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ABSTRACT
Multi-agent Preference-Based Reinforcement Learning (MAPbRL)
is promising in offline policy learning by leveraging human prefer-
ences to replace complex manual reward designing. Current MAP-
bRL methods use complicated structures to realize better reward
modeling with off-the-shelf MARL algorithms and obtain the joint
policy based on it. However, it faces a severe preference-behavior
mismatch problem stemming from the instability of RL training and
global-local preference inconsistency datasets in offline MARL, re-
sulting in potential suboptimal policy convergence. To address this
problem, we propose Agent-aware Multi-Agent Direct Preference
Optimization (AMADPO) by utilizing a multi-agent preference pre-
dictor to guide agent-aware direct optimization from imbalanced
preference labels, which can learn coordination policy from both
positive and negative segments. Experimental results in SMAC
environment show substantial improvements in global-local pref-
erence inconsistency datasets, demonstrating the effectiveness of
AMADPO in solving the preference-behavior mismatch problem.
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1 INTRODUCTION
Recent advances in Reinforcement Learning (RL) have shown strong
performance in solving complex decision-making problems across
various domains [3, 28, 31, 35, 40]. However, it can be very challeng-
ing to construct an efficient and suitable reward function for specific
tasks, which costs huge human expert efforts. To solve this problem,
offline Preference-based Reinforcement Learning (PbRL) enables
agents to learn from preference labels between trajectory segments
[7, 21, 30] through a fixed offline preference dataset, avoiding un-
safe physical interactions with the environment[37]. Consequently,
agents’ behaviors can be aligned with human desires through rel-
ative comparison over pairs of segments, which is much easier
available than directly providing rewards. Recent works in offline
PbRL have showcased its effectiveness in addressing single-agent
RL tasks across various domains[6, 18].

However, it is difficult to directly extend PbRL into multi-agent
RL because the cooperative tasks require a fine-grained reward de-
sign. MAPT [49], building on previous work [18], uses transformers
to decode global preference in both agent-wise and temporal-wise,
achieving a more effective reward structure for multi-agent cooper-
ation. Meanwhile, DPM [16] leverages the Large Language Model
(GPT-4o [1]) to provide additional rank preferences across agents’
actions at every timestep within a single trajectory segment. Un-
fortunately, these methods face a crucial challenge: the preference-
behavior mismatch, i.e., the learned behavior of the agents may not
align with the human preference.

This mismatch stems from: First, the global-local preference in-
consistency, where the mis-coordinated agents may hinder the
learning of good agents when the joint trajectory is less preferred
from the perspective of the global view. For example, in a multi-
robot coordination task, each human operator has a different level of
skills, resulting in global-local preference inconsistency datasets. As
1Both authors contributed equally to this research.
2National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, Na-
tional Engineering Research Center for Visual Information and Application Institute
of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Xi’an, China.
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Figure 1: An example of global-local preference inconsistency
preference datasets. Joint multi-agent trajectory Segment 0
is preferred over Segment 1 according to global preference
while Agent3 actually performs better in Segment 1.
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Figure 2: Predict reward and true reward in task MMM2 of
SMAC environment using MAPT as reward model.

illustrated in Figure 1, although 𝜎0 is preferred over 𝜎1 from a global
perspective, several agent trajectories in 𝜎1 still outperform those
in 𝜎0. If we only rely on global preferences, well-performed agents’
policies in non-preferred segments cannot be utilized, thus decreas-
ing sample efficiency and final performance. In addition, each agent
trajectory in an offline multi-agent joint trajectory usually comes
from different sources and has a different data quality [38]. Second,
the learning instability in the two-stage training paradigm of PbRL,
where the reward and the policy models are trained separately. As
shown in Figure 2, we visualize the ground truth reward and pre-
dicted reward using MAPT, which models human preferences as a
weighted summarization of agent-wise and temporal-wise rewards.
It fails to reconstruct the underlying global rewards. Therefore,
there arises an open research problem:

How to identify well-preformed agents between compared of-
fline segments and construct a direct preference optimization
method, solving the problem of preference-behavior mismatch
and thus boosting multi-agent coordination?

To solve this challenge, we propose Agent-aware Multi-Agent
Direct Preference Optimization (AMADPO). AMADPO involves
training a multi-agent preference predictor and directly optimizing
policy based on the provided preference datasets, where the good
agents’ behaviors from preferred and less-preferred trajectories
are fully utilized. AMADPO begins with introducing additional
preference labels over the same agents between compared trajec-
tory segments. Along with the global preference labels, these labels
help train the multi-agent preference predictor to identify preferred
agent trajectories in both preferred and less preferred segments.
Inspired by previous works [2, 12] in single agent PbRL, we design
a multi-agent policy-related metric to replace the reward in the
preference model, which increases the probability of preferred seg-
ments and decrease those closed to less preferred ones. Furthermore,
we leverage the intermediate values of preference predictor to form
agent-aware importance weights, which indicates the probability
of an agent being preferred compared to others within the same
segment. Finally, we enhance policy learning by combining weights
and the proposed metric, allowing learning from good agents in
both compared segments and distancing itself from less preferred
agents. Our contributions are summarized as follows:

• We first analyze the problem of preference-behavior mis-
match in the current multi-agent PbRL methods and elimi-
nate this mismatch by bridging the relation between direct
preference optimization and multi-agent PbRL.

• We present a novel paradigm named AMADPO which in-
corporates the generalization of preference predictor and
the stability of direct preference optimization. Leveraging
additional agent-wise preference labels, it can produce agent-
aware importance weights and directly learn from good
agents in both preferred and less preferred multi-agent joint
trajectories.

• Experimental results showcase that our approach achieves
better results in complex offline datasets in Starcraft Multi-
agent Challenge [35], even outperforming offline MARL al-
gorithms (i.e., ICQ [44]) with ground truth reward in some
scenarios.

2 RELATEDWORKS
In this section, we review the most relevant works from PbRL and
offline MARL.

Online PbRL. Designing suitable reward metrics or collecting
expert demonstrations can be costly in many real-world tasks. In
contrast, human preferences over compared pairs of agent trajecto-
ries are much easier to obtain as the signals for policy optimization.
Deep RL from human feedback (RLHF) [7] first utilizes Bradley-
Terry model [5] to implicitly learn the reward function from human
preferences and then use online deep RL algorithms to solve com-
plex control tasks. Following this paradigm, several works improve
training efficiency by leveraging techniques in query selection, data
enhancement, pre-training, meta-learning, and more powerful RL
algorithms [14, 15, 21, 22, 25, 30]. All these works require online
interactions with environments and they all adopt a two-stage train-
ing paradigm that needs to obtain a reward function first. However,
both online learning and two-stage PbRL have limitations. Online
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Figure 3: The overview of Agent-aware Multi-Agent Direct Preference Optimization.

RL suffers from expensive and dangerous data collection in real-
world settings (e.g., autonomous driving) [24]. As for two-stage
PbRL, scaler rewards may create information bottleneck in policy
optimization, resulting in suboptimal policy[17, 39]. Besides, sep-
arately learning policy based on a reward function that may not
have been adequately and correctly trained will lead to undesirable
behaviors.

Offline PbRL. OPAL [36] first extends PbRL to offline man-
ners using off-the-shelf PbRL methods thus avoiding unsafe real
rollouts with environments. OPRL [37] further improves offline
PbRL with pool-based active learning. Preference Transformer (PT)
[18] introduces a transformer-based reward structure to model hu-
man preferences as a weighted sum of non-Markovian rewards [8].
Other works integrate hindsight information [10], list-wise prefer-
ences [6], and multimodal inputs [46] with offline PbRL. Despite
these methods eliminating the need for online interactions, they
still carry out a two-stage training strategy. On the other hand, led
by Direct Preference Optimization (DPO) [32] in LLM post-training
stage [47], some works bypass the need for reward model and RL
by directly inducing policy from preferences datasets. OPPO [17]
uses hindsight information matching in compact latent space for
preference learning, while FTB [45] utilizes Diffusion Model to gen-
erate higher-preference trajectories. IPL [13], CPL [12] and OPPO

[2] replace the reward in Bradley-Terry model with inverse soft-
Bellman operator, optimal advantage function, and policy-segment
distance respectively, all of which can directly optimize the policy
by relating preferences to these policy-related metrics. However,
most of them are restricted with exist preferences datasets and can
not apply to new datasets without labels.

Offline MARL and MAPbRL. Recently, many works have at-
tempted to apply offline RL in multi-agent settings. ICQ [44] first
explores offline MARL using implicitly constrained policy learning.
OMAR [29] combines first-order policy gradients and zeroth-order
optimization methods to prevent falling into local optima. MADT
[26] leverages transformer’s ability for sequence modeling in offline
pre-training. OMIGA [42] bridges multi-agent value decomposi-
tion and policy learning with offline regularizations by convert-
ing global-level value regularization into equivalent implicit local
value regularizations. There are also multi-agent versions of single-
agent offline RL algorithms, such as BCQ [9], CQL [20] and IQL
[19]. However, these approaches need relatively high-quality of-
fline datasets and elaborate reward signals. Although demonstrated
in single-agent RL tasks, PbRL has been studied in a few works
when it comes to multi-agent contexts. MAPT [49] designs a multi-
agent version preference transformer reward model structure to
decode the global preferences implicitly in both agent-wise and
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temporal-wise, achieving better preference modeling. Yet it still
has the disadvantages of two-stage PbRL. DPM [16] introduces
additional local preferences as a format of rankings of agents’ ac-
tions at each timestep within a joint trajectory, provided by GPT-4o
[1]. Except for the two-stage strategy, DPM also requires detailed
textual descriptions of every environment and a substantial amount
of ranking preferences among agents in each timestep, which are
very costly for both LLM and human annotators.

Relation to CPL and DPPO. CPL, DPPO, and our method are
all direct preference optimization approaches. However, AMADPO
is different from them in two ways. First, AMADPO aims to address
the preference-behaviormismatch problem inmulti-agent scenarios
while CPL andDPPO focus on single-agent tasks. Second, AMADPO
defines the policy-related metric as the divergence between policy
and trajectory segment, which can leverage multi-form divergences
to optimize the policy instead of single-form in CPL and DPPO. We
implement the multi-agent version of CPL and DPPO as baselines.

3 PRELIMINARIES
3.1 Cooperative MARL
We focus on fully cooperative multi-agent tasks which can be for-
mulated as a Decentralized Partially Observable Markov Decision
Process (Dec-POMDP) [27]. A Dec-POMDP is characterized by the
tuple ⟨S,A, P, R,O,Ω,N , 𝛾⟩, where 𝑁 = {1, ..., 𝑛} is the set of agents.
𝑠 ∈ 𝑆 is the global environment state and 𝐴 denotes the action set
of 𝑛 agents. At each time step, agent 𝑖 ∈ 𝑁 obtains an observa-
tion 𝑜𝑖 ∈ 𝑂 via the observation function Ω(𝑠, 𝑖) : 𝑆 × 𝑁 → 𝑂 ,
and selects an action 𝑎𝑖 ∈ 𝐴 which forms a joint action a =

{𝑎1, ..., 𝑎𝑛} ∈ 𝐴𝑛 . 𝑃 (𝑠′ |𝑠, 𝑎) : 𝑆 × 𝐴𝑛 → [0, 1] is the transition dy-
namics to the next state 𝑠′. 𝛾 ∈ [0, 1) is the discount factor. Agents
receive the same global reward function 𝑟 (o, a) : 𝑂 × 𝐴𝑛 → 𝑅,
where we denote o = (𝑜1, ...𝑜𝑛), and aim to learn a set of policies
𝝅𝑡𝑜𝑡 = {𝜋1, ..., 𝜋𝑛} that jointly maximize the expected discounted
returns Eo,a∼𝜋𝑡𝑜𝑡 [

∑∞
𝑡=0 𝛾

𝑡𝑟 (o𝑡 , a𝑡 )]. In the offline setting, the policy
is learned within a fixed dataset 𝐷 sampled by the behavior policy
𝝁𝑡𝑜𝑡 = {𝜇1, ..., 𝜇𝑛} without any environment interactions.

3.2 Preference-based RL
Consistent with previous studies [7, 18, 21, 30, 49], we consider
assigning preferences over pairs of multi-agent trajectory segments.
A segment of length 𝑇 can be formulated as 𝝈 = {𝜎1, . . . , 𝜎𝑛},
where 𝜎 𝑗 = {𝑜1, 𝑗 , 𝑎1, 𝑗 , . . . , 𝑜𝑇,𝑗 , 𝑎𝑇,𝑗 }, 𝑗 ∈ 𝑁 . Given a segment pair
{𝝈0,𝝈1}, preference labels are indicated by 𝑦 ∈ {0, 1, 0.5} where
𝑦 = 0 and 𝑦 = 1 denotes 𝝈0 and 𝝈1 is preferred over the other,
respectively, and 𝑦 = 0.5 for equally preferred.

We construct the preference predictor based on the Bradley-
Terry model [5]:

𝑃 [𝝈0 ≻ 𝝈1] =
exp

∑𝑇
𝑡=1 𝑟 (o0𝑡 , a0𝑡 )

exp
∑𝑇
𝑡=1 𝑟 (o0𝑡 , a0𝑡 ) + exp

∑𝑇
𝑡=1 𝑟 (o1𝑡 , a1𝑡 )

(1)

where 𝝈0 ≻ 𝝈1 indicates 𝝈0 is preferred than 𝝈1, and 𝑟 is the re-
ward function. Then given a preference datasetDpref = {(𝝈0,𝝈1, 𝑦)},

the reward function 𝑟 can be obtained by minimizing the cross-
entropy loss between predictor and preference labels:

L𝐶𝐸 = −E(𝝈0,𝝈1,𝑦)∼Dpref

[
(1 − 𝑦) log 𝑃

(
𝝈0 ≻ 𝝈1

)
+𝑦 log 𝑃

(
𝝈1 ≻ 𝝈0

)] (2)

In this work, we focus on offline MARL accessing to a pre-
collected preference dataset Dpref along with a massive unlabelled
dataset Dunlabel, both lacking explicit rewards[2, 10]. Preference
dataset Dpref is utilized to train the reward function which is ap-
plied to label Dunlabel. Then any offline MARL algorithm, such as
ICQ [44], can be used for policy learning with the resulting dataset.

4 METHOD
This section presents Agent-aware Multi-Agent Direct Preference
Optimization (AMADPO) to solve the preference-behavior mis-
match problem in offline MAPbRL. AMADPO consists of three
components: 1)Multi-agent Preference Predictor, which takes
global and local labels as inputs and predicts global preferences with
identifications of good agents, 2) Multi-agent Preference Metric,
which defines a preference metric via multi-agent policy-segment
divergence, 3) Agent-aware ImportanceWeights, which provide
importance weights for each agent to rectify the learning gradients
of the joint policy based on the preference metric and interme-
diate results from the Multi-agent Preference Predictor. Finally,
AMADPO directly optimizes the joint policy by prioritizing good
agents’ behaviors in preferred and less preferred global trajectories.

4.1 Multi-agent Preference Predictor
Prior PbRL approaches often adopt a two-stage procedure includ-
ing training a reward model from preference labels. These works
assume that human preferences are distributed according to the
sum or weighted sum of underlying rewards. Applying such re-
wards to offline MARL training may result in sub-optimal policy or
undesirable behaviors. Meanwhile, using the reward model only
as a preference predictor trained with supervised learning has no
reward-preference gaps since we have access to exact labels.

First of all, we define the concept of Preference Score (PS) in
place of reward to form the multi-agent preference predictor model.
In concrete, we slightly modify Eq.1 as follows:

𝑃𝑀𝐴 [𝝈0 ≻ 𝝈1] =
exp

∑𝑇
𝑡=1𝑤

0
𝑡𝐴𝐺𝐺{𝜌 (𝑜0

𝑡,𝑖
, 𝑎0

𝑡,𝑖
)}𝑁

𝑖=1∑
𝑚∈{0,1} exp

∑𝑇
𝑡=1𝑤

𝑚
𝑡 𝐴𝐺𝐺{𝜌 (𝑜𝑚

𝑡,𝑖
, 𝑎𝑚

𝑡,𝑖
)}𝑁

𝑖=1
(3)

where 𝜌 (𝑜, 𝑎) represents the PS of an observation-action pair, AGG
denotes an agent-wise aggregation operator and𝑤𝑡 is the temporal-
wise weight adapting to different predictor structures. The aggre-
gation operator is the average operation for MLP [7], LSTM [8] and
PT [18] predictor and is a transformer for MAPT [49] predictor.𝑤𝑡

is trained in LSTM, PT, and MAPT predictors to consider sequential
information.𝑤𝑡 of MLP predictor directly equals to 1/𝑇 .

Moreover, only accessing global preferences between two joint
multi-agent trajectory segments to train a multi-agent preference
predictor is confused about which agents are better in global-local
preference inconsistency situations.
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To induce agent-aware importance weights for subsequent policy
optimization, we introduce additional local preference labels and
the agent preference model. Given a multi-agent trajectory segment
{𝝈0,𝝈1}, local preferences are provided in following format:

𝑦𝑖 :=


0 𝜎0

𝑖
≻ 𝜎1

𝑖

1 𝜎1
𝑖
≻ 𝜎2

𝑖
, 𝑖 ∈ 𝑁

0.5 𝜎0
𝑖
= 𝜎1

𝑖

(4)

Agent preference model is similar to Eq.3:

𝑃𝐴 [𝜎0𝑖 ≻ 𝜎1𝑖 ] =
exp

∑𝑇−1
𝑡=0 𝑤0

𝑡 𝜌 (𝑜0𝑡,𝑖 , 𝑎
0
𝑡,𝑖
)∑

𝑚∈{0,1} exp
∑𝑇−1
𝑡=0 𝑤𝑚

𝑡 𝜌 (𝑜𝑚
𝑡,𝑖
, 𝑎𝑚

𝑡,𝑖
)

(5)

Compared to DPM [16], our local preference labels only compare
the same agent’s whole trajectory between segments while DPM
needs 2𝑇 ×

(𝑁
2
)
local labels for every segment pair which can be

extremely numerous as the number of agents grows. With addi-
tional local preference labels, we can train a multi-agent preference
predictor with any structure using the following loss function:

L𝑔𝑙𝑜𝑏𝑎𝑙 = −E(𝝈0,𝝈1,𝑦)∼Dpref

[
(1 − 𝑦) log 𝑃𝑀𝐴

(
𝝈0 ≻ 𝝈1

)
+𝑦 log 𝑃𝑀𝐴

(
𝝈1 ≻ 𝝈0

)] (6)

L𝑙𝑜𝑐𝑎𝑙 = −E(𝝈0,𝝈1,{𝑦𝑖 })∼Dpref

[∑︁
𝑖∈𝑁

(1 − 𝑦𝑖 ) log 𝑃𝐴
(
𝜎0𝑖 ≻ 𝜎1𝑖

)
+𝑦𝑖 log 𝑃𝐴

(
𝜎1𝑖 ≻ 𝜎0𝑖

)] (7)

L𝑝𝑟𝑒 𝑓 = L𝑔𝑙𝑜𝑏𝑎𝑙 + 𝜆𝑙L𝑙𝑜𝑐𝑎𝑙 (8)

where 𝜆𝑙 ∈ [0, 1] controls the impacts of local preferences.
After training on a small pre-collected preference dataset 𝐷𝑝𝑟𝑒 𝑓

that consists of quadruple (𝝈0,𝝈1, 𝑦, {𝑦𝑖 }𝑛𝑖=1), the multi-agent pref-
erence predictor can be used to label new datasets with global
preferences and produce agent-aware importance weights.

4.2 Multi-agent Preference Metric
A simple yet efficient way in DPO methods is to replace the re-
ward in preference model with policy-related metrics and directly
optimize policy from preferences. We design a multi-agent policy-
related preference metric as the divergence between joint policy
andmulti-agent joint trajectory segments, which is the average sum
of the divergence between agent policy and each single transition:

𝑑 (𝜋𝑖 , 𝜎𝑖 ) =
1
𝑇

𝑇−1∑︁
𝑡=0

𝑑𝑜𝑎 (𝜋𝑖 , 𝑜𝑡,𝑖 , 𝑎𝑡,𝑖 ) (9)

𝑑 (𝝅𝒕𝒐𝒕 ,𝝈) =
1
𝑁

𝑁∑︁
𝑖=1

𝑑 (𝜋𝑖 , 𝜎𝑖 ) (10)

where 𝑑𝑜𝑎 denotes the distance between agent policy and single-
agent divergence. The specific form of 𝑑𝑜𝑎 can be varied, so we
chose two simple yet meaningful divergences. One is the expected
𝐿2 distance between the agent action and the trajectory action:

𝑑𝑎𝑐𝑡𝑖𝑜𝑛 (𝜋𝑖 , 𝑜𝑡,𝑖 , 𝑎𝑡,𝑖 ) = E𝑎𝑖∼𝜋𝑖 ( · |𝑜𝑡,𝑖 )
[
∥𝑎𝑡,𝑖 − 𝑎𝑖 ∥2

]
(11)

The other is to directly measure the policy-transition divergence
using the KL-constrained term used in offline RL objective [11, 23]:

𝑑𝑝𝑜𝑙𝑖𝑐𝑦 (𝜋𝑖 , 𝑜𝑡 𝑖 , 𝑎𝑡 𝑖 ) = −𝛼 log
𝜋𝑖 (𝑜𝑡,𝑖 , 𝑎𝑡,𝑖 )
𝜇𝑖 (𝑜𝑡,𝑖 , 𝑎𝑡,𝑖 )

(12)

where 𝛼 is a temperature parameter and 𝜇𝑖 is behavior policy of
dataset.

Replacing reward with policy-segment divergence needs a slight
alteration. Since the preferred segments should have higher rewards,
we use the negative version of policy-segment distance to assign
higher values for policies closed to the preferred segments. Now
we can directly optimize multi-agent policy by combining policy-
segment divergence with BT model and cross-entropy loss:
L𝑝𝑜𝑙𝑖𝑐𝑦 =

−E(𝝈+,𝝈− )∼Dpref

[
log exp (−𝑑 (𝝅𝒕𝒐𝒕 ,𝝈+ ) )

exp (−𝑑 (𝝅𝒕𝒐𝒕 ,𝝈+ )+exp (−𝑑 (𝝅𝒕𝒐𝒕 ,𝝈− ) )

] (13)

where 𝝈+,𝝈− represent the preferred and less preferred segment
for convenience (also referred as the positive and negative seg-
ments). Following previous works [2, 12, 13], we also add a regular
parameter 𝜆𝑝 ∈ [0, 1] to penal the policy deviating from the pre-
ferred trajectory segment:
L𝑝𝑜𝑙𝑖𝑐𝑦 =

−E(𝝈+,𝝈− )∼Dpref

[
log exp (−𝑑 (𝝅𝒕𝒐𝒕 ,𝝈+ ) )

exp (−𝑑 (𝝅𝒕𝒐𝒕 ,𝝈+ ) )+𝜆𝑝 exp (−𝑑 (𝝅𝒕𝒐𝒕 ,𝝈− ) )

] (14)

4.3 Agent-aware Importance Weights
We can directly optimize the policy through the loss function in
Eq.14 with preference labels provided by the preference predictor
on unlabeled dataset Dunlabel. However, this objective equally en-
courages each agent’s policy to approach the corresponding agent
trajectory in the global preferred joint segment, which leads to
suboptimal policy in global-local preference inconsistency datasets
for some agents may align with uneven behaviors. Similar to those
MARL algorithms that work on the multi-agent credit assignment
problem [33, 34, 41, 43], we make use of trained multi-agent pref-
erence predictor to produce Agent-aware importance weights to
highlight good agents contribution in both compared segments.

After trained on preference dataset Dpref with global and lo-
cal preference labels, the resulting preference predictor gives a
preference score for each agent trajectory:

𝜌 (𝜎𝑖 ) = 𝑤𝑖

𝑇−1∑︁
𝑡=0

𝑤𝑡 𝜌 (𝑜𝑖𝑡 , 𝑎𝑖𝑡 ) (15)

Agent’s contribution can be further evaluated by applying the soft-
max function on preference scores resulting in normalized agent-
aware importance weights:

𝜔𝜎𝑖 =
exp 𝜌 (𝜎𝑖 )/𝜏∑𝑁
𝑗=1 exp 𝜌 (𝜎 𝑗 )/𝜏

(16)

where 𝜏 is the temperature coefficient. Combining the agent-aware
weights with policy-segment divergence formulates the agent-
aware direct preference optimization objective:

𝑑𝐴 (𝝅𝒕𝒐𝒕 ,𝝈) =
∑

𝑁 𝜔𝜎𝑖𝑑 (𝜋𝑖 , 𝜎𝑖 ) (17)

L𝑝𝑜𝑙𝑖𝑐𝑦 =

−E(𝝈+,𝝈− )∼Dpref

[
log exp −𝑑𝐴 (𝝅𝒕𝒐𝒕 ,𝝈+ )

exp −𝑑𝐴 (𝝅𝒕𝒐𝒕 ,𝝈+ )+𝜆𝑝 exp −𝑑𝐴 (𝝅𝒕𝒐𝒕 ,𝝈− )

] (18)
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Table 1: Evaluation results on different global-local preference inconsistency SAMC datasets across baselines.

Difficulty Task Dataset BC ICQ ICQ+MLP ICQ+LSTM ICQ+PT ICQ+MAPT CPL DPPO Ours

Easy

3m Low 3.74±1.31 5.79±1.19 0.14±0.06 4.16±0.72 5.02±0.25 4.29±1.03 5.12±1.38 5.72±3.26 8.79±1.47
Medium 4.79±0.57 7.68±1.26 0.16±0.09 10.6±1.49 9.72±1.68 11.1±2.6 6.67±0.9 6.11±3.87 8.56±0.93

8m Low 3.31±0.15 5.00±1.66 0.17±0.03 0.17±0.06 0.17±0.09 0.17±0.07 3.64±0.26 2.94±0.24 9.83±0.51
Medium 4.43±0.33 11.54±1.46 2.7±0.23 2.7±0.67 2.7±0.54 2.7±0.05 7.41±1.45 10.28±2.8214.97±1.46

2s3z Low 4.56±0.78 8.13±0.61 5.26±0.57 8.44±0.95 6.89±0.75 0.52±0.38 6.52±2.12 3.11±1.74 9.07±0.33
Medium 5.77±0.95 13.9±0.78 0.51±0.39 11.13±0.29 12.45±0.46 0.5±0.37 9.5±1.14 3.57±1.11 13.04±0.32

1c3s5z Low 6.78±1.29 7.88±0.16 2.32±0.21 2.82±0.15 3.3±0.8 3.68±0.35 9.44±0.847.74±0.26 8.47±0.93
Medium 8.76±0.41 17.7±1.11 4.69±0.18 6.79±4.31 3.07±0.34 8.08±5.25 12.7±0.35 11.04±0.1312.62±0.26

Hard

3s_vs_5z Low 5.4±0.33 6.66±0.65 2.74±0.48 2.26±0.63 4.7±0.21 2.69±0.63 6.67±1.315.52±0.24 5.95±1.23
Medium 8.79±1.61 11.5±1.34 1.68±0.65 1.82±0.66 1.03±0.22 1.65±1.45 8.96±4.62 9.47±2.67 12.53±1.60

5m_vs_6m Low 5.38±1.29 5.28±0.41 0.32±0.21 4.02±0.15 5.3±0.8 4.68±0.35 3.71±0.23 2.68±0.32 6.22±0.24
Medium 4.83±0.31 5.36±0.63 0.71±0.24 2.87±0.24 3.07±0.34 5.78±0.35 4.5±0.34 3.69±0.16 6.42±0.42

8m_vs_9m Low 5.38±1.29 6.39±1.18 0.32±0.21 8.02±1.39 5.3±0.8 6.9±1.08 7.02±1.38 7.46±1.33 8.55±1.14
Medium 4.83±0.31 9.57±0.58 0.35±0.24 3.21±0.25 8.75±0.26 9.54±0.48 7.52±0.37 3.04±0.48 11.88±0.58

10m_vs_11m Low 4.77±0.47 8.92±0.16 0.14±0.06 9.47±0.99 7.62±0.29 9.71±0.18 7.82±0.19 6.54±0.34 8.94±0.26
Medium 5.06±0.37 8.95±0.36 0.13±0.09 9.63±0.13 9.6±0.65 10.1±0.32 8.13±0.23 10.06±0.329.13±0.16

Super
Hard

MMM2 Low 2.66±0.27 6.37±0.36 0.25±0.20 4.16±0.15 6.48±0.45 6.10±0.59 4.55±0.24 3.67±0.22 6.58±0.47
Medium 3.21±0.25 9.14±0.32 0.21±0.19 3.68±0.58 6.74±0.86 5.80±0.43 7.42±1.45 8.36±1.66 9.54±0.88

6h_vs_8z Low 5.79±0.13 7.22±0.64 5.31±0.59 5.59±0.58 7.02±0.79 5.65±0.63 6.72±0.63 6.88±0.45 6.97±0.25
Medium 3.21±0.25 11.3±0.75 1.21±0.56 2.63±0.52 5.56±0.45 1.30±0.69 8.69±0.67 6.62±0.26 9.34±0.70

corridor Low 5.33±0.22 6.69±0.50 1.44±0.52 1.66±0.62 1.62±0.84 6.05±0.42 6.42±0.53 4.52±0.18 7.06±0.49
Medium 6.66±0.57 10.4±0.45 1.33±0.46 1.11±0.42 2.19±0.55 0.63±0.43 7.75±0.22 5.42±0.56 13.7±0.33

3s5z_vs_3s6z Low 5.62±0.33 7.74±0.19 1.49±0.26 0.56±0.22 8.02±0.23 2.69±2.53 6.56±0.19 4.92±0.43 8.09±0.99
Medium 7.24±0.14 13.89±0.47 0.74±0.26 10.1±0.36 6.12±0.35 0.61±0.29 7.8±0.15 6.29±0.46 14.14±0.47

There is still a small problem with this objective. Agent-aware
weights assign higher𝜔𝜎𝑖 for better agents which make good agent
trajectories dominate the policy-segment divergence. This is unde-
sirable for 𝝈− since the objective aims to keep policy away from it,
leading to the isolation from good agents policy in 𝝈− . To fix this
problem, we reverse the agent-aware weights for 𝝈− :

𝜔𝜎−
𝑖
=

exp−𝜌 (𝜎−
𝑖
)/𝜏∑𝑁

𝑗=1 exp−𝜌 (𝜎−
𝑗
)/𝜏 (19)

Finally, we can utilize Eq. 18 to directly optimize policy in global-
local preference inconsistency datasets and learn from good agents
in both preferred and less preferred segments.

5 EXPERIMENTS
In this section, we first briefly introduce the StarCraft Multi-Agent
Challenge (SMAC) [35] environment and then present the pipeline
for global-local preference inconsistency multi-agent datasets gen-
eration in SMAC. Then we evaluate AMADPO against baselines on
these datasets with further analysis experiments to demonstrate
the outperformance of our method.

5.1 Experiment Settings
Benchmark Datasets. Experiments are mainly conducted on the
SMAC[35] environment which needs accurate control of individual
units to complete various cooperation tasks. We select twelve maps
that include both homogeneous and heterogeneous tasks across

three difficulty levels. In order to construct global-local inconsis-
tency preference datasets, similar to previous work [38], we collect
diverse policies by first training joint policies using online algo-
rithms QMIX [34] and EMC [48] and store them at fixed intervals.
Next, these policies are divided into poor, medium and good policy
pools according to episode returns. Finally, we can sample policies
from different policy pools for individual agents to generate global-
local preference inconsistency trajectories. For preference labels, we
use synthetic labels provided by scripted teachers [7, 18, 21]. Script
teacher generates global preference labels based on the ground
truth task rewards while generates local preferences according to
the level of agents’ controlled policy. Specifically, we construct two
quality types of preference datasets for each map.

To further illustrate the datasets, we take task 2s3z for example.
First, we randomly select 1~3 agents to be controlled by policies
sampled frommedium policy pools while rest are controlled by poor
policies to rollout trajectories. Then we sample pairs of segments to
label global and local preference labels. A possible preference pair
could be (𝝈0 = {𝑠𝑚1 , 𝑠

𝑝

2 , 𝑧
𝑚
1 , 𝑧

𝑚
2 , 𝑧

𝑝

3 },𝝈
1 = {𝑠𝑝1 , 𝑠

𝑚
2 , 𝑧

𝑝

1 , 𝑧
𝑝

2 , 𝑧
𝑚
3 }, 𝑦 =

0, {𝑦𝑖 } = {0, 1, 0, 0, 1}), where 𝑠, 𝑧 are agent types and superscript
𝑚, 𝑝 indicate medium and poor policies. This results in the low
quality dataset while medium quality dataset needs good and poor
policies (We mainly focus on non-expert data). We generate 500
quadruples of (𝝈0,𝝈1, 𝑦, {𝑦𝑖 }) as preference datasetDpref and 3000
pairs of (𝝈0,𝝈1) as unlabeled dataset Dunlabel for each map with
two qualities.
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(a) Average agent-aware weights of Preference Predictors in Low quality MMM2 task.
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(b) Average agent-aware weights of Preference Predictors in Low quality 3s5z_vs_3s6z task.
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(c) Learning curves of AMADPO in Low
quality MMM2 task.
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(d) Learning curves of AMADPO in Low
quality 3s5z_vs_3s6z task.

Figure 4: Analysis on Preference Predictor in super hard tasks.

Baselines.We compare our method against offline MARL, PbRL,
and DPO methods. For offline MARL, we choose the state-of-the-
art algorithm ICQ [44] as the performance baseline trained with
Ground Truth (GT) rewards. Behavior Clone (BC) can extract the
behavior policy of the dataset. Following previous work [49], we
also consider PbRL methods with different reward models: MLP [7],
LSTM [8], Preference Transformer (PT) [18], Multi-agent Prefer-
ence Transformer (MAPT) [49]. Notably, we also apply additional
local preferences to train the reward models for fair competition.
We select CPL [12] and DPPO [2] for DPO methods and adapt them
in multi-agent form with Eq.9. As for our method AMADPO, we
choose MAPT as the structure of multi-agent preference predictor
and 𝑑𝑝𝑜𝑙𝑖𝑐𝑦 as 𝑑𝑜𝑎 (relevant ablations are discussed in ). We first
train the multi-agent preference predictor with the ensembling
method on Dpref and then use it to label Dunlabel with global pref-
erence and produce agent-aware importance weights to directly
optimize joint policy from preference labels.

5.2 Comparative Evaluation Results
We report the mean and variance of episode returns for each algo-
rithm in Table 1. Every algorithm is evaluated for 32 episodes and 5
random seeds. The comparative evaluation results demonstrate that
AMADPO significantly outperforms other baselines in most tasks.
ICQ with different reward models achieving less competitive results
compared to AMADPO shows the negative impact of the reward-
preference mismatch problem due to the isolation of reward model
training and instability of RL learning in global-local inconsistency
preference datasets. Our method also surpasses the multi-agent
version of CPL and DPPO which reveals the necessity of multi-
agent preference predictor and agent-aware weights. These results
emphasize the effectiveness of agent-aware importance weights
guided direct preference optimization in the imbalanced situation.
Remarkably, AMADPO enables learning from good agents of both
compared segments in new unseen datasets without unstableMARL
training process.
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Table 2: Ablation study on reverse agent-aware weights.

Task Dataset AMADPO-Reverse AMADPO-Origin
8m_vs_9m Low 9.46 ± 0.07 6.82 ±0.34

Medium 11.3 ± 0.23 7.86 ± 0.18
MMM2 Low 6.85 ±0.17 4.78 ± 0.31

Medium 8.92 ± 0.43 7.01 ± 0.21

5.3 Preference Predictor Analysis
To obtain explicit agent-aware importance weights, it is extremely
important to correctly model the preference predictor. We evaluate
the capabilities of four different model structures to indicate good
agents in global-local inconsistency preference datasets. Eachmodel
is trained onDpref with both global and local preference labels and
then used to predict global preferences and produce agent-aware
importance weights on Dunlabel. Figure 4a,4b show the average
agent-aware weights of medium and poor agents on low quality
datasets of two super hard tasksMMM2 and 3s5z_vs_3s6z. Ideally,
preference predictor should assign higher weights for the preferred
agents in both segments across cooperation-wise. However, MLP
and LSTM fail to extract the explicit agent-aware weights for many
poor agents receiving importance weights over the average line
1/𝑁 , even trained with additional local preference labels. PT and
MAPT achieve reasonable results and MAPT performs better due to
both temporal-wise and agent-wise preference modeling. Learning
curves are illustrated in Figure 4c,4d and it can be found that using
MAPT as preference predictor results in best policy optimization.

5.4 Ablation Studies
In this section, we conduct ablations studies on designed compo-
nents and hyperparameters selection of AMADPO.

Reverse agent-aware importance weights. During applying
agent-aware importance weights to direct preference optimization,
we reverse the weights of less preferred segment 𝜎− . Due to the
distancing effect of the objective in Eq.18 on negative segments, the
aggregation of original agent-aware weights and policy-segment
distance can keep joint policy away from good agents’ behaviors in
negative segments. Reverse agent-aware importance weights can
effectively address this issue by turning the major part of negative
segments to poor agents, thus avoiding pushing away policy from
good agents. Ablation results are shown in Table2. AMADPO’s
performance degrades without reverse agent-aware weights.

Divergence selection. We absorb previous DPO studies [2, 12]
and uniformly define the policy-related metric as policy-segment
divergence. Policy-segment divergence has many forms, but we
mainly implement two types of divergence and extend them to
the multi-agent setting as mentioned in Section 4.2. Experiments
using two forms are shown in Figure 5 which indicates that 𝑑𝑎𝑐𝑡𝑖𝑜𝑛
gives less guidance for policy optimization. This is most likely due
to the discrete action setting in SMAC environment which suffers
from 𝐿2 loss optimization [4]. According to the results, we choose
𝑑𝑝𝑜𝑙𝑖𝑐𝑦 for direct preference optimization. In order to utilize 𝑑𝑝𝑜𝑙𝑖𝑐𝑦 ,
we first obtain behavior policy 𝝁𝒕𝒐𝒕 through BC before applying
AMADPO.

Hyperparameters selection. There are two main hyperparam-
eters need to conduct ablations: regulariser 𝜆𝑝 and temperature 𝜏 .

Table 3: Ablation study on divergence selection.

Task Dataset AMADPO-𝒅𝒑𝒐𝒍 𝒊𝒄𝒚 AMADPO-𝑑𝑎𝑐𝑡𝑖𝑜𝑛
8m_vs_9m Low 8.37 ± 0.07 6.82 ± 0.34

Medium 11.02 ± 0.23 7.86 ± 0.18
MMM2 Low 3.56 ± 0.43 7.01 ± 0.31

Medium 9.12 ± 0.17 4.78 ± 0.21

𝜆𝑝 is a regularizer used to control the divergence between joint
policy and negative segments. Intuitively, the smaller 𝜆𝑝 is, the far-
ther policy is away from negative segments. Actually, our method
is insensitive to 𝜆𝑝 , probably due to the agent-aware importance
weights have already implicitly regularised less preferred behaviors
in negative segments. From Table 4, our method is also robust to 𝜏
in a narrow range.

Table 4: Ablation study on hyperparameter selection.

Task Dataset 𝜆𝑝 = 0.1 𝜆𝑝 = 0.5 𝜆𝑝 = 1
MMM2 Low 5.91 ± 0.66 6.37 ± 0.17 6.66 ± 0.49

Medium 8.13 ± 0.46 7.95 ± 0.25 7.65 ± 0.24
8m_vs_9m Low 8.63 ± 0.61 8.52 ± 0.31 6.89 ± 0.25

Medium 10.61 ± 0.78 10.25 ± 0.37 9.16± 0.46
𝜏 = 0.5 𝜏 = 1 𝜏 = 2

MMM2 Low 6.37± 0.17 6.34 ± 0.34 5.78 ± 0.14
Medium 8.37 ± 0.07 8.32 ± 0.34 8.31 ± 0.24

8m_vs_9m Low 5.44 ± 0.61 7.47 ± 0.31 8.58 ± 0.75
Medium 10.16 ± 0.17 9.91 ± 0.21 9.16 ± 0.12

6 CONCLUSION
In this paper, we analyze the preference-behavior mismatch prob-
lem in current Multi-agent Preference-Based Reinforcement Learn-
ing (MAPbRL) methods, stemming from the global-local preference
inconsistency and learning instability in the two-stage training
paradigm of PbRL. To address this problem, we propose a novel
offlineMAPbRL framework named Agent-aware Multi-agent Direct
Preference (AMADPO). AMADPO introduces agent-wise prefer-
ence labels to identify and utilize the good agents’ experiences in
preferred and less-preferred trajectories sampled from the offline
training datasets. In addition, we also design a policy-related met-
ric and agent-aware importance weights to guide and rectify the
learning gradients for good agents’ policies during direct policy
optimization. We compared AMADPO against various baselines
on MAPbRL datasets collected from the Starcraft Multi-agent Chal-
lenge benchmark. The experimental results demonstrate the supe-
rior performance of the proposed method, especially in tasks that
involve the problem of global-local preference inconsistency. Future
work includes evaluating our method on continuous environments
with extra offline MARL algorithms and studying an end-to-end
training paradigm of agent-aware direct joint policy optimization.
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