
Tighter Value-Function Approximations for POMDPs
Merlijn Krale

Radboud University

Nijmegen, The Netherlands

merlijn.krale@ru.nl

Wietze Koops

Lund University, Sweden

University of Copenhagen, Denmark

wietze.koops@cs.lth.se

Sebastian Junges

Radboud University

Nijmegen, The Netherlands

sebastian.junges@ru.nl

Thiago D. Simão

Eindhoven University of Technology

The Netherlands

t.simao@tue.nl

Nils Jansen

Ruhr-University Bochum, Germany

Radboud University

Nijmegen, The Netherlands

n.jansen@rub.de

ABSTRACT

Solving partially observable Markov decision processes (POMDPs)

typically requires reasoning about the values of exponentially many

state beliefs. Towards practical performance, state-of-the-art solvers

use value bounds to guide this reasoning. However, sound upper

value bounds are often computationally expensive to compute,

and there is a tradeoff between the tightness of such bounds and

their computational cost. This paper introduces new and provably

tighter upper value bounds than the commonly used fast informed

bound. Our empirical evaluation shows that, despite their additional

computational overhead, the new upper bounds accelerate state-of-

the-art POMDP solvers on a wide range of benchmarks.

CCS CONCEPTS

• Computing methodologies→ Artificial intelligence; Plan-

ning under uncertainty.

KEYWORDS

POMDPs, Heuristic Search, Value Bounds, Planning

ACM Reference Format:

Merlijn Krale, Wietze Koops, Sebastian Junges, Thiago D. Simão, and Nils

Jansen. 2025. Tighter Value-Function Approximations for POMDPs. In Proc.

of the 24th International Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23, 2025, IFAAMAS,

9 pages.

1 INTRODUCTION

Partially observable Markov decision processes (POMDPs) are a

versatile modeling framework for stochastic environments where

the decision maker (the agent) cannot fully observe the current

state of its environment [26]. Finding optimal policies for POMDPs

is generally undecidable [38]. Yet, in recent years, methods like

POMCP [45], DESPOT [58], and AdaOPS [57] have been able to

find policies for increasingly large POMDPs.

Although such methods often provide a (statistical) lower bound

on the value of the policy, they are typically unable to find an upper

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,

USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

bound on the optimal value. Such further certification of the quality

of a policy may be essential for safety-critical problems. For exam-

ple, planning medical treatments [24], scheduling infrastructure

maintenance [39, 40] or computing safe flight paths [52] require us

not only to know how well our policy will perform, but also that

we cannot (reasonably) do any better.

So-called 𝜖-optimal solvers such as SARSOP [33] and HSVI [49]

compute both a policy and an upper bound. These algorithms make

use of heuristic search to find good policies quickly. However, they

often struggle to find upper bounds that are reasonably tight, since

this requires reasoning over all possible policies.

Both HSVI and SARSOP use the fast informed bound, or FIB [23],

to initialize their upper bound computations. Intuitively, FIB com-

putes values in a simplified POMDP, where the agent fully observes

the state of the environment with a delay of one time step. However,

these bounds are often loose in practice, while tighter upper bounds

could improve the performance of 𝜖-optimal solvers.

We contribute three different methods to obtain bounds that

exhibit varying levels of tightness and computational overhead.

We first introduce the tighter informed bound (TIB) as an alter-

native for FIB. Intuitively, TIB uses a delay of two time steps rather

than one time step. TIB can be computed using value iteration, as

employed by [8, 44], on all one-step beliefs, that is, beliefs the agent

can have one time step after knowing the state. These precompu-

tations are more expensive than for FIB, but allow to compute a

bound for any belief at the same computational cost as FIB. How-

ever, we show that increasing the delay further would significantly

increase these computational costs.

Closer inspection of TIB shows that it expresses posterior beliefs

of the agent as a convex combination of one-step beliefs. However,

choosing different combinations may further tighten the bound. The

optimized tighter informed bound (OTIB) uses the convex combina-

tions that yield the tightest possible bound. However, finding this

convex combination requires solving a linear program for each pos-

terior belief in each iteration step, which is usually too expensive.

Instead, the entropy-based tighter informed bound (ETIB) heuris-

tically chooses a single combination for each posterior belief by

maximizing the weighted entropy of the chosen one-step beliefs.

This combination is reused for each iteration, thus greatly reducing

computational cost.

Empirically, TIB and ETIB provide better bounds than FIB on

a large range of benchmarks with reasonable computational cost.

To test the practical relevance of our bounds, we adapt the offline

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1200

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

state-of-the-art solver SARSOP [33] to use our upper bounds as

initialization. With this alteration, SARSOP finds tighter optimality

bounds more quickly on a wide range of benchmarks, which means

the additional computational overhead of our bounds is compen-

sated by a speedup in convergence. Moreover, this positive effect

grows as the discount factor increases.

Contributions. To summarize, ourmain contributions are in-

troducing three novel bounds for POMDPs, namely TIB, ETIB, and

OTIB. These bounds both theoretically and empirically improve

prior methods. Moreover, integrating these novel bounds with the

state-of-the-art 𝜖-optimal solver SARSOP [33] leads to significant

speedups and smaller optimality gaps. Both our code [31] and ap-

pendices [30] are publically available.

2 PROBLEM SETTING

To start, we define our problem setting and provide our problem

statement. We first introduce some basic notation: Δ(𝑋) denotes
the set of probability distributions over a finite set 𝑋 . Given a

function 𝐹 : 𝑋 → Δ(𝑌) and elements 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 , 𝐹 (· | 𝑥) denotes
the conditional probability distribution over 𝑌 given 𝑥 , 𝐹 (𝑦 | 𝑥)
the probability of element 𝑦 given 𝑥 , and 𝑦 ∼ 𝐹 (𝑥) an element 𝑦

randomly sampled from 𝐹 (𝑥).

POMDPs. An (infinite-horizon, discounted) partially observable

Markov decision process (POMDP) [26, 51] is defined as a tuple

M = ⟨S,A,𝑇 ,O,𝑂, 𝑅,𝛾⟩, with ⟨S,A,𝑇 , 𝑅,𝛾⟩ an MDP [44] with

a finite set of states S, a finite set of actions A, a transition func-

tion 𝑇 : S × A → Δ(S), a reward function 𝑅 : S × A → R, and a

discount factor 𝛾 ∈ (0, 1). Additionally, O is a finite set of observa-

tions and 𝑂 : A × S → Δ(O) is the observation function.

A POMDP models the interaction between a stochastic environ-

ment and an agent. Let 𝑏0 ∈ Δ(S) be the fixed initial distribution

(aka initial belief). The initial state 𝑠0 of the environment is sampled

from 𝑏0. At each time step 𝑡 , the agent picks an action 𝑎𝑡 ∈ A. As a

result, the environment transitions to a new state 𝑠𝑡+1 ∼ 𝑇 (· | 𝑠𝑡 , 𝑎𝑡)
and returns a reward 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡). However, unlike for MDPs, the

agent does not observe the state 𝑠𝑡+1, but instead receives an ob-

servation 𝑜𝑡+1 ∼ 𝑂 (· | 𝑎𝑡 , 𝑠𝑡+1). In general, agents make decisions

based on their history (𝑏0, 𝑎0, 𝑜1, . . . , 𝑎𝑡 , 𝑜𝑡+1). As shown by Åström

[4], this history can be summarized by a belief 𝑏𝑡 ∈ Δ(S). There-
fore, we can assume that the agent chooses actions according to

a (deterministic) belief-based policy 𝜋 : Δ(S) → A. Given a pol-

icy 𝜋 and an initial belief 𝑏, we define the value as the expected

discounted return over an infinite horizon E𝜋
[∑∞

𝑡=0 𝛾
𝑡𝑟𝑡 |𝑠0 ∼ 𝑏

]
.

The agent aims to maximize the value for the initial belief 𝑏0.

Probabilities. We now introduce additional notation that will be

used throughout this paper. Firstly, let𝑅max = max(𝑠,𝑎) ∈S×A 𝑅(𝑠, 𝑎)
and 𝑅min = min(𝑠,𝑎) ∈S×A 𝑅(𝑠, 𝑎) denote the maximal and minimal

reward. For any belief 𝑏 ∈ Δ(S), let 𝑅(𝑏, 𝑎) = ∑
𝑠∈𝑆 𝑏 (𝑠)𝑅(𝑠, 𝑎) be

the expected reward of action 𝑎 in belief 𝑏 and let 𝑇 (𝑠′ | 𝑏, 𝑎) =∑
𝑠∈𝑆 𝑏 (𝑠)𝑇 (𝑠′ | 𝑠, 𝑎) be the probability of transitioning to state 𝑠′

when taking action 𝑎 in belief 𝑏.

We define a shorthand for four probabilities. Given a state 𝑠 and

an action 𝑎, the probability of transitioning to state 𝑠′ and observing
𝑜 is denoted by Pr(𝑠′, 𝑜 | 𝑠, 𝑎) = 𝑂 (𝑜 | 𝑎, 𝑠′)𝑇 (𝑠′ | 𝑠, 𝑎), while the

probability of observing 𝑜 is denoted by

Pr(𝑜 | 𝑠, 𝑎) =
∑︁
𝑠′∈S

Pr(𝑠′, 𝑜 | 𝑠, 𝑎) .

Given a belief 𝑏 and action 𝑎, we denote the probability of transi-

tioning to 𝑠′ and observing 𝑜 by

Pr(𝑠′, 𝑜 | 𝑏, 𝑎) =
∑︁
𝑠∈S
[𝑏 (𝑠) Pr(𝑠′, 𝑜 | 𝑠, 𝑎)],

while the probability of observing 𝑜 is given by

Pr(𝑜 | 𝑏, 𝑎) =
∑︁
𝑠′∈S

Pr(𝑠′, 𝑜 | 𝑏, 𝑎).

Beliefs. We also define notation for specific beliefs. For any 𝑠 ∈ S,
let the unit belief 𝔟𝑠 be the belief such that 𝔟𝑠 (𝑠) = 1 (and hence

𝔟𝑠 (𝑠′) = 0 for 𝑠′ ≠ 𝑠). Let BS = {𝔟𝑠 | 𝑠 ∈ S} be the set of all unit
beliefs. If Pr(𝑜 | 𝑏, 𝑎) > 0, 𝔟𝑏,𝑎,𝑜 is the belief after taking action 𝑎

and observing 𝑜 from belief 𝑏, i.e.:1

𝔟𝑏,𝑎,𝑜 (𝑠′) = Pr(𝑠′ | 𝑏, 𝑎, 𝑜) =
∑
𝑠∈S 𝑏 (𝑠) Pr(𝑠′, 𝑜 | 𝑠, 𝑎)

Pr(𝑜 | 𝑏, 𝑎) . (1)

We write 𝔟𝑠,𝑎,𝑜 = 𝔟𝔟𝑠 ,𝑎,𝑜 , which denotes the belief reached from

the unit belief 𝔟𝑠 (i.e., the belief where the agent knows the state 𝑠)

in a single time step after executing 𝑎 and observing 𝑜 . We call

𝔟𝑠,𝑎,𝑜 a one-step belief. We define B1 as the (finite) set containing
all one-step beliefs and the initial belief 𝑏0, i.e.,

B1 = {𝔟𝑠,𝑎,𝑜 | 𝑠 ∈ S, 𝑎 ∈ A, 𝑜 ∈ O, Pr(𝑜 | 𝑠, 𝑎) > 0} ∪ {𝑏0}. (2)

See Example 3.1 for a concrete example of sets BS and B1. We note

that every reachable belief (except possibly 𝑏0) can be written as a

convex combination of one-step beliefs. Hence, all reachable beliefs

can be written as a convex combination of beliefs in B1.

𝑄-values. Lastly, to reason about the decision-making process of

an agent, we define the 𝑄-value function 𝑄 : Δ(S) × A → R as

the value for a given belief-action pair. Let Q be the set of all

functions𝑄 : Δ(S) ×A → R. The𝑄-value function corresponding

to an optimal policy can be given as the (unique) fixed point of the

Bellman operator 𝐻POMDP : Q → Q [50]:

𝐻POMDP𝑄 (𝑏, 𝑎) = 𝑅(𝑏, 𝑎) + 𝛾
∑︁
𝑜∈O

Pr(𝑜 | 𝑏, 𝑎)max

𝑎′∈A
𝑄 (𝔟𝑏,𝑎,𝑜 , 𝑎′) . (3)

Problem statement. With our problem setting defined, we formalize

our problem statement as follows:

Problem Statement. Find tractable methods of computing tight

overapproximations (or bounds) of the𝑄-value function for POMDPs

to improve the performance of 𝜖-optimal solvers.

3 PRIOR METHODS

In this section, we describe the baseline methods of finding upper

bounds for POMDPs using the notation introduced in Sect. 2. We

discuss the fast informed bound (FIB) [23], but define it using 𝑄-

functions. Then, we recall point set bounds [43] and show how FIB

can be interpreted as a point set bound. Finally, we briefly review

how upper bounds are used in the state-of-the-art solver SARSOP.

1
For conciseness, we assume beliefs 𝔟𝑏,𝑎,𝑜 with Pr(𝑜 | 𝑏, 𝑎) = 0 are arbitrarily defined,

and that sums over observations consider only those observations that occur with

non-zero probability.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1201

Figure 1: Visualisation of the Guessing POMDP.

First, we introduce the Guessing POMDP (Fig. 1), which we will

use as a running example to illustrate the various upper bounds.

Example 3.1 (Guessing). In the Guessing POMDP (Fig. 1), the

agent starts in an initial belief 𝑏0, with 𝑏0 (𝑠𝑥) = 𝑏0 (𝑠𝑦) = 0.5. From

here, the agent can guess in which state it is by taking actions 𝑥

or 𝑦, which both lead to a terminal state 𝑠
sink

(not depicted), which

yields a reward of 1 if the state is guessed correctly and 0 otherwise.

Alternatively, the agent can execute the waiting action 𝑤 , which

has a probability of 0.2 to transition to the other state and 0.8 to stay

in the same state. All state-action pairs yield the same observation

(denoted ⊥), and we assume a discount factor 𝛾 ∈ [0.9, 1). Since
taking the waiting action𝑤 does not change the agent’s belief and

yields no reward, it is intuitively easy to see that an optimal policy

is to pick action 𝑥 (or action 𝑦), yielding an expected reward of 0.5.

In Guessing, the sets of unit- and one-step beliefs are given by:

BS = {𝔟𝑠𝑥 , 𝔟𝑠𝑦 , 𝔟𝑠sink }
B1 = {𝑏0} ∪ {𝔟𝑠𝑥 ,𝑤,⊥, 𝔟𝑠𝑦 ,𝑤,⊥,

𝔟𝑠𝑥 ,𝑥,⊥, 𝔟𝑠𝑦 ,𝑥,⊥, 𝔟𝑠𝑥 ,𝑦,⊥, 𝔟𝑠𝑦 ,𝑦,⊥, 𝔟𝑠sink,𝑤,⊥}.

We note that many beliefs inB1 describe the same state distribution:

in fact, the last 5 elements are all equal to 𝔟𝑠sink . However, through-

out this paper, we will regard such beliefs as distinct members of

this set for notational simplicity.

3.1 Fast Informed Bound (FIB)

A common method of over-approximating the value of a POMDP

is to (partially) ignore the effect of partial observability. The most

straightforward example of this is the QMDP bound [35], which

intuitively corresponds to the assumption that agents can fully

observe their state in the future. We can define this as follows:

Definition 3.2. 𝑄MDP is the fixed point of the operator 𝐻MDP:

𝐻MDP𝑄 (𝑏, 𝑎) = 𝑅(𝑏, 𝑎) + 𝛾 ·
∑︁
𝑠′∈S
[Pr(𝑠′ |𝑏, 𝑎) max

𝑎′∈A
𝑄 (𝔟𝑠′ , 𝑎′)] .

(4)

To further tighten this bound, the fast informed bound (FIB) [23]

assumes an agent fully observes the current and future states

with a delay of 1 time step. More precisely, we define 𝑄FIB, the

𝑄-value function for this bound, as follows:

Definition 3.3. 𝑄FIB is the fixed point of the operator 𝐻FIB:

𝐻FIB𝑄 (𝑏, 𝑎) = 𝑅(𝑏, 𝑎)

+ 𝛾 ·
∑︁
𝑜∈O

max

𝑎′∈A

∑︁
𝑠′∈S

[
Pr(𝑜, 𝑠′ | 𝑏, 𝑎)𝑄 (𝔟𝑠′ , 𝑎′)

]
. (5)

App. B.2 [30] provides a proof that this fixed point exists and is

unique (based on the original proof from Hauskrecht [23]).

In Eq. (5), the next action 𝑎′ is picked independently of the next

state 𝑠′ but must depend only on the current belief 𝑏 and received

observation 𝑜 . However, for all future time steps, we use 𝑄-values

computed for the unit belief 𝔟𝑠′ , i.e., as if 𝑠
′
is revealed. Thus, the

formula matches the intuitive description of full observability de-

layed by one time step. In contrast to Eq. (3), 𝐻FIB depends only

on the 𝑄-values of the (finite) set of beliefs 𝔟𝑠 ∈ BS . Thus, the
value of 𝑄FIB for any belief 𝑏 can be computed efficiently by (ap-

proximately) computing the fixed point for beliefs in BS . Both the

QMDP bound and FIB are commonly used in POMDP literature

due to their tractability but tend to be loose.

Running example. Recall the Guessing POMDP. Under the QMDP

assumption, taking action𝑤 would fully reveal the agent’s state. In

that case, an agent can always guess correctly after taking action

𝑤 , which yields an expected value of 𝛾 . Similarly, under the FIB

assumption, taking action𝑤 would fully reveal the agent’s previous

state. The probability of still being in this state after this action is 0.8.

Thus, taking action𝑤 and guessing the revealed initial state yields

an expected return of 0.8𝛾 . Both are strict overapproximations of

the optimal value 0.5 of the POMDP, and both incorrectly give

higher 𝑄-values for action𝑤 than for 𝑥 or 𝑦.

3.2 Point Set Bounds

To compute tighter approximations than FIB, we consider a general

value bound that uses point sets [43]: sets of beliefs with known

upper bounds. To make the connection with our own method more

clear, we define them using our own (non-standard) notation. We

start by defining a weight function as follows:

Definition 3.4. Let 𝑏 ∈ Δ(S) be a belief and let B ⊆ Δ(S) be a
point set. A weight function𝑤 : B → R≥0 is any function satisfying

𝑏 (𝑠) = ∑
𝑏′∈B 𝑤 (𝑏′)𝑏′ (𝑠) for all 𝑠 ∈ S.WB,𝑏 denotes the set of all

possible weight functions for belief 𝑏 given point set B.2

Intuitively, a weight function expresses a belief 𝑏 as a convex com-

bination of beliefs 𝑏′ ∈ B. We can use weight functions to compute

upper bounds as follows:

Theorem 3.5 (Point set bound). Given a belief 𝑏, a point set

B, and a function 𝑄 : B × A → R which over-approximates the

𝑄POMDP-values of all beliefs-action pairs (𝑏′, 𝑎) ∈ B ×A. Then, any

weight function𝑤 ∈ WB,𝑏 gives an upper bound on the value of 𝑏:

𝑄POMDP (𝑏, 𝑎) ≤ 𝑄 (𝑤, 𝑎) :=
∑︁
𝑏′∈B

𝑤 (𝑏′)𝑄 (𝑏′, 𝑎) . (6)

This theorem follows directly from the convexity of the value

function for POMDPs [50]. To understand how Theorem 3.5 is

used implicitly by FIB, consider using point set BS and the weight

functions𝑤𝑏,𝑎,𝑜 (𝔟𝑠′) =
Pr(𝑜,𝑠′ | 𝑏,𝑎)
Pr(𝑜 | 𝑏,𝑎) . In that case, we find:

𝐻FIB𝑄 (𝑏, 𝑎) = 𝑅(𝑏, 𝑎)+𝛾
∑︁
𝑜∈O

max

𝑎′∈A

[
Pr(𝑜 | 𝑏, 𝑎)𝑄

(
𝑤𝑏,𝑎,𝑜 , 𝑎

′)] , (7)

with 𝑄 the weighted sum over values of 𝑄FIB as defined in Eq. (6).

2WB,𝑏 is empty if 𝑏 does not lie in the convex hull of B.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1202

Algorithm 1 Precomputations for TIB, OTIB and ETIB

Compute all (unique) beliefs in B1 ⊲ Eq. (2)

for 𝑏, 𝑎 ∈ B1 × A do

𝑄 ′ (𝑏, 𝑎) ← 𝑄FIB (𝑏, 𝑎) ⊲ Eq. (5)

∀𝑜 ∈ O, precompute �̂�𝑏,𝑎,𝑜 ⊲ Eq. (10), only for ETIB

for ℎ iterations do

𝑄 ← 𝑄 ′

for 𝑏 ∈ B1, 𝑎 ∈ A do

𝑄 ′ (𝑏, 𝑎) ← 𝐻𝑄 (𝑏, 𝑎) ⊲ Eq. (8), Eq. (9) or Eq. (11)

if
𝛾

1−𝛾 max

(𝑏,𝑎) ∈B1×A
𝑄 ′ (𝑏,𝑎)−𝑄 (𝑏,𝑎)

𝑄 ′ (𝑏,𝑎) < 𝜖 then ⊲ Precision reached
3

break

return𝑄 ′

Given a point set B and belief 𝑏, the tightest upper bound we can

compute using Theorem 3.5 is found using the linear program (LP):

min𝑤∈WB,𝑏 𝑄 (𝑤, 𝑎) . However, POMDP solvers often need to com-

pute upper bounds for many beliefs using large point sets, in which

case this method is computationally expensive. Thus, instead of

solving these LPs exactly, solvers may approximate their outcome

instead. One such approximation method is the sawtooth bound [23].

This bound is based on the observation that, for point sets of the

form {𝑏′} ∪ BS , an upper bound can be computed in only O(|S|)
time. Thus, if BS ⊆ B, we can compute such a bound for all beliefs

𝑏′ ∈ B and take their minimum. This takes only O(|S||B|) time,

but still yields tight bounds in practice. We refer to Kochenderfer

et al. [29] for a detailed implementation of the sawtooth bound.

3.3 Using Bounds in Point-Based Solvers

Point set bounds are an important component of point-based solvers,

a type of algorithm that uses a finite set of beliefs to compute

both upper- and lower bounds on the value of a POMDP. Early

methods use predefined sets of beliefs to cover the entire belief space

evenly [9, 36, 60], but these methods typically scale poorly to large

POMDPs. Instead, state-of-the-art algorithms such as HSVI [48, 49]

and SARSOP [33] use heuristic search to find beliefs that closely

resemble those encountered by an optimal policy, which is sufficient

for finding 𝜖-optimal solutions [33].

SARSOP [33] is a state-of-the-art point-based solver that uses

a variant of value iteration [47] to compute lower bounds and the

sawtooth bound for upper bounds. The latter requires precomputing

value bounds for the set of unit beliefs BS , which is traditionally

done using FIB. The next section proposes methods of computing

tighter bounds for this set in tractable time.

4 INTRODUCING TIGHTER BOUNDS

In this section, we introduce three novel bounds on the value func-

tion 𝑄POMDP, which are tighter than FIB.

4.1 Tighter Informed Bound (TIB)

Firstly, we propose an extension of FIB that extends the delay at

which the full state is observed. More precisely, we define the

tighter informed bound (TIB), which assumes an agent fully

3
For an explanation of the precision parameter, see App. B.6 [30]. Alternatively, when

performing ℎ iterations, the computed bound for any belief-action pair is at most

𝛾ℎ

1−𝛾 (𝑅max − 𝑅min) away from the fixed point.

observes the current and future states with a delay of 2 time

steps. We define the corresponding 𝑄-value function, 𝑄TIB, as:

Definition 4.1. 𝑄TIB is the fixed point of the operator 𝐻TIB:

𝐻TIB𝑄 (𝑏, 𝑎) = 𝑅(𝑏, 𝑎)

+ 𝛾
∑︁
𝑜∈O

max

𝑎′∈A

∑︁
𝑠∈S

[
𝑏 (𝑠) Pr(𝑜 | 𝑠, 𝑎)𝑄 (𝔟𝑠,𝑎,𝑜 , 𝑎′)

]
. (8)

We prove that this unique fixed point exists in App. B.3 [30].
4

Recall from Eq. (5) that for FIB, we can compute 𝑄-values for

any belief using only 𝑄-values of unit beliefs 𝔟𝑠′ . This intuitively

corresponds to state 𝑠′ being observed with a delay of 1 time step.

In contrast, in Eq. (8), we use 𝑄-values of one-step beliefs 𝔟𝑠,𝑎,𝑜 ,

which corresponds to state 𝑠 being revealed with a delay of 2 time

steps and thus aligns with the intuitive definition of TIB.

Next, we highlight some important properties of 𝑄TIB:

Theorem 4.2. 𝑄TIB has the following properties:

(1) Soundness: ∀𝑏 ∈ Δ(S), 𝑎 ∈ A : 𝑄TIB (𝑏, 𝑎) ≥ 𝑄POMDP (𝑏, 𝑎);
(2) Tightness: ∀𝑏 ∈ Δ(S), 𝑎 ∈ A : 𝑄FIB (𝑏, 𝑎) ≥ 𝑄TIB (𝑏, 𝑎).

Full proofs of Theorem 4.2 are provided in App. B.3 [30]. In-

tuitively, we recall that TIB and FIB correspond with the agent

observing the state with a delay, which gives them additional in-

formation. Since this information can only help the agent, 𝑄TIB

is a sound upper bound, showing (1). Moreover, since our model

is Markovian and the delay of FIB is lower than that of TIB, the

additional information of FIB is at least as useful. Thus, for any

belief-action pair, 𝑄TIB is never larger than 𝑄FIB, showing (2).

Running example. To provide some intuition on the tightness of

TIB, we recall the Guessing POMDP. Under the TIB assumption,

taking action 𝑤 twice lets an agent observe its initial state. The

probability of still being in this state after these actions is 0.82 +
0.22 = 0.68. Thus, taking action𝑤 twice and guessing the revealed

initial state yields an expected return of 0.68𝛾2. This is a strict

overapproximation of the optimal value of the POMDP, which is

0.5, but significantly tighter than the bound of 0.8𝛾 found by FIB.

Complexity analysis. 𝑄TIB can be computed up to an arbitrary pre-

cision using value iteration, as shown in Algorithm 1. Table 1 shows

the computational complexity of computing 𝑄TIB and 𝑄FIB using

such methods. The computational costs for a single Bellman op-

eration are equal for FIB and TIB, which also means the online

computational costs are the same. Precomputations for TIB are a

factor O(| B1 |/|S |) ∈ O(|A||O|) more expensive than for FIB. The

empirical evaluation (Sect. 5) shows that this is often manageable

in practice.

Further increasing delays. One method of computing even tighter

bounds is to consider even longer observation delays. However,

increasing the observation delay also means we need to consider

a larger set of beliefs. Thus, as shown in App. C [30], a delay of 3

time steps yields a computational complexity of O(|S|2 |A|5 |O|4ℎ)
(with ℎ the number of iterations), which is a factor O(|A|2 |O|2)
larger than for TIB. It may be possible to efficiently compute such

bounds regardless, but we will not consider this line of research

4
This follows from showing 𝐻TIB is a contraction mapping with Lipschitz constant

𝛾 < 1 and using Banach’s fixed point theorem [5].

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1203

Table 1: Computational complexities of different bounds,

assuming precomputations are performed using Algorithm 1

with ℎ iterations. 𝐿 denotes the computational complexity of

solving an LP with |B1 | variables and |S| constraints.

Bound Bellman Operation Precomputations

FIB O(|S||A||O|) O(|S|2 |A|2 |O|ℎ)
TIB O(|S||A||O|) O(|B1 | |S| |A|2 |O|ℎ)
OTIB O(|A||O|𝐿) O(|B1 | |A|2 |O|𝐿ℎ)
ETIB O(|O|(𝐿 + |B1 | |A|)) O(|B1 | |A||O|(𝐿 + |B1 | |A|ℎ))

here. Instead, we focus on methods that can tighten our bounds

without further increasing the delay.

4.2 Optimized Tighter Informed Bound (OTIB)

Like for FIB, we notice TIB can be rewritten using Theorem 3.5

with point set B1, as follows:

𝐻TIB𝑄 (𝑏, 𝑎) = 𝑅(𝑏, 𝑎) + 𝛾
∑︁
𝑜∈O

max

𝑎′∈A

[
Pr(𝑜 | 𝑏, 𝑎)𝑄

(
𝑤𝑏,𝑎,𝑜 , 𝑎

)]
,

where we use the following weight function:

𝑤𝑏,𝑎,𝑜 (𝔟𝑠,𝑎,𝑜) =
𝑏 (𝑠) Pr(𝑜 | 𝑠, 𝑎)
Pr(𝑜 | 𝑏, 𝑎) .

In contrast to FIB, however, these weights are not necessarily

unique, and Theorem 3.5 tells us any weight that represents our

belief gives a viable upper bound. Thus, we define the optimized
tighter informed bound (OTIB), which assumes the value for

future beliefs is equal to the minimal point set bound (Theo-

rem 3.5) using point set B1.We define the corresponding𝑄-value

function as follows:

Definition 4.3. WriteW𝑏,𝑎,𝑜 = WB1,𝔟𝑏,𝑎,𝑜 . Then, 𝑄OTIB is the

fixed point of the operator 𝐻OTIB:

𝐻OTIB𝑄 (𝑏, 𝑎) = 𝑅(𝑏, 𝑎)

+ 𝛾
∑︁
𝑜∈O

max

𝑎′∈A
[Pr(𝑜 | 𝑏, 𝑎) min

𝑤∈W𝑏,𝑎,𝑜

𝑄
(
𝑤, 𝑎′

)
] . (9)

We note that 𝑤𝑏,𝑎,𝑜 ∈ W𝑏,𝑎,𝑜 , which means the minimization in

Eq. (9) always has a feasible solution. A full proof of the existence

and uniqueness of𝑄OTIB is provided in App. B.4 [30]. We highlight

a number of properties of 𝑄OTIB:

Theorem 4.4. 𝑄OTIB has the following properties:

(1) Soundness:∀𝑏 ∈ Δ(S), 𝑎 ∈ A : 𝑄OTIB (𝑏, 𝑎) ≥𝑄POMDP (𝑏, 𝑎);
(2) Tightness: ∀𝑏 ∈ Δ(S), 𝑎 ∈ A : 𝑄TIB (𝑏, 𝑎) ≥ 𝑄OTIB (𝑏, 𝑎).

Proofs are provided in App. B.4 [30]. Similarly to Theorem 4.2,

soundness follows by the fact that the agent is provided with extra

information. Namely, the convex combination of beliefs defining

𝑄 (𝑤, 𝑎′) effectively splits the belief𝑏 in beliefs that are (on average)
more informative. Tightness follows from the observation that

𝑤𝑏,𝑎,𝑜 ∈ W𝑏,𝑎,𝑜 , which means the weights used in Eq. (8) are a

valid solution to the minimization in Eq. (9).

Running example. We consider theGuessing POMDP (Example 3.1).

Under the OTIB assumption, the belief after taking action 𝑤 can

be expressed using any weight function inW𝑏0,𝑤,⊥. In particular,

since 𝑏0 ∈ B1, one valid choice uses weight 1 for 𝑏0 and 0 for all

others. In that case, the action is suboptimal (with value 0.5𝛾), and

the OTIB bound corresponds with the real value 0.5.

Complexity analysis. As for TIB, 𝑄OTIB can be approximated using

Algorithm 1. OTIB and TIB use the same point set and thus require

the same amount of Bellman operations per iteration. However, a

single Bellman operation for OTIB is significantly more expensive

since it requires solving an LP with at most |B1 | variables and |S|
constraints. This yields the computational complexities shown in

Table 1, where 𝐿 denotes the complexity of solving such an LP.

These computation costs are typically too high for practical use.

4.3 Entropy-based Tighter Informed Bound

(ETIB): A Heuristic Approach

To reduce the complexity of the precomputations of OTIB, we con-

sider using a single weight for each belief that we reuse for all

iterations. More precisely, we approximate the worst-case weights

by those that maximize the weighted entropy. This gives higher

weights to more uncertain beliefs, which should intuitively give a

tighter bound. To formalize this, we first define themaximal entropy

weight function �̂�𝑏,𝑎,𝑜 for a belief 𝔟𝑏,𝑎,𝑜 as follows:

�̂�𝑏,𝑎,𝑜 ∈ argmax

𝑤∈W𝑏,𝑎,𝑜

∑︁
𝑏′∈BS

𝐻 (𝑏′)𝑤 (𝑏′). (10)

This equation always has a feasible solution, since𝑤𝑏,𝑎,𝑜 ∈ W𝑏,𝑎,𝑜 .

Then, the entropy-based tighter informed bound (ETIB) as-

sumes the value for future beliefs is equal to the point set

bound (Theorem 3.5) using point setB1 andmaximal entropy

weight functions (Eq. (10)). We define the corresponding𝑄-value

function as follows:

Definition 4.5. 𝑄ETIB is the fixed point of the operator 𝐻ETIB:

𝐻ETIB𝑄 (𝑏, 𝑎) = 𝑅(𝑏, 𝑎)

+ 𝛾
∑︁
𝑜∈O

max

𝑎′∈A
[Pr(𝑜 | 𝑏, 𝑎)𝑄

(
�̂�𝑏,𝑎,𝑜 , 𝑎

′)] . (11)

As for the other bounds, we provide a proof that this unique fixed

point exists in App. B.5 [30]. We highlight the following properties

of 𝑄ETIB:

Theorem 4.6. 𝑄ETIB has the following properties:

(1) Soundness: ∀𝑏 ∈ Δ(S), 𝑎 ∈ A : 𝑄ETIB (𝑏, 𝑎) ≥𝑄POMDP (𝑏, 𝑎);
(2) Tightness: ∀𝑏 ∈ Δ(S), 𝑎 ∈ A : 𝑄FIB (𝑏, 𝑎) ≥ 𝑄ETIB (𝑏, 𝑎).

The proof for Theorem 4.6 is provided in App. B.5 [30] and

follows the same intuition as the proof of Theorem 4.2. In contrast to

OTIB, we note that ETIB does not necessarily provide tighter bounds

than TIB, since there is no guarantee �̂�𝑏,𝑎,𝑜 yields tighter bounds

than𝑤𝑏,𝑎,𝑜 . In practice, however, we find ETIB is at least comparably

tight as TIB, and sometimes (significantly) tighter.

Running example. Consider the Guessing environment. Under the

ETIB assumption, the value of taking action 𝑤 is approximated

using the maximal entropy weight function �̂�𝑏0,𝑤,⊥. Since 𝑏0 is

the belief with the largest entropy in B1, this weight function is

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1204

Table 2: Upper bounds and computation times of different methods on a number of POMDP benchmarks. If a bound has not

converged within 1200s, we report the last computed bound and denote computation time as TO. The tightest bounds are

bolded. We include lower bounds computed by SARSOP as a proxy for the optimal value, with 𝜖-optimal values underlined.

Environment Properties Baselines Our methods

Environment |S| |A| |O| |B1 | |B2 | SARSOP FIB TIB ETIB OTIB

Guessing 3 3 1 6 8 0.50 <1s 0.76 <1s 0.61 <1s 0.50 <1s 0.50 <1s

Tiger 2 3 2 3 5 19.4 <1s 87.2 <1s 49.6 <1s 40.5 <1s 40.5 <1s

Grid6x6 36 5 36 152 722 6.42 TO 8.31 <1s 8.15 <1s 7.25 <1s 7.19 16s

RockSample (5,3) 201 8 3 202 210 16.9 1s 18.3 <1s 18.3 <1s 18.3 <1s 18.3 <1s

RockSample (7,8) 13k 13 3 13k 13k 20.9 TO 28.5 105s 27.2 407s 27.2 411s 27.2 424s

K-out-of-N (2) 16 9 16 61 230 -1.75 TO -1.24 <1s -1.52 <1s -1.52 <1s -1.52 5s

K-out-of-N (3) 64 27 64 499 4.8k -2.63 TO -1.89 <1s -2.28 5s -2.28 10s -2.29 386s

Aloha (30) 90 29 90 2.5k 202k 389 TO 394 4s 392 20s 392 935s 392 TO

Tag 842 5 30 2.4k 6.3k -10.8 TO -4.75 5s -5.58 17s -5.57 21s -5.64 519s

TigerGrid 36 5 36 1.4k 100k 2.28 TO 2.73 <1s 2.58 28s 2.57 266s 2.57 TO

Hallway1 60 5 60 2.2k 147k 1.00 TO 1.29 2s 1.19 24s 1.17 395s 1.17 TO

Hallway2 92 5 92 3.4k 229k 0.34 TO 0.98 4s 0.89 50s 0.88 780s 0.88 TO

Pentagon 212 4 212 6.0k 447k 0.33 TO 0.38 3s 0.38 20s 0.38 655s 0.38 TO

Fourth 1.1k 4 1.1k 29k 2125k 0.06 TO 0.09 100s 0.09 434s 0.09 TO 0.09 TO

the weight function defined by 𝑤 (𝑏) = 1 if 𝑏 = 𝑏0, and 𝑤 (𝑏) = 0

otherwise. Thus, ETIB and OTIB find the same optimal bound.

Complexity analysis. As for our other proposed bounds, 𝑄ETIB can

be approximated using Algorithm 1, with corresponding complex-

ities shown in Table 1. The computational complexity of a single

Bellman operation is a factor O(|A|) smaller for ETIB as compared

to OTIB, since the same weight can be used for each next action 𝑎′.
Moreover, since these weights can be reused at each iteration, the

complexity for precomputations is significantly lower as well. In

practice, the number of beliefs 𝑏′ with𝑤𝑏,𝑎,𝑜 (𝑏′) > 0 is often much

smaller than |B1 |, in which case the iterations take significantly

less time than the complexity bound suggests.

5 EMPIRICAL EVALUATION

In this section, we empirically evaluate the proposed bounds: TIB,

ETIB, and OTIB. We address the following questions:

(Q1) Bounds tightness. How do the proposed bounds compare

to each other and prior bounds such as FIB? How close are

these bounds to the optimal value?

(Q2) Computational cost. What is the computational cost of

these bounds? How do they scale with the POMDP size?

(Q3) Benefits for SARSOP. Can these bounds improve the per-

formance of POMDP solvers such as SARSOP?

(Q4) Discount dependency. How does the effect of using these

bounds in SARSOP depend on the discount factor?

Implementation & Baselines. We implement Algorithm 1 within

the POMDPs.jl framework [16], and extend the Julia implementation

of SARSOP [33] to use our bounds as initialization. As discussed

in Sect. 3.3, we replace the bounds for BS with those computed

by our methods. Unless stated otherwise, we use discount factor

𝛾 = 0.95 and compute bounds using relative precision 𝜖 = 10
−3

with

ℎ = 250 maximum iterations. To ensure that our results are valid

upper bounds, and to decrease computational costs, we use (looser)

bounds as initializations. In particular, we initialize OTIB with ETIB,

ETIB with TIB, TIB with FIB, FIB with QMDP, and QMDP with

1

1−𝛾 𝑅max. App. A [30] provides further details, and all code and

data is publically available [31].

Environments. For our experiments, we use several standard

POMDP benchmarks: Tiger [12], RockSample [48], Aloha [25],

Tag [43], TigerGrid [35], Hallway1 [35], Hallway2 [35], Pen-

tagon [13] and Fourth [13].
5
These environments have diverse

characteristics, varying from 2 to 12545 states, from 3 to 29 actions,

and from 1 to 1052 observations. Table 2 shows these characteris-

tics, as well as the number of one- and two-step beliefs, for each

environment. Additionally, we consider the Guessing environment

(Fig. 1) and two new environments inspired by problems in the

literature. Firstly, we consider a 6 × 6 grid where an agent needs

to navigate from the bottom left to the top right corner. The ob-

servation function is as in Amato et al. [3]: the agent observes in

which column it is, but not in which row. Secondly, we consider

a maintenance environment called K-out-of-N with the goal of

keeping a number of components from breaking down [27]. We

add partial observability using a measuring action, which gives a

negative reward but reveals the current state, and assume the agent

gets no observations otherwise (similar to, e.g., [7, 32, 41]). App. A.2

[30] provides a complete description of both new environments.

5.1 Bound Tightness and Computational Cost

To address questions (Q1) and (Q2), we compare the upper bounds

for the initial beliefs of all environments. In addition, we show

the bounds computed by FIB and the best lower bound found by

SARSOP within 1200s, which we consider as the closest proxy for

the optimal value when evaluating the tightness of the bounds.

OTIB is tight but computationally intractable. As shown

in Table 2, OTIB is always the tightest upper bound. However, its

5
All environments are publically available within POMDPs.jl or on pomdps.org.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1205

pomdps.org

Table 3: The tightest relative value gap found by SARSOP for different computational budgets with different bounds as

initialization. N/A denotes no lower bound has been found within the given budget.

600s 1200s 3600s

Environment FIB TIB ETIB FIB TIB ETIB FIB TIB ETIB

Grid6x6 0.16 0.16 0.07 0.12 0.12 0.06 0.09 0.08 0.06

RockSample (7,8) 0.23 0.27 0.25 0.19 0.18 0.20 0.14 0.15 0.14

K-out-of-N (3) 0.21 0.12 0.12 0.20 0.11 0.11 0.18 0.10 0.10

Tag 0.44 0.40 0.40 0.43 0.39 0.39 0.41 0.37 0.37

TigerGrid 0.11 0.09 0.09 0.11 0.08 0.08 0.10 0.08 0.08

Hallway1 0.22 0.16 0.17 0.21 0.16 0.16 0.21 0.15 0.15

Hallway2 1.77 1.53 N/A 1.66 1.47 1.57 1.56 1.35 1.37

Pentagon 0.19 0.14 N/A 0.15 0.10 0.16 0.12 0.08 0.11

Fourth 0.66 0.92 N/A 0.57 0.62 N/A 0.44 0.41 1.38

Table 4: Computation times of SARSOP for different envi-

ronments, using different heuristics as initialization.

Environment FIB TIB ETIB

Guessing <1s <1s <1s

Tiger <1s <1s <1s

RockSample (5,3) <1s <1s <1s

K-out-of-N (2) 612s 101s 100s

Aloha (30) 45s 40s 945s

computation times are significantly higher than of the other tested

bounds, and for larger environments it often does not converge

within the given time.

TIB and ETIB are tighter than FIB, with tractable overhead.

TIB and ETIB are tighter than FIB in all environments at the cost

of longer, but mostly tractable, computation times. The differences

in the bounds are the largest for Guessing, Tiger, and Grid6x6,

where ETIB performs significantly better than TIB and about on

par with OTIB. However, the results for Tag show that ETIB is not

guaranteed to outperform TIB, and for most other environments

the difference between TIB and ETIB is minimal. The difference

between FIB and our proposed bound is small in environments

where all uncertainty is contained in the initial state, as is the case

for RockSample.
6

5.2 Improvement of SARSOP

Next, we investigate question (Q3) by comparing the performance

of SARSOP when using FIB, TIB, and ETIB as initialization. For

our evaluation, we split the environments into two groups. For

the smaller environments where SARSOP finds an 𝜖-optimal policy

within one hour, we consider convergence times. For the larger

environments, where SARSOP does not converge within an hour,

we instead consider the relative value gap

𝑉gap =
𝑉 (𝑏0) −𝑉 (𝑏0)��𝑉 (𝑏0)��

6
For RockSample (7,8), the difference in computation times between TIB, ETIB, and

OTIB is almost exclusively caused by system variance (as caused by different memory

allocations, garbage collection timing, etc.).

0 10 20 30 40 50 60
Time (s)

−1.8

−1.6

−1.4

−1.2

E
xp

ec
te

d
V

al
ue

FIB
TIB
ETIB

Figure 2: Upper- and lower bounds on the initial value of

the K-out-of-N (2) environments as computed by SARSOP

in the first 60s, using different bounds as initialization. Solid

lines show upper bounds, and dashed lines lower bounds.

after 600s, 1200s and 3600s. We also provide the upper- and lower

bounds in App. B.4 [30]. All running times include the precompu-

tation times of the bounds.

In smaller environments, using TIB or ETIB to initialize

SARSOP yields mixed results. As shown in Table 4, for most

small environments, SARSOP is already sufficiently fast that the

initialization has little effect on computation times. The exceptions

are K-out-of-N (2), where using TIB and ETIB is significantly

quicker than using FIB, and Aloha (30), where ETIB is significantly

slower. For K-out-of-N (2), Fig. 2 shows the upper- and lower

bounds as computed by SARSOP over time. We see that when

using FIB, an initial upper bound is computed slightly quicker, but

the convergence speed is worse than when using TIB or ETIB.

In larger environments, using TIB improves the bounds

computed by SARSOP. Table 3 shows the tightest relative value

gap found with different computational budgets for our larger en-

vironments. We see that using TIB typically improves the perfor-

mance of SARSOP given a sufficiently large computational budget.

However, for environments where TIB is computationally expen-

sive (such as RockSample (7,8) and Fourth), we find that using

FIB (initially) yields better results. In contrast, using ETIB yields

better results for Grid6x6, but otherwise performs similar or worse

then TIB due to its higher computational cost.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1206

0.96 0.98 1.00
Discount

100

101

C
om

pu
ta

tio
n

tim
e

(s
)

RockSample (5,3)

FIB
TIB
ETIB

0.96 0.98 1.00
Discount

100

102

C
om

pu
ta

tio
n

tim
e

(s
)

Tiger

FIB
TIB
ETIB
TO

0.95 0.96 0.97 0.98 0.99
Discount

102

103

C
om

pu
ta

tio
n

tim
e

(s
)

K-out-of-N (2)

FIB
TIB
ETIB
TO

Figure 3: Computation times of SARSOP against the discount factor, using different bounds as initialization.

5.3 Discount Dependency

Lastly, we investigate question (Q4) by testing how the discount

factor affects the computation times of SARSOP, given different

initialization bounds. Due to the computational cost, we only test

on smaller environments, but we expect this behavior to translate

to larger environments as well.

SARSOP profits more from tighter initial bounds for high

discount factors. As shown in Fig. 3, the effect of different initial-

ization is minimal for goal-oriented environments, such as Rock-

Sample (5,3). However, for non-goal-oriented problems (such as

Tiger and K-out-of-N), we find that the absolute speedup of using

TIB and ETIB increases with the discount factor.

6 RELATEDWORK

Besides QMDP [35], FIB [23] and point-based methods [9, 36, 43,

48, 49, 60], which we introduced in Sect. 2, we mention a num-

ber of other methods used for computing upper bounds. Firstly, a

number of works consider simplifying the set of reachable beliefs

by discretizing the belief space in a similar style as point-based

solvers [10, 11, 18, 42, 56]. Next, Yoon et al. [59] introduce ‘hind-

sight optimization’, which uses deterministic planning in a number

of sampled ‘situations’ to approximate the value of a (PO)MDP.

Haugh and Lacedelli [21] use ‘information relaxation’ in a similar

way. Barenboim and Indelman [6] consider only a subset of possible

outcomes of the transition- and observation function to compute

upper bounds in online solvers. However, all these methods are

typically less tight (though computationally cheaper) than our pro-

posed bounds. Lastly, some bounds are based on the properties of a

particular type of POMDP. For example, Sinuany-Stern et al. [46]

consider POMDPs that model maintenance, while Krale et al. [32]

consider POMDPs where agents have explicit measuring actions.

Our empirical analysis focuses on SARSOP [33], but we men-

tion a few related state-of-the-art POMDP solvers. Firstly, POMCP

[45], and AdaOPS [57] are both variants of Monte Carlo tree search

(MCTS) adapted for POMDPs. DESPOT [58] is also based on tree

search but uses hindsight optimization to increase tractability. Lastly,

many methods make use of (deep) reinforcement learning to find

approximate solutions to POMDPs [19, 22, 34]. However, all these

methods focus on large (continuous) state-, action- and observation

spaces where our bounds are computationally intractable.

Deterministic Delay MDPs (DDMDPs) [2, 28, 54] are MDPs where

the agent can fully observe its state with some constant delay, which

is conceptually similar to FIB and TIB. Finding exact solutions to

DDMDPs is NP-hard [54], but efficient approximate solvers exist [1,

14]. However, FIB and TIB take into account (partial) observations

occurring before the state is fully revealed, while such observations

do not exist in DDMDPs. This means that in POMDPs with no

observations, FIB and TIB correspond to the solutions of DDMDPs

with delays 1 and 2, respectively. However, solutions for DDMDPs

are not sound upper bounds for POMDPs in general, so we do not

compare our method with DDMDP solvers.

Lastly, we mention a number of other works related to 𝜖-optimal

POMDP solving. Walraven and Spaan [53] and Hansen and Bow-

man [20] propose methods to speed up the incremental pruning

of 𝛼-vectors, which constitutes a considerable amount of the com-

putation time of SARSOP. Relatedly, Dujardin et al. [15] propose a

method that uses less 𝛼-vectors instead. Wang et al. [55] proposes

to use quadratic functions instead of piecewise-linear functions to

represent the upper bound.

7 CONCLUSION

To improve the performance of 𝜖-optimal solvers, we introduced

three novel bounds for POMDPs (TIB, OTIB, and ETIB). We prove

these bounds are tighter than the commonly used FIB, and show

they can be computed using value iteration. Empirically, both TIB

and ETIB are computationally tractable on a large range of bench-

marks. Moreover, using these bounds to initialize state-of-the-art

solver SARSOP improves its performance.

Future work may focus on increasing the tractability of our

bounds. For example, instead of computing bounds for all beliefs

𝑏 ∈ B1, it may be quicker to use FIB for those that have a low

probability of being reached. Alternatively, more research could be

done on different heuristic choices for weights, particularly choices

that do not require solving LPs. We consider and test one such

choice in App. A.3 [30] with limited success, but using different

(combinations of) heuristic(s) could potentially get tight bounds

at lower computational costs than ETIB. Lastly, future work could

consider how our bounds can be applied to other settings, such as

finite- or indefinite horizon problems.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their useful

comments. This work has been partially funded by the ERC Starting

Grant DEUCE (101077178), and by the Wallenberg AI, Autonomous

Systems and Software Program (WASP) funded by the Knut and

Alice Wallenberg Foundation.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1207

REFERENCES

[1] Mridul Agarwal and Vaneet Aggarwal. 2021. Blind decision making: Reinforce-

ment learning with delayed observations. Pattern Recognit. Lett. 150 (2021).

[2] Eitan Altman and Philippe Nain. 1992. Closed-Loop Control with Delayed

Information. In SIGMETRICS. ACM, 193–204.

[3] Christopher Amato, Daniel S. Bernstein, and Shlomo Zilberstein. 2006. Optimal

fixed-size controllers for decentralized POMDPs. In AAMAS MSDM workshop.

[4] Karl Johan Åström. 1965. Optimal control of Markov processes with incomplete

state information. J. Math. Anal. Appl. 10, 1 (1965), 174–205.

[5] Stefan Banach. 1922. Sur les opérations dans les ensembles abstraits et leur

application aux équations intégrales. Fundam. math. 3, 1 (1922), 133–181.

[6] Moran Barenboim and Vadim Indelman. 2023. Online POMDP Planning with

Anytime Deterministic Guarantees. In NeurIPS. 79886–79902.

[7] Colin Bellinger, Rory Coles, Mark Crowley, and Isaac Tamblyn. 2021. Active Mea-

sure Reinforcement Learning for Observation Cost Minimization. In Canadian

Conference on AI. Canadian Artificial Intelligence Association.

[8] Richard Bellman. 1957. A Markovian Decision Process. Indiana Univ. Math. J. 6

(1957), 679–684. Issue 4.

[9] Blai Bonet. 2002. An epsilon-Optimal Grid-Based Algorithm for Partially Observ-

able Markov Decision Processes. In ICML. Morgan Kaufmann, 51–58.

[10] Alexander Bork, Sebastian Junges, Joost-Pieter Katoen, and Tim Quatmann. 2020.

Verification of Indefinite-Horizon POMDPs. In ATVA (Lecture Notes in Computer

Science, Vol. 12302). Springer, 288–304.

[11] Alexander Bork, Joost-Pieter Katoen, and Tim Quatmann. 2022. Under-

Approximating Expected Total Rewards in POMDPs. In TACAS (2) (Lecture Notes

in Computer Science, Vol. 13244). Springer, 22–40.

[12] Anthony R. Cassandra, Leslie P. Kaelbling, and Michael L. Littman. 1994. Acting

Optimally in Partially Observable Stochastic Domains. In AAAI. 1023–1028.

[13] Anthony R. Cassandra, Michael L. Littman, and Nevin Lianwen Zhang. 1997.

Incremental Pruning: A Simple, Fast, Exact Method for Partially Observable

Markov Decision Processes. In UAI. 54–61.

[14] Esther Derman, Gal Dalal, and Shie Mannor. 2021. Acting in Delayed Environ-

ments with Non-Stationary Markov Policies. In ICLR.

[15] Yann Dujardin, Tom Dietterich, and Iadine Chades. 2017. Three New Algorithms

to Solve N-POMDPs. In AAAI. 4495–4501.

[16] Maxim Egorov, Zachary N. Sunberg, Edward Balaban, Tim A. Wheeler, Jayesh K.

Gupta, and Mykel J. Kochenderfer. 2017. POMDPs.jl: A Framework for Sequential

Decision Making under Uncertainty. JMLR 18, 26 (2017), 1–5.

[17] John Forrest, Stefan Vigerske, Ted Ralphs, Lou Hafer, J. P. Fasano, Haroldo Gam-

bini Santos, Jan-Willem Goossens, Matthew Saltzman, Bjarni Kristjansson, H. I.

Gassmann, Alan King, Bohdan Mart, Pierre Bonami, Ruan Luies, Samuel Brito,

and others. 2024. COIN-OR/Clp 1.17.10. https://doi.org/10.5281/zenodo.13347196

[18] Divya Grover and Christos Dimitrakakis. 2021. Adaptive Belief Discretization

for POMDP Planning. CoRR abs/2104.07276 (2021).

[19] Dongqi Han, Kenji Doya, and Jun Tani. 2020. Variational Recurrent Models for

Solving Partially Observable Control Tasks. In ICLR.

[20] Eric A. Hansen and Thomas Bowman. 2020. Improved Vector Pruning in Exact

Algorithms for Solving POMDPs. In UAI. 1258–1267.

[21] Martin B. Haugh and Octavio Ruiz Lacedelli. 2020. Information Relaxation

Bounds for Partially Observed Markov Decision Processes. IEEE Trans. Autom.

Control. 65, 8 (2020), 3256–3271.

[22] Matthew J. Hausknecht and Peter Stone. 2015. Deep Recurrent Q-Learning for

Partially Observable MDPs. In AAAI Fall Symposia. AAAI Press, 29–37.

[23] Milos Hauskrecht. 2000. Value-Function Approximations for Partially Observable

Markov Decision Processes. JAIR 13 (2000), 33–94.

[24] Milos Hauskrecht and Hamish S. F. Fraser. 2000. Planning treatment of ischemic

heart disease with partially observable Markov decision processes. Artif. Intell.

Medicine 18, 3 (2000), 221–244.

[25] Wha Sook Jeon, Seung Beom Seo, and Dong Geun Jeong. 2022. POMDP-Based

Contention Resolution for Framed Slotted-ALOHA Protocol in Machine-Type

Communications. IEEE Internet Things J. 9, 15 (2022), 13511–13523.

[26] Leslie P. Kaelbling, Michael L. Littman, and Anthony R. Cassandra. 1998. Planning

and Acting in Partially Observable Stochastic Domains. Artif. Intell. 101, 1-2

(1998), 99–134.

[27] Kailash Kapur and Michael Pecht. 2014. Reliability Engineering. John Wiley.

[28] Konstantinos V. Katsikopoulos and Sascha E. Engelbrecht. 2003. Markov decision

processes with delays and asynchronous cost collection. IEEE Trans. Autom.

Control. 48, 4 (2003), 568–574.

[29] Mykel J. Kochenderfer, Tim A. Wheeler, and Kyle H. Wray. 2022. Algorithms for

Decision Making. MIT Press.

[30] Merlijn Krale, Wietze Koops, Sebastian Junges, Thiago D. Simão, and Nils Jansen.

2025. Tighter Value-Function Approximations for POMDPs. arXiv:2502.06523

https://arxiv.org/abs/2502.06523

[31] Merlijn Krale, Wietze Koops, Sebastian Junges, Thiago D. Simão, and Nils Jansen.

2025. Tighter Value-Function Approximations for POMDPs: Code and Data. https:

//doi.org/10.5281/zenodo.14848997

[32] Merlijn Krale, Thiago D. Simão, and Nils Jansen. 2023. Act-Then-Measure: Rein-

forcement Learning for Partially Observable Environments with Active Measur-

ing. In ICAPS. AAAI Press, 212–220.

[33] Hanna Kurniawati, David Hsu, and Wee Sun Lee. 2008. SARSOP: Efficient Point-

Based POMDP Planning by Approximating Optimally Reachable Belief Spaces.

In Robotics: Science and Systems. The MIT Press.

[34] Alex X. Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. 2020. Sto-

chastic Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable

Model. In NeurIPS. 741–752.

[35] Michael L. Littman, Anthony R. Cassandra, and Leslie P. Kaelbling. 1995. Learning

Policies for Partially Observable Environments: Scaling Up. In ICML. Morgan

Kaufmann, 362–370.

[36] William S. Lovejoy. 1991. Computationally Feasible Bounds for Partially Observed

Markov Decision Processes. Oper. Res. 39, 1 (1991), 162–175.

[37] Miles Lubin, Oscar Dowson, Joaquim Dias Garcia, Joey Huchette, Benoît Legat,

and Juan Pablo Vielma. 2023. JuMP 1.0: Recent improvements to a modeling lan-

guage for mathematical optimization. Mathematical Programming Computation

(2023). https://doi.org/10.1007/s12532-023-00239-3

[38] Omid Madani, Steve Hanks, and Anne Condon. 1999. On the Undecidability of

Probabilistic Planning and Infinite-Horizon Partially ObservableMarkovDecision

Problems. In AAAI/IAAI. AAAI Press / The MIT Press, 541–548.

[39] Pablo G. Morato, Konstantinos G. Papakonstantinou, Charalampos P. Andriotis,

Jannie Sønderkær Nielsen, and Philippe Rigo. 2022. Optimal inspection and

maintenance planning for deteriorating structural components through dynamic

Bayesian networks and Markov decision processes. Structural Safety 94 (2022),

102140.

[40] Pablo G. Morato, Konstantinos G. Papakonstantinou, Charalampos P. Andriotis,

and Philippe Rigo. 2022. Managing offshore wind turbines through Markov deci-

sion processes and dynamic Bayesian networks. In 13th International Conference

on Structural Safety & Reliability (ICOSSAR).

[41] Hyunji Alex Nam, Scott L. Fleming, and Emma Brunskill. 2021. Reinforcement

Learning with State Observation Costs in Action-Contingent Noiselessly Observ-

able Markov Decision Processes. In NeurIPS. 15650–15666.

[42] Gethin Norman, David Parker, and Xueyi Zou. 2017. Verification and control of

partially observable probabilistic systems. Real Time Syst. 53, 3 (2017), 354–402.

[43] Joelle Pineau, Geoffrey J. Gordon, and Sebastian Thrun. 2003. Point-based value

iteration: An anytime algorithm for POMDPs. In IJCAI. 1025–1032.

[44] Martin L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. Wiley.

[45] David Silver and Joel Veness. 2010. Monte-Carlo Planning in Large POMDPs. In

NIPS. Curran Associates, Inc., 2164–2172.

[46] Zilla Sinuany-Stern, Israel David, and Sigal Biran. 1997. An efficient heuristic for

a partially observable Markov decision process of machine replacement. Comput.

Oper. Res. 24, 2 (1997), 117–126.

[47] Richard D. Smallwood and Edward J. Sondik. 1973. The Optimal Control of

Partially Observable Markov Processes over a Finite Horizon. Oper. Res. 21, 5

(1973), 1071–1088.

[48] Trey Smith and Reid G. Simmons. 2004. Heuristic Search Value Iteration for

POMDPs. In UAI. 520–527.

[49] Trey Smith and Reid G. Simmons. 2005. Point-Based POMDP Algorithms: Im-

proved Analysis and Implementation. In UAI. 542–547.

[50] Edward J. Sondik. 1978. The Optimal Control of Partially Observable Markov

Processes over the Infinite Horizon: Discounted Costs. Oper. Res. 26, 2 (1978).

[51] Matthijs T. J. Spaan. 2012. Partially Observable Markov Decision Processes.

In Reinforcement Learning, Marco A. Wiering and Martijn van Otterlo (Eds.).

Adaptation, Learning, and Optimization, Vol. 12. Springer, 387–414.

[52] Selim Temizer, Mykel Kochenderfer, Leslie Kaelbling, Tomas Lozano-Pérez, and

James Kuchar. 2010. Collision avoidance for unmanned aircraft using Markov

decision processes. In AIAA guidance, navigation, and control conference.

[53] Erwin Walraven and Matthijs T. J. Spaan. 2017. Accelerated Vector Pruning for

Optimal POMDP Solvers. In AAAI. 3672–3678.

[54] Thomas J. Walsh, Ali Nouri, Lihong Li, and Michael L. Littman. 2009. Learning

and planning in environments with delayed feedback. Auton. Agents Multi Agent

Syst. 18, 1 (2009), 83–105.

[55] Tao Wang, Pascal Poupart, Michael H. Bowling, and Dale Schuurmans. 2006.

Compact, Convex Upper Bound Iteration for Approximate POMDP Planning. In

AAAI. AAAI Press, 1245–1252.

[56] Kyle Hollins Wray and Shlomo Zilberstein. 2017. Approximating reachable belief

points in POMDPs. In IROS. IEEE, 117–122.

[57] Chenyang Wu, Guoyu Yang, Zongzhang Zhang, Yang Yu, Dong Li, Wulong Liu,

and Jianye Hao. 2021. Adaptive Online Packing-guided Search for POMDPs. In

NeurIPS. 28419–28430.

[58] Nan Ye, Adhiraj Somani, David Hsu, and Wee Sun Lee. 2017. DESPOT: Online

POMDP Planning with Regularization. J. Artif. Intell. Res. 58 (2017), 231–266.

[59] Sung Wook Yoon, Alan Fern, Robert Givan, and Subbarao Kambhampati. 2008.

Probabilistic Planning via Determinization in Hindsight. AAAI Press.

[60] Rong Zhou and Eric A. Hansen. 2001. An Improved Grid-Based Approximation

Algorithm for POMDPs. In IJCAI. 707–716.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1208

https://doi.org/10.5281/zenodo.13347196
https://arxiv.org/abs/2502.06523
https://doi.org/10.5281/zenodo.14848997
https://doi.org/10.5281/zenodo.14848997
https://doi.org/10.1007/s12532-023-00239-3

	Abstract
	1 Introduction
	2 Problem Setting
	3 Prior Methods
	3.1 Fast Informed Bound (FIB)
	3.2 Point Set Bounds
	3.3 Using Bounds in Point-Based Solvers

	4 Introducing tighter bounds
	4.1 Tighter Informed Bound (TIB)
	4.2 Optimized Tighter Informed Bound (OTIB)
	4.3 Entropy-based Tighter Informed Bound (ETIB): A Heuristic Approach

	5 Empirical Evaluation
	5.1 Bound Tightness and Computational Cost
	5.2 Improvement of SARSOP
	5.3 Discount Dependency

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

