
sequence contains only one failure was not used. Thus, this theorem
can be proven using the same argument. □

Finally, we show that the higher-order knowledge regarding
agent failures does not hold.

Theorem 5.3. Let 𝐺 be an initial gossip graph, and let 𝜎 be
any sequence, with agents 𝑥 , 𝑦, and 𝑎 (𝑥 ≠ 𝑦). Then G,𝐺𝜎 |=
¬𝐾𝑥𝐾𝑦F(𝑎).
Proof. Suppose there exists a gossip graph 𝐺𝜎 such that G,𝐺𝜎 |=
𝐾𝑥𝐾𝑦F(𝑎). Then, for any gossip graph 𝐺𝜏 such that 𝐺𝜎 ∼𝑥 𝐺𝜏 , it
must hold that G,𝐺𝜏 |= 𝐾𝑦F(𝑎). Hence, since 𝐺𝜎 ∼𝑥 𝐺𝜎 ;[𝑦 ] , we
have G,𝐺𝜎 ;[𝑦 ] |= 𝐾𝑦F(𝑎). In other words, for any gossip graph
𝐺𝜐 such that 𝐺𝜎 ;[𝑦 ] ∼𝑦 𝐺

𝜐 , it must hold that G,𝐺𝜐 |= F(𝑎). How-
ever, taking 𝜐 = 𝜖 , we clearly have G,𝐺𝜖 |= ¬F(𝑎), which is a
contradiction. □

6 FAILURE-AWARE ROBUST PROTOCOL
DESIGN

This section presents amethod to designing robust protocols against
failures. The basic idea is that when an agent notices either its own
failure or the failure of another agent, it takes actions to repair the
data lost due to the failure.

6.1 Extended protocols
In this study, we consider the following behaviors in two cases:
when an agent detects its own failure and when it detects the
failure of another agent.

Self recovery: when 𝑥 notices its own failure, if it does not
possess the secret of 𝑦 (≠ 𝑥), it calls 𝑦 to obtain the missing
secret.

External recovery: when 𝑥 notices the failure of 𝑦 (≠ 𝑥), if 𝑥
is an expert, it calls 𝑦 to share its secret with 𝑦.

These actions are only taken when a failure is detected, and oth-
erwise, the agent follows a given protocol 𝜋 . For any protocol 𝜋 , we
can consider the following extended protocols: 𝜋+ (self-recovery)
and 𝜋# (external recovery).

𝜋+: 𝜑 (𝑥,𝑦) := (¬𝐾𝑥F(𝑥) ∧𝜓 (𝑥,𝑦)) ∨ (𝐾𝑥F(𝑥) ∧ ¬S(𝑥,𝑦))
𝜋#: 𝜑 (𝑥,𝑦) := (¬𝐾𝑥F(𝑥) ∧𝜓 (𝑥,𝑦)) ∨ (𝐾𝑥F(𝑦) ∧

∧
𝑧∈𝐴 S(𝑥, 𝑧))

where𝜓 (𝑥,𝑦) is the definition of 𝜋 .

6.2 Robustness Analysis
Below, we consider the ten protocols obtained by extending the five
existing protocols with both + and #, and analyze their robustness
using Theorem 5.2. The results are shown in Table 1 and are derived
from the following theorems.

Theorem 6.1. Protocols ANY+, PIG+, HSS+, HMS+, ANY#, PIG#,
HSS#, HMS# are not strongly successful in 𝐺 .

Proof. The proof follows similarly to Theorem 4.2. □

Theorem 6.2. ANY+, ANY#, PIG+, PIG#, HSS+, HSS#, HMS+ and
HMS# are weakly successful if and only if 𝐺 is weakly connected.

Proof. (⇐) We will show the theorem only for PIG+. First, we con-
struct the event sequence 𝜎 using the following procedure. For any
𝑎, 𝑏 ∈ 𝐴 (with 𝑎 ≠ 𝑏), since 𝐺 is weakly connected, there exists an
undirected path (called 𝜋𝑏𝑎) from 𝑏 to 𝑎. Let the agents on 𝜋𝑏𝑎 be
ordered as 𝑏,𝑏1, 𝑏2, . . . , 𝑏𝑚, 𝑎. For 𝑏 and 𝑏1, either (𝑏, 𝑏1) ∈ 𝑁 or
(𝑏1, 𝑏) ∈ 𝑁 holds. If the former holds, the first event of 𝜎 is 𝑏𝑏1;
otherwise it is 𝑏1𝑏. Next, as the second event of 𝜎 , we append a call
𝑏1𝑏2 or 𝑏2𝑏1 following the same procedure. This process is repeated
until 𝑎, and we refer to the resulting sequence as 𝜏). Furthermore,
for any agent 𝑐 ≠ 𝑎, 𝑏, since there also exists an undirected path 𝜋𝑐𝑎
from 𝑐 to 𝑎, we append a similar sequence of calls for the agents on
𝜋𝑐𝑎 , ordered as 𝑐, 𝑐1, 𝑐2, . . . , 𝑐𝑚′ , 𝑎, to 𝜏 .

After repeating this until 𝑎 becomes an expert, 𝑎 will call every-
one. The sequence constructed in this way is called 𝜎 . We will show
by induction on 𝑛 that 𝜎𝑛+1 is PIG+∼-permitted on 𝐺𝜎 |𝑛 .

(B. C.) Let 𝜎1 = 𝑘𝑙 . Since 𝜎1 is valid in 𝐺 and G,𝐺𝜎 |0 |= S(𝑘, 𝑘) ∧
¬S(𝑙, 𝑘), it follows that G,𝐺𝜎 |0 |= ¬𝐾𝑥¬

∨
𝑧∈𝐴 (S(𝑘, 𝑧) ↔ ¬S(𝑙, 𝑧)).

Thus, 𝜎1 is PIG+∼-permitted in 𝐺𝜎 |0.

(I. S.) Let 𝜎𝑛+1 = 𝑘𝑙 . In this case, 𝐺𝜎 |𝑛 ∼𝑘 𝐺𝜎 |𝑛;[𝑙 ] holds, and
G,𝐺𝜎 |𝑛;[𝑙 ] |= S(𝑘, 𝑘) ∧ ¬S(𝑙, 𝑘). Thus, since G,𝐺𝜎 |𝑛 |=
¬𝐾𝑥¬

∨
𝑧∈𝐴 (S(𝑘, 𝑧) ↔ ¬S(𝑙, 𝑧)), it follows that 𝜎𝑛+1 is PIG+∼-

permitted in 𝐺𝜎 |𝑛 .
Therefore, 𝜎 is PIG+∼-permitted on 𝐺 .

(⇒) Assume that PIG+ is weakly successful in𝐺 . If𝐺 is not weakly
connected, then for some agent 𝑥 and any sequence 𝜎 contained in
PIG+∼

𝐺
, 𝑥 ∉ 𝜎 holds. Therefore, PIG+ would be unsuccessful in 𝐺 ,

leading to a contradiction. □

Furthermore, from Theorem 6.2, we can see that if 𝐺 is weakly
connected, then PIG+∼

𝐺
contains a successful sequence. Therefore,

if𝐺 is weakly connected, we can demonstrate that PIG+ and similar
protocols are not unsuccessful in 𝐺 .

Next, we present the necessary conditions for protocols with #
to be fairly successful.

Theorem 6.3. If PIG#, ANY#, HSS#, and HMS# are fairly suc-
cessful in 𝐺 , then 𝐺 is a non-isolated.

Proof. Here, we consider PIG#. Assume that 𝐺 is not a non-isolated
graph and that PIG# is fairly successful. For an isolated agent 𝑎 in
𝐺 , we consider the following sequence. First, for an agent 𝑘1 ≠ 𝑎
and an agent 𝑙1 ≠ 𝑎 such that (𝑘1, 𝑙1) ∈ 𝑁 , let the sequence be
𝜋𝑘1 = [𝑘1];𝑘1𝑙1; [𝑘1];𝑘1𝑙1. Next, for an agent 𝑘2 ≠ 𝑎, 𝑘1 and an
agent 𝑙2 ≠ 𝑎 such that (𝑘2, 𝑙2) ∈ 𝑁 , let the sequence be 𝜋𝑘2 =

[𝑘2];𝑘2𝑙2; [𝑘2];𝑘2𝑙2. Continuing in this manner, for every agent
𝑘 ≠ 𝑎, we consider the sequence 𝜋𝑘 and concatenate them all into
a sequence 𝜋1; · · · ;𝜋𝑛 , which we denote as 𝜌 .

Here, for any 𝑛, we demonstrate that 𝜌𝑛+1 is PIG#∼-permitted
in 𝐺𝜌 |𝑛 as follows.

(B. C.) 𝜌0 is a failure. In this case, if any call in 𝐺𝜌 |0 is not PIG#∼-
permitted, then since 𝜌 |0 is fair and maximal, this contradicts the
assumption that PIG# is fairly successful.
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(I. S.) If 𝜌𝑛+1 is a failure, the argument is almost the same as (B.
C.). Let 𝜌𝑛+1 be a call, and denote it as 𝜌𝑛+1 = 𝑘𝑙 . Then, we
have 𝐺𝜌 |𝑛 ∼𝑘 𝐺𝜌 |𝑛;[𝑙 ] , from which we can derive G,𝐺𝜌 |𝑛 |=
¬𝐾𝑘¬

∨
𝑧∈𝐴 (S(𝑘, 𝑧) ↔ ¬S(𝑙, 𝑧)). Additionally, since 𝐺𝜌 |𝑛 ∼𝑘 𝐺𝜖 ,

we obtain G,𝐺𝜌 |𝑛 |= ¬𝐾𝑘𝐹 (𝑘).
At this point, for any agent 𝑚 ≠ 𝑎, there exist an agent 𝑜 , a

sequence 𝜎1, and a sequence 𝜎2 that does not contain the failure of
𝑚, such that 𝜎1; [𝑚];𝑚𝑜 ; [𝑚];𝑚𝑜 ;𝜎2 = 𝜌. Since 𝜎2 does not contain
the failure of 𝑚, 𝑚𝑡𝑟𝑒𝑒 (𝑚, 𝜌) contains multiple instances of the
single memory of 𝑚. Thus, by Theorem 5.2, G,𝐺𝜌 |= 𝐾𝑚F(𝑚).
Moreover, since 𝜌 does not include any calls involving 𝑎, 𝑚 is
not an expert in 𝐺𝜌 . Thus, G,𝐺𝜌 |= 𝐾𝑚F(𝑚) ∧ ∨

𝑧∈𝐴 ¬S(𝑚, 𝑧).
Additionally, in 𝐺𝜌 , 𝑎 does not know the phone number of any
agent, so no call is PIG#∼-permitted. Therefore, 𝜌 is PIG#∼-maximal,
fair, and unsuccessful, leading to a contradiction. □

Theorem 6.4. If the initial gossip graph𝐺 is strongly connected,
then ANY+, PIG+, HSS+, and HMS+ are fairly successful.

Proof.We only show the proof for ANY+. Consider any sequence
𝜎 that is ANY+∼-permitted, fair, and maximal in 𝐺 . Assume 𝜎 is
an infinite sequence. For some 𝜏 (⊏ 𝜎), for any 𝜏 ⊑ 𝜏 ′ ⊏ 𝜎 , and for
any agent 𝑥 , we have 𝑙𝑒𝑎𝑣𝑒𝑠 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜏)) = 𝑙𝑒𝑎𝑣𝑒𝑠 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜏 ′)).
At this point, for some 𝑦, let 𝑧 be an agent not included in
𝑙𝑒𝑎𝑣𝑒𝑠 (𝑚𝑡𝑟𝑒𝑒 (𝑦, 𝜏)). Since 𝐺 is strongly connected, there exists a
directed path 𝜋 from 𝑦 to 𝑧. Let the agents included in 𝜋 be 𝑦, 𝑧0,
𝑧1, · · · , 𝑧. If G,𝐺𝜏 |= ¬(𝑦, 𝑧0), then for any 𝜐 (⊑ 𝜐′ ⊏ 𝜎), we have
G,𝐺𝜐 |= ¬S(𝑦, 𝑧0). Since 𝜎 is fair, 𝜏 must include 𝑦𝑧, leading to
a contradiction. Therefore, G,𝐺𝜏 |= S(𝑦, 𝑧0), and (𝑦, 𝑧1) ∈ 𝑁𝜏 .
Continuing in this manner, we can show that G,𝐺𝜏 |= S(𝑦, 𝑧),
leading to a contradiction.

Thus, 𝜎 is a finite sequence. If there exists a 𝑣 such that some
agent 𝑤 is not included in 𝑙𝑒𝑎𝑣𝑒𝑠 (𝑚𝑡𝑟𝑒𝑒 (𝑣, 𝜏)), we can derive a
similar contradiction. Therefore, 𝜎 is successful. □

Next, we demonstrate the properties of protocol CO′ and the
derived protocols CO′+ and CO′#. First, as Theorem 4.3, we show
the necessary and sufficient conditions for these protocols to be
weakly successful. From this theorem, we can see that if𝐺 is weakly
connected, CO′+ and CO′# are not unsuccessful in 𝐺 .

Theorem 6.5. For an initial gossip graph 𝐺 , CO′+ and CO′# are
weakly successful in 𝐺 if and only if 𝐺 is weakly connected.

Proof. Similar to the proof of Theorem 4.3. □

We show sufficient conditions for CO′+ to be strongly successful
in 𝐺 . Similar to the case of original CO′ (i.e., Theorem 4.4), by the
following theorem, we can see that if𝐺 is strongly connected, then
all maximal sequences contained in CO′+∼𝐺 is successful, and thus
CO′+ is fairly successful in 𝐺 .

Theorem 6.6. For an initial gossip graph 𝐺 , if 𝐺 is strongly
connected, then CO′+ is strongly successful in 𝐺 .

Proof. Similar to the proof of Theorem 4.4. □

Finally, we present the necessary condition for CO′# to be fairly
successful. From this theorem, the existence of a maximal and
unsuccessful sequence in CO′#∼𝐺 is established, which also provides
the necessary condition for CO′# to be strongly successful in 𝐺 .

Theorem 6.7. If CO′# is fairly successful in 𝐺 , then 𝐺 is non-
isolated.

Proof. It suffices to show that the sequence 𝜌 defined in Theorem
6.3 is CO′#∼-permitted. We prove this by the same induction as in
Theorem 6.3.

(B. C.) Same as in Theorem 6.3.

(I. S.) If 𝜌𝑛+1 is a failure, the proof follows the same reasoning as
in Theorem 6.3. Let 𝜌𝑛+1 be a call and denote it as 𝜌𝑛+1 = 𝑘𝑙 . Since
(𝑘, 𝑙) ∈ 𝑁 , the call 𝑘𝑙 is valid in𝐺𝜌 |𝑛 . Moreover, since 𝜌𝑛 is a failure
[𝑘], agent 𝑘 is not an expert in 𝐺𝜌 |𝑛 . Thus, 𝐺𝜌 |𝑛 ∼𝑘 𝐺𝜖 holds,
and G,𝐺𝜖 |= ¬C(𝑘, 𝑙) ∧ ¬C(𝑙, 𝑘), which implies that G,𝐺𝜌 |𝑛 |=
¬𝐾𝑘 (C(𝑘, 𝑙) ∨ C(𝑙, 𝑘)). □

6.3 Discussion
As shown in Table 1, the feasibility of the protocols extended with
the recovery behavior has actually worsened compared to the orig-
inal protocols. The reason for this is that the definitions of + and #
are designed to minimize unnecessary calls. More specifically, for
+, it may be possible to allow calls not only to agents who do not
know the secret but also to more agents when an agent detects its
own failure. Similarly, for #, it may be possible to allow calls when
an agent detects a failure, even if the agent is not yet an expert. In
general, in gossip protocols (not just epistemic gossip), there is a
trade-off between the frequency of calls within the system and the
robustness or speed of information sharing. Although our current
results did not lead to an improvement in the robustness of existing
protocols, adjusting + and # to increase the frequency of calls could
solve this issue, which we plan to investigate in future research.

7 CONCLUSION
In this paper, we analyzed the robustness of epistemic gossip proto-
cols against failures, with a particular focus on failures that cause
data loss, as introduced in the prior work [10].

We clarified the conditions on the initial gossip graph under
which each of the five existing protocols can achieve one of the four
levels of “success” properies. Additionally, we provided sufficient
conditions for agents to detect failures by relaxing assumptions
made in previous studies, and we also proved necessary conditions.
Furthermore, using these theorems, we proposed a new protocol
that exhibits behavior to recover lost data when agents detect fail-
ures and analyzed its robustness. While these new protocols did not
improve the robustness of the existing ones, we plan to investigate
the usefulness of this approach for designing robust protocols in
future work.

As future research directions, we are particularly interested in the
communication complexity of protocols that assume the presence
of unreliable agents. We also aim to further clarify the robustness
of both other existing protocols and new protocols based on them.
Furthermore, we plan to analyze the robustness against failures
other than data loss, such as modifications to the content of secrets.
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