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ABSTRACT
AI agents will be predictable in certain ways that traditional agents

are not. Where and how can we leverage this predictability in

order to improve social welfare? We study this question in a game-

theoretic setting where one agent can pay a fixed cost to simulate

the other in order to learn its mixed strategy. As a negative result,

we prove that, in contrast to prior work on pure-strategy simulation,

enablingmixed-strategy simulationmay no longer lead to improved

outcomes for both players in all so-called “generalised trust games”.

In fact, mixed-strategy simulation does not help in any game where

the simulatee’s action can depend on that of the simulator. We

also show that, in general, deciding whether simulation introduces

Pareto-improving Nash equilibria in a given game is NP-hard. As
positive results, we establish that mixed-strategy simulation can

improve social welfare if the simulator has the option to scale their

level of trust, if the players face challenges with both trust and

coordination, or if maintaining some level of privacy is essential

for enabling cooperation.
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1 INTRODUCTION
With the current pace of progress in AI, we are likely to increasingly

see important interactions take place not only between humans,

but also with and between AI agents [6, 7]. To ensure that the

societal impact of these interactions is positive, it is important to

understand the ways in which AI agents differ from humans [5].

This in turn can help us design interventions that promote socially

desirable outcomes [19].
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One important distinction between human and AI agents is that

the behaviour of AI agents is determined by their source code,

and can therefore – in certain cases – be reliably predicted [22].

This could be achieved, for example, by inspecting the AI’s source

code and reasoning about it, or by creating a copy of the AI and

running it in a simulated environment. As these examples suggest,

we will assume that predicting the AI’s actions requires non-trivial

effort, and is therefore associated with some cost [10, 15]. (Readers
familiar with Stackelberg games [24] can think of this setting as one

where the follower has to choose to pay some cost before they are

allowed to see the leader’s mixed commitment. For a more detailed

discussion of related work, see Section 6.) For concreteness, this

paper will discuss this general topic in terms of simulating the AI

agent, though our results also apply to other forms of prediction.

As we will show, the ability to simulate agents before interacting

with them can (provably) lead to increased trust and cooperation.

More than a topic of merely theoretical interest, however, the avail-

ability of black-box access to the latest AI models and high-fidelity

simulators could lead to simulation being a key tool in the safe and

beneficial deployment of advanced AI agents [1, 20]. Importantly,

in domains ranging from financial markets to public infrastructure,

these agents will face strategic incentives, making it critical to un-

derstand the implications of simulation in game-theoretic settings.
An idealised variant of this setting was studied by Kovařík et al.

[15], who assumed that the simulator is able to predict the AI’s ac-

tion perfectly. However, this assumption might often be unrealistic,

not least because the AI might have access to a source of random-

ness that cannot be predicted by the simulator [14, 26]. As the

following extended example shows, this difference has far-reaching

consequences, which we explore in the remainder of the paper.

1.1 Illustrative Example
Alice, Bob, and his robots. Consider a setting in which Alice

(player one) and Bob (player two) are due to interact in some partic-

ular situation, corresponding formally to some arbitrary two-player

game G. Instead of interacting directly, however, Bob will deploy

a robot
1
that will act on his behalf. Moreover, Alice will have the

option to analyse the robot, at some cost csim > 0. We will refer to

this analysis as simulation.

1
It is in no way important to the paper’s results that the “robot” is physically embodied;

we just use it here as evocative language.
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In general, the robot can use randomness to determine which

action to take. Correspondingly, we will distinguish between two

types of simulation, depending on whether Alice is able to predict

the robot’s source of randomness or not. To capture this distinc-

tion formally, we can assume that the robot corresponds to some

probability distribution 𝜎2 over pure strategies in G. In mixed-
strategy simulation, Alice learns the robot’s mixed strategy 𝜎2. In

pure-strategy simulation, Alice learns which pure strategy 𝑠2 will

be sampled by the robot when playing G.

In this work, we assume that if Alice decides to simulate the

robot, she will then best-respond to the revealed strategy, breaking

ties in Bob’s favour.

The simulation meta-game. When Alice has access to mixed-

strategy simulation, Alice and Bob need to reason not only about

the “base-game” G, but also about the “simulation meta-game” Gsim.

In Gsim, Alice must decide whether to simulate, and which strategy

to use if she does not. Correspondingly, Bob must decide which

robot – i.e., which mixed strategy – to select as his representative.

When Bob randomises his choice, he is thus mixing over mixed
strategies. And because Alice can simulate the robot but not Bob,

Bob’s overall strategy is not necessarily reducible to a single mixed

strategy.
2

Focusing on low simulation costs and strict Pareto improvements.
Throughout the paper, we will assume that the simulation cost

is not under the control of either of the players. However, for the

purpose of interpreting the results, note that Bob in particular might

be able to influence csim to some degree. For example, when Bob

has a fully adversarial relationship with Alice, he might not share

any details about the robot and even intentionally obfuscate its

design to make the analysis harder. In contrast, when Bob wants

Alice to trust him, he might make the robot easier to understand or

even subsidise the simulation cost.
3
Because of this, in this paper

we will primarily investigate the case where csim is low but positive.
We will also focus on settings where simulation holds the promise

of improving the outcome for both players. The primary candidates

for such settings are games that revolve around trust, coordination,

or both.

The trust game TG. The central example of a trust game is TG
(Figure 1): Bob – or rather, his robot – approaches Alice with an

investment opportunity. If she lends him $100k, he will make $40k

in profit. Alice can Walk Out (WO) on Bob, terminating the game

with payoffs 𝑢𝐴 = 𝑢𝐵 = 0. If Alice instead Trusts (T) Bob, he can

either Defect (D) and steal Alice’s money (𝑢𝐴 = −100, 𝑢𝐵 = 100) or

Cooperate (C), splitting the profits 50:50 with Alice (𝑢𝐴 = 𝑢𝐵 = 20).

Unfortunately, without simulation, Defect is a dominant strategy

for Bob, so the only Nash equilibrium (NE) of TG is for Alice to

Walk Out.

Pure-strategy simulation in TG. In the simulation variant TGsim
of TG, Bob attempts to earn Alice’s trust by sharing the robot’s

2
If Bob was certain that Alice has access to pure-strategy simulation, he might decide

to use robots that play deterministically, since doing otherwise confers no benefit. This

would make the additional level of randomisation unnecessary.

3
However, in practice, it seems unlikely that Bob could achieve csim = 0 or even

csim < 0. This is because even if Bob makes simulation as simple as possible and pays

Alice to simulate, she will always be tempted to put lower than maximum effort into

her analysis (to save effort or keep some of the subsidy for herself).

Cooperate Defect

Trust 20, 20 −100, 100

Walk Out 0, 0 0, 0

Cooperate Defect

Full Trust 20, 20 −100, 100

Partial Trust 10, 10 −25, 25

Walk Out 0, 0 0, 0

Figure 1: Trust game TG and its partial-trust extension PTG.

specification with her. She then has the option to Simulate (sim)

the robot for csim = $2k in order to learn which strategy it will

employ. One might hope that this would reliably allow cooperation

between Alice and Bob, yielding payoffs 𝑢𝐴 = 20 9 2 = 18, 𝑢𝐵 =

20. Unfortunately, such an outcome would not be stable, because

Alice would be tempted to increase her profits by Trusting Bob

blindly (and thus saving the simulation cost). This, in turn, creates

a temptation for Bob to submit a robot that will Defect on Alice.

Pure-strategy simulation in generalised trust games. Kovařík et al.

[15] show that in the pure-strategy simulation game TGp-sim, it is
an equilibrium for Alice to mix between Trust and Simulate, and

for Bob to mix between (robots that) Cooperate and Defect. While

this simulation equilibrium is not optimal in terms of social welfare

(compared to what could be obtained in a world without strategic

constraints), it constitutes a strict improvement over the original

equilibrium for both Alice and Bob. The authors then show that

a similar result holds in any generalised trust game (which they

define as a game where giving Bob the ability to make credible

pure-strategy commitments is guaranteed to strictly improve the

utility for both players compared to any NE of the original game).

Mixed-strategy simulation is useless in TG. Unfortunately, this
result no longer holds in the mixed-strategy simulation variant

TGm-sim. To see why, imagine that Bob is about to submit a robot

which cooperates with Alice 100% of the time. He will then be

tempted to replace this robot by one that only cooperates 99% of the

time. If Alice simulates the robot, surely she will not Walk Out on

him just because of the 1% defection chance; after all, her expected

utility for Trusting is still positive. In fact, this reasoning shows

that Bob can safely set the cooperation rate to
100+2

100+20
= 85%, the

lowest possible value where Alice still recoups all of her simulation

costs. However, Bob can go even further. He can reason that once

Alice has already simulated, she will treat the simulation cost as a

sunk cost. Taken all together, this means that no matter what Alice

does, he might as well replace all of his “100% cooperate robots”

by “83.5% cooperate robots” (since a cooperation rate of
100

100+20
is

the lowest he can go while still giving Trust a positive expected

value). Unfortunately, at this point, Alice no longer makes enough

profit to recoup csim, so her only sensible options are to Trust Bob

blindly or Walk Out. This effectively brings Alice and Bob back to

TG without simulation, and the only Nash equilibrium of that game

is for Alice to Walk Out.

Mixed-strategy simulation can help if Alice has good alternatives.
In light of this negative result, one might wonder whether there are
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any games where mixed-strategy simulation is useful. Fortunately,

it turns out that there are. To see this, consider an extension PTG
(Figure 1) of the earlier trust game scenario TG where Alice has

the additional option to trust Bob only partially (PT), with the ro-
bot being unable to differentiate between Partial and Full Trust. For
example, she could secretly register her business in jurisdictions

with higher taxes but more secure banking infrastructure, which

would decrease the overall profits (𝑢𝐴 (PT,C) = 𝑢𝐵 (PT,C) = 10)

but reduce the robot’s ability to steal from her (𝑢𝐴 (PT,D) = 925,

𝑢𝐵 (PT,D) = 25). Bob could now repeat the same reasoning as

before, concluding that any “100% cooperate robot” can be safely

replaced by a “99% cooperate robot”. However, he will now have to

stop at
100−25

20−10
� 88.3%. This is because below this value, Alice’s best

response will switch from Full to Partial Trust, decreasing Bob’s

utility. (This shows the importance of 𝑢2 (FT,C) being higher than

𝑢2 (PT,C).) We can verify that the mixed-strategy simulation ver-

sion of PTG has an NE where Bob mostly submits a “88.3% cooperate

robot” but sometimes replaces it by a “100% defect robot”, while

Alice mixes between Simulating (after which, depending on the

result, she plays either Full Trust or Walk Out) and blindly playing

Partial Trust. Fortunately, the frequency of Bob using the “100%

defect robot” is proportional to csim, so for any sufficiently low csim

(e.g., for csim = 2), both players end up making a profit.

1.2 Outline and Contributions
Section 2 describes the standard notation for normal-form games

and covers some classic game-theoretic concepts.

In Section 3, we formally definemixed-strategy simulation games

Gm-sim, contrast them with pure-strategy simulation games Gp-sim,

and establish their basic properties. In particular, we show that

while Gm-sim is technically an infinite game, it can be reduced to a

normal-form game whose size is at most exponential in the size of

the base-game (Prop. 3.4).

Section 4 explores the computational aspects of mixed-strategy

simulation. First, it establishes an upper bound on the complexity

of finding an NE of Gm-sim (Prop. 4.1). Second, while determining

the exact complexity of finding an NE of Gm-sim is left as an open

problem, we observe that any NE of the original game still exists

as an equilibrium of the simulation game, so finding all NE of a

simulation game is NP-hard. Third, from the design point of view, a

crucial question is whether enabling mixed-strategy simulation in

a particular game introduces beneficial Nash equilibria – e.g., ones

that result in a Pareto-improvement, an increase in social welfare,

or an improvement in the utility of a particular player (relative to

the equilibria of the original game G). We show that answering

any variant of this question is, in general, NP-hard (Thm. 4.2).

This implies that one should not expect to be able to find a simple

description of simulation’s effects in general games. Consequently,

we find it more promising to focus on identifying specific classes of
games where simulation has easily describable effects.

In Section 5, we investigate the effects of simulation on the

players’ welfare. First, we extend the negative result for TG from

Section 1.1, by showing that mixed-strategy simulation cannot help

in any game where the robot observes Alice’s base-game strategy

before acting (Thm. 5.1). We then extend the positive result for PTG
from Section 1.1, by describing a general class of games where Alice

can vary her level of trust and mixed-strategy simulation allows

her to profitably use the second-highest level of trust (Thm. 5.4).

We also prove that mixed-strategy simulation is beneficial in a

class of games involving elements of both trust and coordination

(Thm. 5.9). Finally, we show that there are situations – those where

the simulated agent finds it important to maintain their privacy –

where mixed-strategy simulation is more socially beneficial than

pure-strategy simulation (Thm. 5.11).

We conclude by reviewing the most closely related work (Sec. 6)

and summarising the paper’s findings (Sec. 7). The full proofs and

all proof sketches can be found in the arXiv version of this text.

2 BACKGROUND
For a finite set𝑋 , Δ(𝑋 ) denotes the set of all probability distribu-
tions over 𝑋 . For a probability distribution 𝜌 , supp (𝜌) denotes the
support of 𝜌 . We use P1 and P2 as shorthands for “player one” and

“player two”. When there is risk of confusion about which game a

given object belongs to, we add superscript notation (e.g., 𝑢G for

utility in G).
A two-player normal-form game (NFG) G is a triplet (𝑆1, 𝑆2, 𝑢)

where: 𝑆 := 𝑆1 × 𝑆2 ≠ ∅ is a set of pure strategy profiles (finite,
unless specified otherwise) and 𝑢 = (𝑢1, 𝑢2) : 𝑆 → R2

is the utility
function. We will typically denote the elements of 𝑆𝑖 (pure strate-

gies) as 𝑠𝑖 . Amixed strategy 𝜎𝑖 is a probability distribution over

pure strategies. Σ𝑖 := Δ(𝑆𝑖 ) denotes the set of all mixed strategies.

Since any pure strategy 𝑠𝑖 can be identified with the mixed strat-

egy 𝜎
𝑠𝑖
𝑖

that selects 𝑠𝑖 with probability 1, we sometimes view pure

strategies as a subset of mixed strategies. A subgame of G is any

game of the form G′ = (𝑆 ′
1
, 𝑆′

2
, 𝑢G), where 𝑆 ′

𝑖
⊆ 𝑆G

𝑖
.

With a light abuse of notation, we will overload the symbol 𝑢 to

also denote the expected utilities corresponding to mixed strategies.

A strategy 𝜎1 is said to be a best response to a strategy 𝜎2 if

𝜎1 ∈ arg max𝜎 ′
1
∈Σ1

𝑢1 (𝜎′
1
, 𝜎2). We use br(𝜎2) to denote the (non-

empty) set of all pure best responses to 𝜎2. Since the utility of

the best-responding player is determined by the other player’s

strategy, we sometimes denote it as 𝑢1 (br(𝜎2), 𝜎2). (The analogous
definitions apply when the roles of P1 and P2 are reversed.) ANash
equilibrium is a strategy profile 𝜎 = (𝜎1, 𝜎2) under which each

player’s strategy is a best response to the strategy of the other

player. NE(G) denotes the set of all Nash equilibria in G.

A strategy 𝑠1 is said to be an (opponent-)favourable best re-
sponse to 𝜎2 if 𝑠1 ∈ arg max𝑡1∈br(𝜎2 ) 𝑢2 (𝑡1, 𝜎2). We use f-br(𝜎2) to
denote the (non-empty) set of all (pure) favourable best responses

to 𝜎2. When one player uses a favourable best response, the util-

ities of both players are determined by the other player’s strat-

egy; this allows us to denote these utilities as 𝑢1 (f-br(𝜎2), 𝜎2) and
𝑢2 (f-br(𝜎2), 𝜎2).

A Stackelberg game [24] is a setting where one player, the

leader, commits to a mixed strategy to which the other player,

the follower, best-responds. In this paper, we assume that P2 is the
Stackelberg leader and P1 is the follower, which better fits the as-

sumption that P1 is the simulator. Formally, a Stackelberg game

Ĝ corresponding to a base-game G works as follows. First, the

leader selects a mixed strategy 𝜎2 ∈ ΣG
2
. Afterwards, the follower

selects a favourable best response 𝑠1 ∈ f-br
G (𝜎1), (i.e., break-

ing ties in the leader’s favour). The players then receive payoffs
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𝑢 Ĝ (𝑠1, 𝜎2) := 𝑢G (𝑠1, 𝜎2). By Stackelberg equilibrium (SE) of G,
we mean any NE of the Stackelberg game Ĝ.

We also also consider “pure Stackelberg games” where the leader

is limited to committing to a pure strategy 𝑠2 ∈ 𝑆G
2
. However, to

avoid the ambiguity of “pure Stackelberg equilibrium”, we will refer

to these games as pure-commitment games and to their NE as

pure-commitment equilibria.
A strategy profile 𝜎 is said to be a strict Pareto improvement

over 𝜌 if it satisfies 𝑢1 (𝜎) > 𝑢1 (𝜌) and 𝑢2 (𝜎) > 𝑢2 (𝜌). A two-

player game G is said to be a generalised trust game [15] if any
pure-commitment equilibrium of G (with P2 as the leader) is a

strict Pareto improvement over any Nash equilibrium of G. (For a
prototypical example of such a G, see Figure 1.)

3 PURE- VS. MIXED-STRATEGY SIMULATION
In this section, we formally define mixed-strategy simulation, con-

trast it with pure-strategy simulation, and survey the basic proper-

ties of the corresponding games.

3.1 Definitions of Simulation Games
In Section 1.1, we informally described simulation games through a

scenario in which Bob (P2) selects a robot that acts on his behalf and

Alice (P1) has an option to pay a fixed cost to analyse the robot prior

to interacting with it. If Alice takes advantage of this option, she

learns the (pure or mixed) strategy that the robot is going to employ

and best-responds to it, breaking ties in Bob’s favour. Otherwise,

the game proceeds as usual. We now give a formal counterpart to

this description, the first part of which is a reformulation of that of

Kovařík et al. [15].

Definition 3.1 (Pure- and mixed-strategy simulation). The
mixed- and pure-strategy simulation games Gcsim

m-sim
and Gcsim

p-sim

(or simply Gm-sim and Gp-sim) corresponding to a two-player NFG
G and simulation cost csim > 0 are defined as the (infinite) NFGs
given by:

𝑆
Gm-sim

1
:= 𝑆

G
1
∪ {m-sim}, 𝑆Gm-sim

2
:= ΣG

2
,

𝑆
Gp-sim

1
:= 𝑆

G
1
∪ {p-sim}, 𝑆Gp-sim

2
:= ΣG

2
,

where m-sim and p-sim are new strategies of P1, called mixed- and
pure-strategy simulation in G, defined by

𝑢1 (m-sim, 𝜎2) := 𝑢
G
1
(brG (𝜎2), 𝜎2) − csim

𝑢2 (m-sim, 𝜎2) := 𝑢
G
2
(f-brG (𝜎2), 𝜎2),

resp.

𝑢1 (p-sim, 𝜎2) := E𝑠2∼𝜎2
𝑢1 (brG (𝑠2), 𝑠2) − csim

𝑢2 (p-sim, 𝜎2) := E𝑠2∼𝜎2
𝑢2 (f-brG (𝑠2), 𝑠2).

A simulation equilibrium is an NE in which P1 simulates with
non-zero probability.

3
The phrases pure-and mixed-strategy simulation might suggest that the object that

the simulation is being applied to is a pure, resp. mixed strategy. In fact, the two types

of simulation are applicable to the same objects, but they differ in the information they

reveal. In other words, pure and mixed-strategy simulation differ in the type of output
they produce, not in the type of input they accept.

To illustrate the distinction between p-sim and m-sim, imagine

that Alice and Bob play a game of rock-paper-scissors. If Bob em-

ploys a single robot, Uniform-bot, which uses an internal random

number generator to play each of the three actions with probability

1

3
, applying mixed-strategy simulation m-sim will only tell Alice

that the robot’s strategy is ( 1

3
, 1

3
, 1

3
) (which is entirely unhelpful). In

contrast, applying pure-strategy simulation p-sim to Uniform-bot
will predict the robot’s exact action, allowing Alice to win the game

every single time. If Bob instead randomises between Rock-bot,
Paper-bot, and Scissors-bot, each of which can only use a single
action, both p-sim and m-sim will reveal the robot’s exact action.

When the distinction between pure- and mixed-strategy simulation
does not matter, we will use the colloquial term simulation.

This example also shows that in a pure-strategy simulation game

Gp-sim, Bob cannot gain anything by randomising over multiple

mixed strategies (since all utilities only depend on the overall dis-
tribution over 𝑆

G
2
). For the purposes of formal analysis of pure-

strategy simulation games, this allows us to assume that Bob’s

space of pure strategies in Gp-sim is limited to 𝑆
Gp-sim

2
= 𝑆

G
2
.
4

3.2 Randomising over Mixed Strategies
Throughout the paper, and in particular in some of the proofs, it

will be crucial to be able to treat “mixtures over mixed strategies”

differently from a standard mixed strategies (since the two respond

differently to mixed-strategy simulation, as we saw earlier). To

address this issue, we will refer to probability distributions over

ΣG
2
as meta-strategies and denote them by symbols such as 𝜇2

(or𝑚2 when the meta-strategy is pure, i.e., when it puts all prob-

ability mass on a single 𝜎2 ∈ ΣG
2
). We will use the hat symbol

to indicate that a given mixed strategy is being used as a (pure)

meta-strategy. For example, Bob’s above-mentioned mixed meta-

strategy of uniformly randomising between a Rock-bot, Paper-bot,

and Scissors-bot could be formally written as 𝜇1 := 1

3
R̂+ 1

3
P̂+ 1

3
Ŝ,

while the pure meta-strategy of always using the Uniform-bot

would correspond to𝑚2 :=
�1

3
R+ 1

3
P+ 1

3
S.

For a mixed meta-strategy 𝜇2 ∈ 𝑆Gm-sim

2
and pure base-game strat-

egy 𝑠2 ∈ 𝑆G
2
, we will use 𝜇2 (𝑠2) to denote the total probability that

𝜇2 puts on 𝑠2. For example, if 𝜇2 represents Bob using Uniform-bot

with probability 30% and Rock-bot R̂ with the remaining 70% prob-

ability, we have 𝜇2 (R) = 0.3 · 1

3
+ 0.7 · 1 = 0.8.

3.3 Basic Properties of Simulation Games
While this paper focuses on the implications of mixed-strategy sim-

ulation m-sim, pure-strategy simulation p-sim will be relevant for

two reasons. First, it serves as an important baseline for comparison.

Second, it can be a useful source of intuitions for the properties of

mixed-strategy simulation — this is because m-sim in G can be also

be understood as p-sim in the infinite game (𝑆G
1
, ΣG

2
, 𝑢).5

4
Note that the same simplification – replacing 𝑆

G
m-sim

2
:= ΣG

2
by 𝑆

G
2
– cannot be valid

in Gm-sim . This follows from the Trust Game example in Section 1.1 (which illustrates

that Gp-sim and Gm-sim can have different properties).

5
In light of the equivalence between Gm-sim and (𝑆G

1
, ΣG

2
,𝑢 )p-sim , we might hope to

answer questions about mixed-strategy simulation by applying existing pure-strategy

simulation theory to (𝑆G
1
, ΣG

2
,𝑢 ) . However, this strategy turns out to be inapplicable

because the prior work requires the base game G to be finite.
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The following lemma shows that – unlike in pure-strategy simu-

lation games – any NE of G is also an NE of the simulation game

Gm-sim. This is because if P2 puts all probability mass on a single

mixed strategy 𝜎2, costly simulation results in lower utility for P1

than directly best-responding to 𝜎2.

Lemma 3.2. Identifying 𝜎 ∈ ΣG with (𝜎1, 𝜎2) ∈ ΣGm-sim , we have
NE(G) ⊆ NE(Gm-sim) for any G.

Our primary interest in simulation is to use it as a tool for im-

proving the outcomes for the players. What, however, ought to be

our metric of success, particularly in light of Lemma 3.2? When

discussing the impacts of simulation on social welfare, we will pri-

marily be concerned with whether enabling simulation introduces
Pareto-improving Nash equilibria. Formally, this means that

there is some 𝑐0 > 0 s.t. for every csim < 𝑐0, the game Gcsim

m-sim
has

a Nash equilibrium 𝜇∗ in which 𝑢 (𝜇∗) is strictly higher, for both
players, than the utility achievable in any NE of G (and similarly for

p-sim).

Remark 3.3. Note that the fact that enabling simulation introduces

Pareto-improving NE does not necessarily preclude simulation from

also introducing new NE whose utility is lower than some, or even

all, NE of the original game. While it is worth analysing when this

occurs, such equilibrium selection problems are largely beyond the

scope of the present work.

Strictly speaking, Gm-sim is defined as a game where P2 has

infinitely many pure strategies, which could greatly complicate its

analysis. Fortunately, the following result shows that it is always

enough to consider a finite number of strategies for P2.

Proposition 3.4 (Reduction to a finite strategy space). For any
finite G, there exists a finite subgame G′

m-sim
of Gm-sim s.t.:

(i) NE(G′
m-sim

) ⊆ NE(Gm-sim),
(ii) ∀𝜇 ∈ NE(Gm-sim) ∃𝜇′∈ NE(G′

m-sim
) : 𝑢 (𝜇′) = 𝑢 (𝜇).

Proof sketch. ΣG
2
can be expressed as a union of (non-closed)

polytopes f-br
−1 (𝑠1) :=

{
𝜎2 ∈ ΣG

2
| f-br(𝜎2) ∋ 𝑠1

}
, 𝑠1 ∈ 𝑆

G
1
. We

then have 𝑢
Gm-sim

2
(m-sim, 𝜎2) = 𝑢

G
2
(𝑠1, 𝜎2) whenever 𝜎2 lies in

f-br
−1 (𝑠1). P2 can then recover all relevant strategies by mixing

over the vertices of the closure f-br
−1 (𝑠1). □

4 COMPUTATIONAL RESULTS
In this section, we investigate the difficulty of analysing mixed-

strategy simulation games. From Proposition 3.4, it follows that

even though Gm-sim is defined as an infinite game, it can be solved

in finite time. By “solving” a game, we mean any of: (a) finding one

NE; (b) finding an NE that maximises social welfare or the utility

of one of the players; or (c) finding all NE payoff profiles and some

NE corresponding to each.

Proposition 4.1 (Upper bound on solving Gm-sim). For any G,
solving Gm-sim is at most as difficult as solving a game Ĝ with |𝑆 Ĝ | =
𝑂 ( |𝑆G

1
|2 · 2

|𝑆G
2
| ).

Proof sketch. The non-trivial part is the size of 𝑆
Ĝ
2
. Proposi-

tion 3.4 shows that a suitable 𝑆
Ĝ
2

can be obtained by splitting the

( |𝑆G
2
| 9 1)-dimensional simplex ΣG

2
into |𝑆G

1
| convex polytopes and

only considering the vertices of these polytopes. Estimating the

number of these vertices yields the result. □

The fact that NE(G) ⊆ NE(Gm-sim) trivially implies that finding

all NE of Gm-sim is at least as difficult as finding all NE of G. The
difficulty of finding simulation equilibria of Gm-sim depends on csim.

When csim is prohibitively high, solving Gm-sim is equivalent to

solving G (since Alice never simulates). For general csim, we leave

determining the exact complexity of finding simulation equilibria

of Gm-sim as an open problem.

From the perspective of a designer, arguably the most important

question is whether enabling simulation is likely to lead to more

socially beneficial outcomes in a given game. The following result

shows that this is, in general, hard to determine.

Theorem 4.2 (Determining whether simulation helps is hard). De-
note by 𝑃a, . . . , 𝑃e the problems of determining whether enabling
m-sim introduces an NE which is strictly better than all NE of G
in terms of (a) both players’ utilities, (b) P1’s utility, (c) P2’s utility,
(d) any strictly monotonic social welfare function (such as 𝑢1 + 𝑢2 or
𝑢1 · 𝑢2), or (e) the egalitarian social welfare function min{𝑢1, 𝑢2}.

For general games G, each of the problems 𝑃a, . . . , 𝑃e is NP-hard.

For the purpose of this paper, Theorem 4.2 suggests that we

should not expect to be able to find a concise description of the

effects of enabling m-sim in general games. We will, therefore,

instead focus on identifying particular classes of games where

simulation has predictable effects.

5 EFFECTS OF SIMULATION ON PLAYERS’
WELFARE

In this section, we describe specific classes of games where enabling

mixed-strategy simulation does, and does not, lead to socially ben-

eficial outcomes.

5.1 Drawbacks of an Overly Informed Co-Player
In Section 1.1, we saw that in the simple case of a 2× 2 trust game

6
,

enabling p-sim introduces Pareto-improvingNE but enablingm-sim

does not. The following theorem is a generalisation of this negative

result.

Theorem 5.1 (Simulating a perfectly informed player). Let G0 be
a finite two-player game. Denote by G the game where:

(i) First, P1 selects 𝑠1 ∈ 𝑆G0

1
and P2 observes P1’s choice.

(ii) Next, P2 selects a pure strategy 𝑠2 ∈ 𝑆G0

2
. We assume that P2

must select a Pareto-optimal response (but they are not required
to best-respond).7

(iii) The players receive utilities 𝑢G0

𝑖
(𝑠1, 𝑠2).

Then enabling m-sim does not introduce Pareto-improving NE in G.

6
Strictly speaking, Section 1.1 describes the trust game as a simultaneous-move game.

However, note that this game is strategically equivalent to the game where P1 acts

first (deciding between Trust and Walk Out), after which P2 observes P1’s action and

chooses whether to Cooperate or Defect. In other words, this 2 × 2 trust game is a

normal-form representation of a game which satisfies the assumptions of Theorem 5.1.

7
Formally, we require that if P2 selects 𝑠2 in response to 𝑠1 , then any 𝑠′

2
∈ 𝑆G0

2
must

have either 𝑢1 (𝑠1, 𝑠
′
2
) ≤ 𝑢1 (𝑠1, 𝑠2 ) or 𝑢2 (𝑠1, 𝑠

′
2
) ≤ 𝑢2 (𝑠1, 𝑠2 ) .

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

1195



Cooperate Defect

T1 20, 20 −100, 100

T2 10, 10 −20, 20

T3 5, 3 −1, 6

WO 0, 0 0, 0

T
′
1

20, 20 −100, 100

T
′
2

10 + 1, 10 9 1 −30, 30

T
′
1.5

10+20

2
, 10+20

2
+ 1

(920)+(9100)
2

, 20+100

2

T1.9 11, 11 −99, 99

Figure 2: Top: An illustration of a generalised partial-trust
game G from Definition 5.2.Middle: Examples of strategies
that would invalidate the technical conditions in the defi-
nition if we added them to G. T′

1
fails (4a), since it does not

have a unique value 𝑢1 (T,C). T′
2
fails the requirement (4b),

that any increase in 𝑢1 (T,C) – here caused by going from T2

to T
′
2
– must also increase 𝑢2 (T,C) (and 𝑢2 (T,D), and decrease

𝑢1 (T,D)). T′
1.5

fails (5), since T
′
1.5

yields the same 𝑢1 as the
convex combination 1

2
· T1 + 1

2
· T2 without also having the

same 𝑢2. Bottom: T1.9 is an example of a strategy that would
not invalidate any of the technical conditions from the def-
inition, but adding it to G would break the assumption of
“sufficiently high 𝑢2 (FT,C)” that is required for Theorem 5.4.

Proof sketch. When P2 can select 𝑠2 as a function of P1’s

choice of 𝑠1, they can increase the relative attractiveness of any

fixed 𝑠∗
1
∈ 𝑆1 by being maximally aggressive against any 𝑠1 ≠ 𝑠∗

1
.

Crucially, P2 can do this without lowering P1’s utility of 𝑠∗
1
. More-

over, P2 can then bring P1’s utility for 𝑠∗
1
all the way to their maxmin

value – and any NE of (G0)m-sim will require P2 to do so. However,

once P1 only gets their maxmin value, they have no reason to simu-

late, destroying any potential for simulation-based cooperation. □

5.2 Partial Trust
The following definition captures settings where Alice can vary

the degree to which she trusts Bob, with more trust enabling better

outcomes for both, but also making Alice more vulnerable to ex-

ploitation (for illustration, see Figure 2). The purpose of this section

is to show that settings where such modulation of trust is possible

can benefit from mixed-strategy simulation.

Definition 5.2 (Generalised Partial-Trust Game). By a gen-
eralised partial-trust game (PTG), we mean any G = (𝑆1, 𝑆2, 𝑢)
that satisfies the conditions

(1) P2 has two strategies: P2 only has only two pure strategies,
which we label Cooperate (C) and Defect (D);

(2) P1 has a dedicated strategy for opting out of the game:
P1 has a strategy, which we labelWalk Out (WO), for which
𝑢 (WO,C) = 𝑢 (WO,D) = (0, 0);

(3) Trust enables profits but is exploitable:
Any P1’s strategy T ≠ WO (“trust”) satisfies

𝑢1 (T,C) > 𝑢1 (WO, · ) = 0 > 𝑢1 (T,D)
𝑢2 (T,D) > 𝑢2 (T,C) > 𝑢2 (WO, · ) = 0;

and the technical assumptions

(4) There is a straightforward hierarchy of trust:
(a) For any two strategiesT ≠ T

′, we have𝑢1 (T,C)≠𝑢1 (T′,C).
(b) When 𝑢1 (T,C) > 𝑢1 (T′,C), we also have 𝑢2 (T,C) >

𝑢2 (T′,C), 𝑢1 (T,D) < 𝑢1 (T′,D), 𝑢2 (T,D) > 𝑢2 (T′,D);
(5) P1 cannot use convex combinations for tie-breaking:

For any T, if a convex combination 𝜎1 = 𝜆𝑠1 + (1 9 𝜆)𝑡1 sat-
isfies 𝑢1 (T, 𝜎2) = 𝑢1 (𝜎1, 𝜎2) for all 𝜎2, it must also satisfy
𝑢2 (T, 𝜎2) = 𝑢2 (𝜎1, 𝜎2) for all 𝜎2.

To give an intuition for the conditions used in Definition 5.2, note

that (3) ensures that non-zero payoffs can only be achieved when

P1 Trusts P2, but P2 is always tempted to Defect, which makes P1

strictly worse off than if they Walk Out. The technical conditions

(4a) and (5) ensure that once P1 decides on the tradeoff between

potential gains from cooperation and exploitability, they have no

room left for varying P2’s payoffs. The technical condition (4b)

ensures that higher cooperative gains for P1 go hand in hand with

higher cooperative gains for P2 (but also increase P1’s exploitability

and P2’s gains from defection).

The concept of a game with a gradation of trust can be extended

in many ways, such as not having the default outcome be zero, not

requiring that a higher degree of trust means that𝑢2 (T,D) is higher,
giving P2 a hierarchy of cooperative and defective strategies, etc.

However, to simplify the exposition, this paper will only consider

the basic setup described in Definition 5.2. The following lemma

summarises the basic properties of generalised partial-trust games.

Lemma 5.3. Let G be a generalised partial-trust game. Then:

(i) For any 𝜎 ∈ NE(G), 𝜎1 (WO) = 1;
(ii) The unique pure-commitment equilibrium of G is (FT,C),

where {FT} = arg max

{
𝑢1 (T,C) | T ∈ 𝑆G

1

}
.

In particular, G is a generalised trust game.

If 𝑢2 (FT,C) is sufficiently high relative to other payoffs, then:

(iii) The unique SE of G has the form (FT, 𝑖∗ [FT]), where

𝑖∗ [FT] = 𝛿∗
FT

· D + (1 − 𝛿∗
FT
) · C,

𝛿∗
FT

= max {𝛿 ∈ [0, 1] | FT ∈ br(𝛿D + (1 − 𝛿)C)},

is the “optimal commitment that still incentivises FT”;
(iv) The SE of G is a strict Pareto-improvement over NE of G if and

only if there is T ∈ 𝑆G
1

s.t. 𝑢1 (T,C)
9𝑢1 (T,D) >

𝑢1 (FT,C)
9𝑢1 (FT,D) .

Proof sketch. The difficult part of Lemma 5.3 is (iv), which

relies on the fact that P1 can trivially scale their level of trust by

interpolating between any two actions, including FT and Walk Out.

This lets P1 disregard any T that has a worse risk-benefit ratio than

FT, making (iv) equivalent to the claim that: “giving P2 the ability

to make mixed commitments results in a Pareto-improvement if

and only if disregarding these redundant actions leaves P1 with

more options than just FT and WO.” This follows from (iii). □
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In light of Lemma 5.3, a generalised PTG is said to be non-trivial
when it satisfies the condition (iv). We can now prove a generalisa-

tion of the positive result from Section 1.1.

Theorem 5.4 (Simulation helps with partial trust). Let G be a
non-trivial generalised partial-trust game. If 𝑢2 (FT,C) is sufficiently
high relative to other payoffs in G, enablingm-sim introduces Pareto-
improving NE in G.

Proof sketch for Theorem 5.4. The key insight is that when

P2 plays the Stackelberg equilibrium 𝜎SE
2

of G, P1 will be indiffer-
ent between FT and some other strategy PT, and the non-triviality

condition ensures that PT ≠ WO. The proof then consists of show-

ing that there is an equilibrium where P2 mixes between 𝜎SE
2

of

G and defecting with probability 100% and P1 mixes between PT

and m-sim. The assumption on 𝑢2 (FT,C) ensures that P2 cannot
improve their utility by switching to some intermediate level of

defection. □

5.3 Trust and Coordination
We now investigate simulation in coordination games.

Definition 5.5 (Generalised coordination game). By a gen-
eralised coordination game, we will mean a finite two-player G
game where:

• 𝑆𝑖 =
{
𝑎1

𝑖
, . . . , 𝑎𝑛

𝑖

}
, for some 𝑛 ≥ 2;

• 𝑢1 (𝑎𝑘
1
, 𝑎𝑙

2
) = 𝑢2 (𝑎𝑘

1
, 𝑎𝑙

2
) = 0 for 𝑘 ≠ 𝑙 ; and

• 𝑢1 (𝑎𝑘
1
, 𝑎𝑘

2
), 𝑢2 (𝑎𝑘

1
, 𝑎𝑘

2
) > 0 for any 𝑘 .

As a standard property of coordination games, we get that:

Lemma 5.6. For any generalised coordination game, NE(G) ={
𝜎𝐾 | 𝐾 ⊆ {1, . . . , 𝑛}

}
for some 𝜎𝐾 which satisfy: (i) supp (𝜎𝐾

𝑖
) =

{𝑎𝑘
𝑖
| 𝑘 ∈ 𝐾}. (ii) NE that mix over fewer actions yield higher pay-

offs. (That is, 𝜎𝐾
′
is a strict Pareto improvement over 𝜎𝐾 whenever

𝐾 ′ ⊊ 𝐾 .)

Recall that by Lemma 3.2, any NE of the original game also exists

as an NE of the simulation game – in particular, enabling m-sim

cannot prevent the existence of the (undesirable) NEwhere Bob only

uses a single mixed “robot”. However, enabling m-sim does have

the potential to prevent miscoordination when Bob randomises

over multiple robots that use incompatible strategies (e.g., when

𝜇2 = 1

2
𝑎1

2
+ 1

2
𝑎2

2
). In addition to this fact, the following result shows

that mixed-strategy simulation also introduces simulation equilibria

that are better than miscoordination, but not as good as successful

coordination at the players’ favourite outcome.

Proposition 5.7 (Simulation in coordination games). Let G be a
generalised coordination game and denote by 𝜎 {1,...,𝑛} its fully mixed
NE. Then, for sufficiently low csim, we have:

(i) Gm-sim has some simulation equilibrium 𝜇∗;
(ii) Any simulation equilibrium 𝜇∗ ∈ NE(Gm-sim) satisfies

𝑢1 (𝜎 {1,...,𝑛} ) < 𝑢1 (𝜇∗) < max𝑘 𝑢1 (𝑎𝑘1 , 𝑎
𝑘
2
)

𝑢2 (𝜎 {1,...,𝑛} ) < 𝑢2 (𝜇∗) ≤ max𝑘 𝑢2 (𝑎𝑘1 , 𝑎
𝑘
2
);

(iii) Unless G has multiple optimal pure commitments for P2, any
such 𝜇∗ satisfies 𝑢2 (𝜇∗) < max𝑘 𝑢2 (𝑎𝑘

1
, 𝑎𝑘

2
).

𝑎1

2
𝑎2

2
OO

𝑎1

1

20, 20 999, 40

9, 999 9, 999

0, 0 0, 1

𝑎2

1
0, 0

20, 20 999, 40

10, 999 10, 999

0, 1

OO 1, 0 1, 0 1, 1

Figure 3: Trust-and-coordination game, where coordinating
on a joint action (𝑎𝑘

1
, 𝑎𝑘

2
) leads the players to a trust subgame.

Proposition 5.7 shows that mixed-strategy simulation is able

to prevent the worst equilibria, but does not introduce Pareto-

improving NE in the stronger sense of allowing for an outcome that

wouldn’t be achievable through other means (i.e., by successful se-

lection of a pure equilibrium). The following example and theorem

show that the usefulness of mixed-strategy simulation increases

when the players need to deal not only with coordination but also

with issues of trust.

Definition 5.8 (Trust-and-coordination game). By a trust-
and-coordination game, we mean a game G which works as follows
(for examples, see Figure 3 and the appendix).

• In the first stage, the players simultaneously select an action
from the set {𝑎1

𝑖
, . . . , 𝑎𝑛

𝑖
,OO}.

• If the players select (𝑎𝑘
1
, 𝑎𝑙

1
) for 𝑘 ≠ 𝑙 , they receive “bad” mis-

coordination payoffs (B1, B2).
• Opting Out of the game via OO yields (B1, B2), with an addi-
tional reward 𝜖 for the player(s) who used OO.

• If the players coordinate on some (𝑎𝑘
1
, 𝑎𝑘

2
), they enter the second

stage of the game, where they play a subgame G𝑘 .
• Each G𝑘 is a 2×2 trust game with actions {Trust,Walk Out},
resp. {Cooperate,Defect}.

• We denote the payoffs in G𝑘 as

𝑢G𝑘 (T,C) := (G𝑘
1
,G𝑘

2
), 𝑢G𝑘 (T,D) := (H𝑘

1
,A𝑘

2
),

𝑢G𝑘 (WO,C) = 𝑢 (WO,D) := (N𝑘
1
,H𝑘

2
) .

(The naming is meant to be suggestive of awesome, good,
neutral, and horrible .) We assume that:

H
𝑘
1
< B1 < B1 + 𝜖 < N

𝑘
1
< G

𝑘
1

H
𝑘
2
< B2 < B2 + 𝜖 < G

𝑘
2
< A

𝑘
2
.

The only NE of G is for both players to Opt Out, yielding utilities

B𝑖 +𝜖 . In contrast, the SE of G (with P2 as the leader) would consist

of coordinating on one of the subgames G𝑘 and then playing its SE,

yielding utilities 𝑢1 = N
𝑘
1
, 𝑢2 > G

𝑘
2
. We will use 𝑣SE

𝑖
(G𝑘 ) to denote

the expected utility corresponding to the SE (with P2 as the leader)

of the subgame G𝑘 .

Theorem 5.9 (Simulation helps in trust-and-coordination games).
Let G be a trust-and-coordination game. If

(a) arg max 𝑣SE
2
(G𝑘 ) ∩ arg max 𝑣SE

1
(G𝑘 ) = ∅; and

(b) The NE payoffs H𝑘
2
of P2 in the subgames G𝑘 are sufficiently

low relative to the other payoffs in G;
then enabling m-sim introduces Pareto-improving NE.
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Proof sketch. The proof consists of showing that Gm-sim ad-

mits an NE where P2 mostly plays the Stackelberg equilibrium of

“P1’s favourite subgame” G𝑘1
, but sometimes deviates to playing the

SE “P2’s favourite subgame” G𝑘2
, while P1 mixes between their part

of the SE of G𝑘1
and simulating. Because the only NE of G is the un-

desirable outcome (Opt Out,Opt Out), this simulation equilibrium

will constitute a Pareto improvement over any NE of G. □

Corollary 5.10. Enabling m-sim introduces Pareto-improving NE
in the trust-and-coordination game from Figure 3.

5.4 Mixed-Strategy Simulation and Privacy
Kovařík et al. [15] show that pure-strategy simulation can some-

times be harmful to both players. An example that illustrates this

dynamic is a scenario where Bob, after successfully cooperating

with Alice, has to put all his profits into a password-protected ac-

count. While Alice could always attempt to guess Bob’s password,

doing so would typically be futile. However, if she had access to

pure-strategy simulation, she would be able to predict Bob’s pass-

word and steal his profits, so Bob would chose to not cooperate

with Alice in the first place. In contrast, if Alice only had access to

mixed-strategy simulation, Bob could protect his profits by using a

randomly-generated password, thus preserving the possibility of

cooperation with Alice.

In the appendix, we give a general construction which adds this

“password-guessing” dynamic into any base-game, allowing us to

derive the following result.

Theorem 5.11. There are games where enabling m-sim introduces
Pareto-improving NE, but pure-strategy simulation does not.

6 RELATEDWORK
Kovařík et al. [15] study a setting which is the closest to ours, but

focus exclusively on the much stronger assumption of using pure-

strategy simulation. Várdy [25] study the same setting (i.e., what we

refer to as pure-strategy simulation), but approach it from a more

traditional economics angle, focusing on the simulated agent’s value

of commitment rather than on Pareto-improvements. Simulation

in the context of AI agents is also studied by Chen et al. [4], who

distinguish between the “screening” and “disciplining” effects on

the AI’s behaviour. Unlike the present paper, this work assumes

that the simulated agent is drawn from a fixed population (rather

than being strategic).

Alternative formulations of games with simulation incorporate

unpredictable randomisation in different ways. In games with es-
pionage [21], for example, P1 can pay to gain a probabilistic signal
based on P2’s realised pure strategy. In oracle games [27], P1 can
attempt to learn P2’s pure strategy, but the success chance depends

on the payment made by P1.

Harris et al. [12], study the problem of Bayesian persuasion under

the assumption that the leader can simulate the follower a number

of times in order to learn what their response will be.

Other relatedwork exists in incomplete information games, where

a player pays to learn what others know (rather than do). In mecha-

nism design with (partially) verifiable information, an agent’s strat-

egy might be restricted by their private information [9], or this

information might be revealed by the designer paying a cost [2, 23].

In some models of costly information acquisition, a player can pay

to learn the others’ observations of the hidden state [8, 13, 17].

Finally, some other works consider the possibility of mutual
simulation, though they typically assume that simulation is not

costly. Kovarik et al. [16] study a setting where the players observe

the result of simulation jointly, but are uncertain as to whether

they themselves might be in a simulation. Oesterheld [18] shows

that in games played between AI agents with mutual access to

each other’s code [22], simulation can lead to cooperation. Another

related approach is game theory with translucent players [11],

which assumes that the players tentatively settle on some strategy

from which they can deviate, but doing so has some chance of being

visible to the other player. In our terminology, this corresponds to

a setting where each player always performs free but unreliable

simulation of the other player. Capraro and Halpern [3] show how

translucency can lead to increased cooperation.

7 CONCLUSION
Strategic interactions involving AI agents are likely to become in-

creasingly frequent and important. They may also be fundamentally

different from more familiar interactions, as AI agents may – in

theory – be more transparent than humans or human institutions.

For example, it may be possible to simulate an AI agent, likely at a

small cost.

In this paper, we studied the implications of costly simulation

in the presence of unpredictable randomisation, showing that it is

neither strictly weaker nor stronger than pure-strategy simulation

(in terms of improving social welfare). While determining whether

enabling mixed-strategy simulation is beneficial turns out to be

NP-hard in general, we identified several classes of games where

the effects of simulation can be predicted. Concretely, we showed

that mixed-strategy simulation can lead to increased cooperation

in games where the simulator needs to decide whether to trust

the other player, when either the simulator has a more nuanced

set of options than just full trust and no trust, or the players face

challenges with both trust and coordination. However, we also

saw that mixed-strategy simulation fails to foster cooperation if P2

observes P1’s action before moving.

While mixed-strategy simulation is arguably a more realistic

model than pure-strategy simulation, it is still limited in several

important ways. Future work should explore generalisations such

as dynamic games, games with incomplete information, and other

forms of simulation (such as by generating multiple, stochastic

samples). Other important directions include identifying further

classes of game in which different forms of simulation can help, and

in matching those to potential real-world domains of application.

In so doing, we will be better equipped to reap the benefits and

avoid the risks once AI agents become widespread.
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