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ABSTRACT
Leader election is a fundamental and widely studied problem in dis-

tributed computing, traditionally explored in the message-passing

model, where each node in a distributed network graph represents

a static computational device that communicates with others by ex-

changing messages. This paper studies leader election in the agent-

based network, in which the computational devices are modeled

as relocatable or mobile agents that explore a graph and perform

computations. Each node in the graph serves as a container or host

for these mobile agents, and communication occurs between agents

when they move to the same node. We consider the scenario where

𝑛 agents are arbitrarily placed on the nodes of an anonymous, arbi-

trary 𝑛-node,𝑚-edge graph 𝐺 . The goal is for the agents to elect

a leader such that one agent is designated as the leader, knowing

it is the leader, while all other agents recognize they are not the

leader. The objective is to minimize the time to elect the leader and

memory usage per agent. Following the literature, we consider the

synchronous setting where each agent performs its operations syn-

chronously with others and hence the time complexity is measured

in rounds. There exists a deterministic solution that elects a leader

in 𝑂 (𝑚) rounds with 𝑂 (𝑛 log𝑛) bits of memory at each agent in

the agent-based network. In this paper, we present a deterministic

algorithm that elects a leader in𝑂 (𝑛 log2 𝑛) rounds with each agent

using only 𝑂 (log𝑛) bits. This is a significant improvement, as the

memory usage is optimal and the time complexity is almost linear

in 𝑛 (up to 𝑂 (log2 𝑛) factor). Additionally, leveraging this leader

election result, we provide improved time and/or memory bounds

for four core distributed graph problems: minimum spanning tree,

gathering, maximal independent set, and minimal dominating set.
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Model Devices Local com- Device Neighbor
putation storage communication

Message-passing Static Unlimited Unrestricted Messages

Agent-based Mobile Unlimited Limited Relocation

Table 1: Comparingmessage-passing and agent-basedmodels.

In Proc. of the 24th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23,
2025, IFAAMAS, 9 pages.

1 INTRODUCTION
The well-studied message-passing model [20] of distributed comput-

ing assumes an underlying distributed network represented as an

undirected graph 𝐺 = (𝑉 , 𝐸), where each vertex/node corresponds

to a computational device (such as a computer or a processor), and

each edge corresponds to a bi-directional communication link. Each

node 𝑣 ∈ 𝐺 has a distinct Θ(log𝑛)-bit identifier, 𝑛 = |𝑉 |. The struc-
ture of𝐺 (topology, latency) is assumed to be not known in advance

but it is assumed that each node knows its neighboring nodes. The

nodes interact with one another by sending messages (hence the

name message-passing model). The computation proceeds accord-

ing to synchronized rounds. In each round, each node 𝑣 can perform

unlimited local computation and may send message (possibly dis-

tinct) to each of its neighbors. Additionally, each node 𝑣 is assumed

to have no storage constraint.

In this paper, we abstract away from the message-passing model

and consider the agent-based distributed computing model where

the computational devices are modeled as relocatable or mobile
computational devices (which we call mobile agents). Instead of

vertex/node being a static device in the message-passing model, the

vertices/nodes serve as containers for the devices in the agent-based

model. An agent can move from one node to a neighboring node via

the edges of the graph. This gives two major differences between

these models (see Table 1).

Difference I. The graph nodes do not have identifiers, com-

putation ability, and storage, but the devices (aka agents) are

assumed to have distinct 𝑂 (log𝑛)-bit identifiers, computa-

tion ability, and (limited) storage.

Difference II. The devices (agents) cannot send messages

to other devices except the ones co-located at the same node.

To send a message to a device positioned at a neighboring

node, a device needs to relocate to the neighbor.
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Difference II is the major problem for the agent-based model,

since when a device relocates to a neighbor for communication, the

device at that neighbor might relocate to another neighbor.

With advancements in technology across automated systems

such as robots, drones, UAVs, and self-driving cars, research on

computing with mobile agents has become increasingly essential.

The agent-based distributed computation is potentially be useful

and applicable in scenarios like private networks in the military

or sensor networks in inaccessible terrain where direct access to

the network is possibly obstructed, but small battery-powered re-

locatable computational devices can learn network structures and

their properties for overall network management. Additionally, the

device relocation may help avoiding communication link compro-

mise. Some examples include search and rescue (SAR) operations

[21, 24–26], underwater navigation [5], network-centric warfare

[15], social network modeling [27], and social epidemiology [7].

In this paper, we study leader election in the agent-based model.

Leader election is one of the fundamental and well-studied prob-

lems in distributed computing due to its applications in numerous

problems, such as resource allocation, reliable replication, load bal-

ancing, synchronization, membership maintenance, crash recovery,

etc. The problem of leader election in the agent-based model re-

quires a set of agents operating in the distributed network 𝐺 to

elect a unique leader among themselves, i.e., exactly one agent (at

a node) must output the decision that it is the leader.

The performance of an algorithm designed in the agent-based

model is measured w.r.t. two metrics that are fundamental to the

agent-based model: time complexity of a solution and storage re-
quirement per agent. Deterministic algorithms are typically sought

since they may be more suitable for relocatable devices.

Contributions. Kshemkalyani et al. [10] recently provided the

first deterministic algorithm for leader election in the agent-based

model, which elects a leader in 𝑂 (𝑚) time with 𝑂 (𝑛 log𝑛) bits
at each agent. The algorithm achieves so without relying on any

knowledge (neither exact nor an upper bound) on graph parameters,

such as 𝑛 (the network size and also the number of agents), Δ (the

maximum degree of 𝐺), and 𝐷 (diameter of 𝐺). Notice that 𝐺 is

anonymous meaning that graph nodes do not have identifiers (only

the agents have unique identifiers). In this paper, along the line of

the result of [10], we prove the following theorem.

Theorem 1.1 (leader election). Given any initial configuration
of 𝑛 agents with unique identifiers positioned arbitrarily on the nodes
of the 𝑛-node graph 𝐺 with no node identifiers, there is a determin-
istic algorithm that elects one agent at a graph node as a leader
in 𝑂 (𝑛 log2 𝑛) rounds with 𝑂 (log𝑛) bits per agent, without agents
knowing any graph parameter a priori. (Section 3)

Theorem 1.1 is a significant improvement over the only previ-

ously known result for leader election in the agent-based model

due to Kshemkalyani et al. [10]. In fact, the memory complexity

is optimal since any algorithm designed in the agent-based model

with 𝑛 agents needs Θ(log𝑛) bits per agent [1, 11]. The time com-

plexity is optimal within an 𝑂 (log2 𝑛) factor since Θ(𝑛) is the time

lower bound for the kind of problems that ask the 𝑛 agents to be

on 𝑛 nodes if they were not positioned that way initially [1, 11].

Besides its own merit regarding improved time and memory

complexities for an important problem, this leader election result

Algorithm Knowledge Time complexity Memory per agent

Leader election

Section 3 − 𝑂 (𝑛 log
2 𝑛) 𝑂 (log𝑛)

[10] − 𝑂 (𝑚) 𝑂 (𝑛 log𝑛)
MST

Section 4 − 𝑂 (𝑚 + 𝑛 log
2 𝑛) 𝑂 (Δ log𝑛)

[10] − 𝑂 (𝑚 + 𝑛 log𝑛) 𝑂 (𝑛 log𝑛)
MIS

Section 4 − 𝑂 (𝑛 log
2 𝑛 + 𝑛Δ) 𝑂 (log𝑛)

[10] − 𝑂 (𝑛Δ) 𝑂 (𝑛 log𝑛)
[18] 𝑛,Δ 𝑂 (𝑛Δ log𝑛) 𝑂 (log𝑛)

MDS

Section 4 − 𝑂 (𝑛 log
2 𝑛 +𝑚) 𝑂 (log𝑛)

[10] − 𝑂 (𝑚) 𝑂 (𝑛 log𝑛)
[4] 𝑛,Δ,𝑚,𝛾 𝑂 (𝛾Δ log𝑛 + 𝑛𝛾 +𝑚) 𝑂 (log𝑛)

Gathering

Section 4 − 𝑂 (𝑛 log
2 𝑛) 𝑂 (log𝑛)

[10] − 𝑂 (𝑚) 𝑂 (𝑛 log𝑛)
[16] 𝑛 𝑂 (𝑛3 ) 𝑂 (𝑀 +𝑚 log𝑛)

Table 2: Comparing previous and developed results for five
problems in a graph 𝐺 in the agent-based model. 𝑀 is the
memory required for the Universal Exploration Sequence
(UXS) [23], 𝛾 is the number of clusters of agents in the initial
configuration, and 𝑛,𝑚,Δ, respectively, are the number of
nodes/agents, number of edges, and maximum degree of 𝐺 .
‘−’ means no a priori knowledge of graph parameters.

became central in improving the time and/or memory complexi-

ties of many other fundamental distributed graph problems. We

consider explicitly four problems, namely, minimum spanning tree

(MST), maximal independent set (MIS), minimal dominating set

(MDS), and gathering and establish improved results on time and/or

memory (the results are in Section 4). Table 2 lists and compares

all the established results with the previous results.

Establishing Theorem 1.1 needed a fast solution for the prob-

lem of dispersion which can be defined as follows: If 𝑛 agents are

not on 𝑛 nodes (i.e., one per node) initially, the goal is to relocate

themselves autonomously to be positioned on such configuration.

The leader election procedure can then be run. Kshemkalyani et
al. [10] solved dispersion through a 𝑂 (𝑚) time 𝑂 (𝑛 log𝑛) bits per
agent algorithm, which became the dominating cost for their leader

election algorithm. A candidate algorithm to solve dispersion faster

with less memory is due to [22] in which dispersion is achieved in

𝑂 (𝑛 log2 𝑛) time with 𝑂 (log𝑛) bits per agent. However this algo-
rithm is non-terminating without prior knowledge on 𝑛, meaning

that the agents do not know whether dispersion is finished without

knowing 𝑛. Since it is not known when dispersion finishes, the

agents cannot start leader election procedure. Our main contribu-

tion lies in making this dispersion algorithm terminating without

knowing 𝑛 and keeping intact both time and memory complexities.

One might suggest to solve first gathering instead of dispersion

for leader election. Once all agents are gathered at a node, an agent

(with smallest/largest identifier) can be picked as a leader since the

agents have unique identifiers. Although the idea seems promising,

solving gathering turned out to be expensive in terms of both time

and memory complexities. The best-known gathering method [16]

requires 𝑂 (𝑛3) time and 𝑂 (𝑀 + 𝑚 log𝑛) memory, where 𝑀 de-

notes the memory needed for the Universal Exploration Sequence

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

1219



(UXS) [23]. Additionally, these gathering algorithms assume a priori

knowledge on 𝑛. Our dispersion based leader election algorithm

provided better time/memory complexities being oblivious to 𝑛.

Overview of Techniques. Our proposed technique has two as-

pects: dispersion and leader election. Our technique on leader elec-

tion extends the technique on Kshemkalyani et al. [10], whereas our
technique in dispersion is based on Sudo et al. [22]. We organize the

entire dispersion and leader election process into 21 independent

slots, ensuring that each slot operates separately without interfer-

ence from others. Within these slots, agents first compete for the

role of a local leader, and then, based on priority, one of the local

leaders is elected as the unique global leader. The protocol guar-

antees the presence of at least one local leader. Given the agents’

general configuration, it is crucial to ensure that a local leader veri-

fies its highest priority status to become the global leader, with the

solution to dispersion serving as a method to assess this priority.

We propose a two-stage approach to elect a unique (global) leader.

In the first stage, (at least) a local leader is elected, and in the second

stage, one of the local leaders is chosen as the unique global leader.

After being elected as a local leader in the first stage, each local

leader can proceed to run the same global election procedure in

the second stage to compete for the role of global leader. However,

during the first stage, an agent becomes a ‘local leader’ using one

of two procedures. If an agent starts alone, it follows a singleton
election procedure to become a local leader. If an agent starts with

others, the minimum ID agent among them becomes the local leader.

The singleton election procedure executed by an agent 𝑎 at node

𝑤 involves visiting the neighbors of𝑤 , potentially multiple times.

This procedure selects agent 𝑎 at node𝑤 as a local leader if and only

if all of 𝑤 ’s neighbors initially have a singleton agent positioned.

The proposed technique guarantees that starting from any initial

configuration, at least one agent becomes a local leader.

Once an agent becomes a local leader, it initiates the global

election procedure to attempt to become the global leader. This

procedure involves verifying whether the local leader agent can

traverse all the edges of the graph𝐺 . If the local leader successfully

traverses all the edges, it returns to the node where it initially

became a local leader (referred to as the home node of that local
leader) and declares itself as the global leader. We demonstrate that

after an agent declares itself as the global leader, no other local

leader agent can become a global leader, ensuring the uniqueness

of the global leader.

To become the global leader, each local leader, say 𝑎, interacts

with one of its neighboring agents, say 𝑏, which oscillates between

two nodes: its home node and the node occupied by 𝑎. Agent 𝑏

retains all information related to both nodes, introducing a new

technique developed in this work where an agent can effectively

manage information from multiple nodes. A local leader leaves its

home node to evaluate its priority on a global scale, placing any

lower-priority agent (referred to as a ‘zombie’) during the DFS tra-

versal (with HEO-DFS technique discussed in [22]), if accompanied.

During this process, agent 𝑎 constructs its own DFS tree, maintain-

ing its leadership as long as it holds the highest priority. Within

this DFS tree, agents record information about their first child, next

sibling, and parent with a couple of other pointers, keeping memory

usage limited to 𝑂 (log𝑛) bits. This allows the tree to be traversed

efficiently with the information needed by the global leader to an-

nounce its election as the global leader and place another zombie

agent at an empty node if required. This memory-efficient tree

construction is a novel technique developed in this paper.

Since multiple local leaders may be elected in the first stage,

several global election procedures can run simultaneously. Each

local leader is associated with a group identifier in the form of

(𝑎.𝑙𝑒𝑣𝑒𝑙, 𝑎.𝑙𝑒𝑎𝑑𝑒𝑟 ), where 𝑎.𝑙𝑒𝑎𝑑𝑒𝑟 = 𝑎.ID and 𝑎.𝑙𝑒𝑣𝑒𝑙 is the level

of agent 𝑎 (initially, set to 1). A zombie or settler does not ini-

tially belong to any group; however, if it accompanies a leader,

it becomes part of that leader’s HEO-DFS. The group identifier

(𝑎.𝑙𝑒𝑣𝑒𝑙, 𝑎.𝑙𝑒𝑎𝑑𝑒𝑟 ) is considered to have higher priority if it satisfies
the condition (𝑎.𝑙𝑒𝑣𝑒𝑙 < 𝑏.𝑙𝑒𝑣𝑒𝑙) ∨ (𝑎.𝑙𝑒𝑣𝑒𝑙 = 𝑏.𝑙𝑒𝑣𝑒𝑙 ∧ 𝑎.𝑙𝑒𝑎𝑑𝑒𝑟 <

𝑏.𝑙𝑒𝑎𝑑𝑒𝑟 ).
Once a leader is elected, we leverage it to solve four other fun-

damental problems: minimum spanning tree (MST), maximal inde-

pendent set (MIS), minimal dominating set (MDS), and gathering.

Our approach improves existing results on time and/or memory.

Related Work. Leader election is a well-studied problem in dis-

tributed computing, especially in the message-passing model, see

[2, 8, 12–14, 19]. In the agent-based model, leader election was

studied recently for the first time by Kshemkalyani et al. [10]. They
provided a deterministic algorithm with time complexity 𝑂 (𝑚)
rounds and memory complexity 𝑂 (𝑛 log𝑛) bits per agent, without
agents knowing graph parameters (such as 𝑛,𝑚,Δ). They also pro-

vided a deterministic algorithm for MST, solving it in𝑂 (𝑚+𝑛 log𝑛)
rounds with 𝑂 (𝑛 log𝑛) bits per agent. Their leader election result

served as a crucial subroutine in their MST algorithm.

For MIS in the message-passing model, the best-known de-

terministic algorithm has time complexity 𝑂 (2
√
log𝑛) [3, 17].

For MDS, Deurer et al. [6] gave two deterministic (1 +
𝜖) (1 + log(Δ + 1))-approximation algorithms with time complex-

ity, respectively, 𝑂 (2𝑂 (
√
log(𝑛) log(log(𝑛) ) ) and 𝑂 (Δpolylog(Δ) +

polylog(Δ) log★(𝑛)), where 𝜖 > 1

polylog(Δ) . Both MIS and MDS

were solved in the agent-based model in [4, 18] with time and mem-

ory complexities reported in Table 2 assuming that agents have a

priori knowledge on 𝑛,Δ (additionally𝑚,𝛾 for MDS). In [10], the a

priori knowledge assumption was lifted for both MIS and MDS.

Gathering is relatively well-studied in the agent-based model,

however with the assumption of known 𝑛. The recent results are

[16, 23]. [23] provided a �̃� (𝑛5 log 𝛽) time solution to gather 𝑘 ≤ 𝑛

agents in arbitrary graph𝐺 , where �̃� hides polylog factors and 𝛽 is

the smallest identifier among agents. [16] provided improved time

complexities for large values of 𝑘 (not knowing 𝑘 but 𝑛): (i) 𝑂 (𝑛3)
rounds, if 𝑘 ≥ ⌊𝑛

2
⌋ + 1 (ii) �̃� (𝑛4) rounds, if ⌊𝑛

2
⌋ + 1 ≤ 𝑘 < ⌊𝑛

3
⌋ + 1,

and (iii) �̃� (𝑛5) rounds, if ⌊𝑛
3
⌋ + 1 > 𝑘 . The memory complexity is

𝑂 (𝑀 +𝑚 log𝑛) bits per agent, where 𝑀 is the memory required

to implement the universal traversal sequence (UXS) as defined in

[23]. Kshemkalyani et al. [10] provided 𝑂 (𝑛Δ) time 𝑂 (𝑛 log𝑛) bits
per agent gathering algorithm without agents needing to know 𝑛 a

priori (see Table 2 for comparison).

2 MODEL
The network is considered as a connected, undirected graph 𝐺 =

(𝑉 , 𝐸) with |𝑉 | = 𝑛 nodes, |𝐸 | =𝑚 edges, diameter𝐷 , andmaximum
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degree Δ. Each node 𝑣𝑖 ∈ 𝑉 has 𝛿𝑖 ports, one for each incident

edge, labeled [0, . . . , 𝛿𝑖 − 1]. There are 𝑛 agents Q = {𝑎1, . . . , 𝑎𝑛}
initially positioned on the nodes of 𝐺 . Each agent has a unique

ID in the range [1, 𝑛𝑂 (1) ]. The topology of 𝐺 is unknown to the

agents. Additionally, agents are not aware of any graph parameter,

such as network size 𝑛, maximum degree Δ, diameter 𝐷 , etc. In an

initial configuration, a graph node may have zero, one, or multiple

agents positioned. The agents are always positioned on the nodes

of𝐺 , except while they are migrating between nodes. An agent can

communicate while at a node (not while it is migrating). An agent

can communicate only to other agents at the same node, i.e., two

agents at two different nodes cannot communicate.

Agents can traverse edges from node 𝑣 to node 𝑢 along the edge

𝑒𝑣𝑢 . Borrowing an assumption from the message-passing model,

e.g., [9], we assume that an agent can cross an edge in one round,

regardless of edge weight, even when 𝐺 is weighted. Upon exiting

𝑣 along port 𝑝𝑣𝑢 , the agent knows the corresponding port 𝑝𝑢𝑣 upon

entering node 𝑢. Additionally, if 𝐺 is weighted, the agent learns

the weight 𝑤 (𝑒𝑣𝑢 ) of edge 𝑒𝑣𝑢 when it arrives at 𝑢. There is no

assumed relationship between the port numbers on the two ends

of an edge. We do not put limit on how many agents can traverse

an edge simultaneously, meaning the agent-based model does not

impose congestion constraint on edge traversal.

The agents operate in a synchronous setting, meaning that the

computation proceeds in rounds and time complexity is measure

with respect to the number of rounds until a solution. All agents

are active in each round. In each round, an agent at a node can

perform local computation based on its stored information and the

port labels at the node. The computation results in ⊥ or a port to be

taken. Before moving, an agent may update the storage of another

agent staying at the current node. An agent exiting a node at a

round always reaches a neighboring node by the end of that round.

The storage complexity is measured w.r.t. the amount of memory

(in bits) used by each agent until a solution.

At any round, the agents’ distribution on 𝐺 can be as follows:

• dispersed — 𝑛 agents are on 𝑛 nodes of 𝐺 ,

• rooted — 𝑛 agents are on a single node of 𝐺 , or

• general— a configuration that is neither dispersed nor rooted.

We refer to the initial configuration as dispersed, rooted, or general,

depending on the agents’ initial positions; the agents do not know

a priori whether the initial configuration is dispersed, rooted, or

general. Knowing the nature of initial configuration would permit

agents to run specific procedures. An agent is called a singleton if it

is alone on a node, and non-singleton (or multiplicity) otherwise.

3 LEADER ELECTION
In this section, we discuss our deterministic leader election algo-

rithm, which guarantees the selection of a single global leader

starting from any initial configuration (dispersed, rooted, or gen-

eral) of 𝑛 agents on an 𝑛-node graph 𝐺 . Moreover, if the agents

initially start in rooted or general configurations, they end up in a

dispersed configuration once leader election procedure is complete.

Initially, each graph node may contain zero, one, or multiple

agents, all of which are considered “candidates” for the leadership

role. A candidate must first attain the status of a “local leader”

before competing for the role of “global leader.” Any candidate that

Slot number Role Initiative Pseudocode

Slot 1–3 Global Leader Election Candidate 1, 2, and 3

Slot 4 Local Leader Election Local Leaders 4

Slot 5 Settle, increment level, etc. Local Leaders 4

Slot 6 Move to join Probe() Settlers 6

Slot 7–15 Probe() Local Leaders 5

Slot 16–19 Chase for Local Leaders Zombies 7

Slot 20–21 Move forward/backward Local Leaders 4

Table 3: Slot assignments with respect to the pseudocode.

Terminology Meaning

𝑛 Number of nodes in the graph

𝑚 Number of edges in the graph

𝑢, 𝑣 Node in the graph

𝑎,𝑏 Agent in the graph

𝑎.𝐼𝐷 ID of the agent 𝑎

Δ Maximum degree of the graph

𝑁 (𝑣) Neighbor of the node 𝑣

𝑝𝑣 (𝑢 ) Port at 𝑣 leading to 𝑢

𝑁 (𝑣, 𝑖 ) Node 𝑢 ∈ 𝑁 (𝑣) such that 𝑝𝑣 (𝑢 ) = 𝑖

Table 4: An overview of general notations used in the paper.

fails to become a “local leader” (as well as any “local leader” that

fails to become a “global leader”) transitions into a “settler” if it

has its home node (which is the node where the agent becomes

the candidate/local leader) otherwise becomes the “zombie”. We

run our algorithmic steps in slots, where each slot is independent.

Which part of the algorithm runs in what slot and which agent

initiates that computation is provided in Table 3.

It is depicted in Algorithm 1 (Lines 2–7), if an agent is initially

singleton then it runs 𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛_𝐸𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑎) procedure to become

a local leader or settler. On the other hand, if it is not singleton,

the minimum ID agent becomes the local leader and all others be-

come zombies. After the agent becomes the local leader, say 𝑎 at

node𝑤 , it informs all its neighbors that it is a local leader if it be-

comes the leader through 𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛_𝐸𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑎) and as described

in Lines 13–15 of Algorithm 1, that local leader asks the port-1

agent across the edge to oscillate between its home node 𝑤 and

𝑏’s home node. 𝑏 stores all the information corresponding to the

agent 𝑎 (its local leader). 𝑎 starts the DFS until it has the highest

priority as described in Algorithms 4–7. We define a relationship ≺
between any two non-zombie agents 𝑎 and 𝑏 using the group iden-

tifiers (𝑎.𝑙𝑒𝑣𝑒𝑙, 𝑎.𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 ) as follows: 𝑎 ≺ 𝑏 ⇐⇒ (𝑎.𝑙𝑒𝑣𝑒𝑙 <
𝑏.𝑙𝑒𝑣𝑒𝑙) ∨ (𝑎.𝑙𝑒𝑣𝑒𝑙 = 𝑏.𝑙𝑒𝑣𝑒𝑙 ∧ 𝑎.𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 < 𝑏.𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 ). If
𝑎 ≺ 𝑏 then we consider 𝑏 is stronger than 𝑎. Initially, the level is set

to 1. When a leader 𝑎 encounters a zombie 𝑧 with the same level,

𝑎 increments its level by one, and 𝑧 resets its level to zero. This

“level up” changes the identifier of 𝑎’s group, i.e., from (𝑎.𝐼𝐷, 𝑖) to
(𝑎.𝐼𝐷, 𝑖 + 1) for some 𝑖 . At this point, 𝑎 loses all nodes from its

territory (agent having the same level as 𝑎 and their leader is 𝑎).

In other words, each time a leader 𝑎 increases its level, it restarts

its HEO-DFS from the beginning. Note that this “level up” event

also occurs when two leaders 𝑎, 𝑏 (𝑏 ≺ 𝑎) with the same level meet

(and there is no stronger agent at the location). 𝑏 becomes a zombie

after it finds a stronger (based on ≺) leader 𝑎 or vice-versa. We have

Lemma 3.4 that states that this “level up” does not occur more than

log𝑛 + 1 times. Settling of zombie, oscillating agent if required, and

“level up” is discussed in Slot 5 with initialization of other required

terminology (Tables 4 and 5).
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Terminology Meaning

𝜈 (𝑎) Node where agent 𝑎 resides

𝜓 (𝑤 ) Agent at home node 𝑤

𝐴𝐿 (𝑤 ) ,𝐴𝑆 (𝑤 ) and𝐴𝑍 (𝑤 ) Set of local leaders, settlers, and zombies

𝑎 ≺ 𝑏 (𝑎.𝑙𝑒𝑣𝑒𝑙 < 𝑏.𝑙𝑒𝑣𝑒𝑙 )∨
(𝑎.𝑙𝑒𝑣𝑒𝑙 = 𝑏.𝑙𝑒𝑣𝑒𝑙 ∧ 𝑎.𝑙𝑒𝑣𝑒𝑙 < 𝑏.𝑙𝑒𝑎𝑑𝑒𝑟 )

𝜓 (𝑤 ) .𝑛𝑒𝑥𝑡 Next unsettled node in 𝑁 (𝑤 )
𝜓 (𝑤 ) .𝑑𝑜𝑛𝑒 = true Probing is done at node 𝑤

𝜓 (𝑤 ) .𝑝𝑎𝑟𝑒𝑛𝑡 Parent of node 𝑤

𝑎.𝑖𝑛𝑖𝑡_𝑎𝑙𝑜𝑛𝑒 ← true Agent 𝑎 is alone at 𝜈 (𝑎) , initially
𝑎.𝑠𝑡𝑎𝑡𝑢𝑠 ∈ {𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝑠𝑒𝑡𝑡𝑙𝑒𝑟,

𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟, 𝑔𝑙𝑜𝑏𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 }
𝜓 (𝑤 ) .ℎ𝑒𝑙𝑝 ≠⊥ Help for probing is required

𝑎.𝐼𝑛𝑖𝑡𝑃𝑟𝑜𝑏𝑒 = true Agent 𝑎 requires probing

𝜓 (𝑤 ) .𝑐ℎ𝑒𝑐𝑘𝑒𝑑 = ℓ 𝑁 (𝑤, 0), 𝑁 (𝑤, 1), . . . , 𝑁 (𝑤, ℓ ) are settled
𝑎.𝑝𝑖𝑛 Incoming port of the agent 𝑎

𝑎.𝑙𝑒𝑣𝑒𝑙 Level of agent 𝑎; initially, set to 1

𝑧.𝑙𝑒𝑣𝑒𝑙𝐿 Location level

𝑧.𝑙𝑒𝑣𝑒𝑙𝑆 Swarm level

𝜓 (𝑤 ) .𝑓 𝑖𝑟𝑠𝑡𝑐ℎ𝑖𝑙𝑑 First Child for the agent 𝑤 during DFS

𝜓 (𝑤 ) .𝑛𝑒𝑥𝑡𝑠𝑖𝑏𝑙𝑖𝑛𝑔 Next sibling during DFS at node 𝑤

Table 5: Overview of the notations used in pseudocode.

In Slot 6, the settler moves for HEO-DFS (as discussed in Sudo et
al. [22]). There might be the case that leader 𝑎 has encountered a

stronger leader 𝑏 and 𝑎 has become a zombie. In that case, 𝑏 would

set 𝑎.ℎ𝑒𝑙𝑝 =⊥ in Slot 7. Notice that if more than two neighbors have

requested help, in that case, Slot 6 reaches out for help to the one

that is the stronger leader, and the other leader becomes a zombie.

Slot 8 deals with the fact that when probing (finding the appropriate

port for DFS) is done while Slots 9–10 begin the probing and Slot 11

figures out whether nodes are occupied with the agents or not.

Similarly, Slots 16–19 address the issues of the weak and strong

zombies. We give zombies different chasing speeds as follows.

First, we classify zombies based on two variables 𝑙𝑒𝑣𝑒𝑙𝐿 and 𝑙𝑒𝑣𝑒𝑙𝑆
that each zombie manages. For any zombie 𝑧, we call 𝑧.𝑙𝑒𝑣𝑒𝑙𝐿 and

𝑧.𝑙𝑒𝑣𝑒𝑙𝑆 the location level and swarm level of 𝑧. When a leader 𝑧

becomes a zombie, it initializes both 𝑧.𝑙𝑒𝑣𝑒𝑙𝐿 and 𝑧.𝑙𝑒𝑣𝑒𝑙𝑆 with its

level, i.e., 𝑧.𝑙𝑒𝑣𝑒𝑙 . Thereafter, a zombie 𝑧 copies the level of𝜓 (𝜈 (𝑧))
to 𝑧.𝑙𝑒𝑣𝑒𝑙𝐿 and updates 𝑧.𝑙𝑒𝑣𝑒𝑙𝑆 to be max{𝑏.𝑙𝑒𝑣𝑒𝑙 | 𝑏 ∈ 𝐴𝑍 (𝜈 (𝑧))}
in every 𝑂 (1) rounds. Since a zombie only chases a leader with

an equal or greater level, 𝑧.𝑙𝑒𝑣𝑒𝑙𝑆 ≤ 𝑧.𝑙𝑒𝑣𝑒𝑙𝐿 always holds. We say

that a zombie 𝑧 is strong if 𝑧.𝑙𝑒𝑣𝑒𝑙𝑆 = 𝑧.𝑙𝑒𝑣𝑒𝑙𝐿 ; 𝑧 is weak other-

wise. Then, we exploit the assumption that the agents are synchro-

nous and let weak zombies move twice as frequently as strong

zombies to chase a leader. As we prove in Lemmas 3.5–3.7, this

difference in chasing speed results in a desirable property that

min({𝑎.𝑙𝑒𝑣𝑒𝑙 | 𝑎 ∈ 𝐴𝐴𝐿} ∪ {𝑧.𝑙𝑒𝑣𝑒𝑙𝐿 | 𝑧 ∈ 𝐴𝑍 }) is monotonically

non-decreasing and increases by at least one in every 𝑂 (𝑛 log𝑛)
rounds, where𝐴𝐴𝐿, 𝐴𝑍 , respectively, are the set of active local lead-

ers and zombies in the whole graph 𝐺 until 𝐴𝐴𝐿 ∪ 𝐴𝑍 becomes

empty. Thus, by Lemma 3.4, 𝐴𝐴𝐿 ∪𝐴𝑍 becomes empty and disper-

sion is achieved in𝑂 (𝑛 log2 𝑛) steps. Additionally, there might exist

a neighboring agent oscillating between the local leader node and

its home node. Therefore, whenever an agent moves to some other

node it waits for one round to make sure that there does not exist

any other agent oscillating between two neighboring nodes. Other

than waiting for one round, a detailed description of these slots can

be found in Sudo et al. [22].
Slots 12–15 discuss the case of helping agents not finding the

settler agent in their neighbors. In that case, the local leader updates

Algorithm 1: Local Leader election for agent 𝑎

States: Initially, each agent 𝑎 positioned at node 𝑤 = 𝜈 (𝑎) has
𝑎.𝑠𝑡𝑎𝑡𝑢𝑠 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 . Similarly, 𝑣 = 𝜈 (𝑏 ) . We call an explorer a

leader if 𝑎.𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 = 𝑎.𝐼𝐷 , otherwise a zombie.

1 /******************************* Slots 1 to 3 begins ****************/

2 if 𝑎.𝑠𝑡𝑎𝑡𝑢𝑠 = 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 then
3 if 𝑎.𝑖𝑛𝑖𝑡_𝑎𝑙𝑜𝑛𝑒 = 𝑇𝑟𝑢𝑒 then
4 𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛_𝐸𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (𝑎)
5 if 𝑎.𝑖𝑛𝑖𝑡_𝑎𝑙𝑜𝑛𝑒 = 𝑓 𝑎𝑙𝑠𝑒 and {𝑎} ≠ 𝐴(𝑤 ) then
6 if 𝑎 is the minimum ID agent at 𝜈 (𝑎) then
7 𝑎.𝑠𝑡𝑎𝑡𝑢𝑠 ← 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 and

𝐴(𝑤 )\{𝜓 (𝑤 ), 𝑎.𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 } become the zombie.

// 𝐴(𝑤 ) is the set of agents at node 𝑤.

8 if 𝑎.𝑠𝑡𝑎𝑡𝑢𝑠 = 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 then
9 if 𝑎 became local leader through 𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛_𝐸𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (𝑎) then
10 Inform all neighbors that 𝑎 is a local leader.

11 else if there is no agent across port-1 then
12 Local leader 𝑎 places an agent there as a settler.

13 Ask the port-1 neighbor, say𝜓 (𝑣) , to oscillate between 𝑣 and 𝑤 and

keep the information that 𝑎 is the local leader.

14 Agent𝜓 (𝑣) stores all other information corresponding to 𝑎 until an

agent settles at node𝜓 (𝑤 ) .
15 Agent 𝑎 does not settle at node 𝑤 until it completes the DFS if 𝑎 has the

highest priority. // A local leader 𝑎 settles at some other
agent position where an agent oscillates only if that
place does not belong to the highest priority local
leader.

16 if 𝑎 completed the DFS and 𝑎.𝑠𝑡𝑎𝑡𝑢𝑠 = 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 then
17 Agent 𝑎 becomes the 𝑔𝑙𝑜𝑏𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 and waits for 𝑛 phases

(collection of slots). // Gathering of the local leader

which became a zombie.

18 Agent 𝑎 traverses the whole graph by using DFS with the help of

the “first child” port and “next sibling” port, informs all the settler

agents, and settles the zombies along the way if needed.

the latest child with information about the next sibling as well as

moves to the next available nodes to settle the agent as per HEO-

DFS. On the other hand, Slots 20 and 21 update the pointers based

on the forward/backward move. Finally, a local leader becomes the

global leader after completing the DFS traversal and informs all

the agents of it being a global leader by DFS traversal of 𝐺 that

was constructed during the HEO-DFS traversal with the help of

parent, first child, latest child, and next sibling. If any zombie also

accompanies the global leader that would be placed at any available

empty node during the DFS traversal. A summary of these slots

and their operations are provided in Table 3.

3.1 Analysis of the Algorithm
Lemma 3.1. In Singleton_Election (Algorithm 2) run by agent

𝑎 at node 𝑤 , if there is a neighboring agent 𝑏 positioned on
the neighbor node 𝑣 such that 𝛿𝑤 = 𝛿𝑣 and 𝛿𝑤 , 𝛿𝑣 both be-
ing the minimum, 𝑎 meets 𝑏 in 𝑂 (𝛿𝑤 log

2 𝑛) rounds, running
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛_𝑤𝑖𝑡ℎ_𝑃𝑎𝑑𝑑𝑖𝑛𝑔 (Algorithm 3).

Proof. Given that agent IDs are drawn from the interval

[1, 𝑛𝑂 (1) ], each agent’s ID size is at most 𝑐 · log𝑛, for some constant

𝑐 . Therefore, for any two agents 𝑎 and 𝑏, there are two possible

scenarios for their ID sizes: either their IDs have the same number

of bits, or they differ in the number of bits.

Let us first consider the case where 𝑎 and𝑏 have an equal number

of bits, say B. Since the IDs are unique, they must differ by at least
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Algorithm 2: 𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛_𝐸𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑎)
1 𝛿𝑤 ← degree of node 𝑤.

2 𝑁 (𝜈 (𝑎) ) ← neighbors of node 𝜈 (𝑎) .
3 𝑎 visits neighbors in 𝑁 (𝑤 ) (in increasing port numbers) one by one and

stays there for two rounds.

4 while 𝑎.𝑠𝑡𝑎𝑡𝑢𝑠 = 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 do
5 if ∃ neighbor 𝜈 (𝑏 ), 𝛿𝑤 > 𝛿𝑣 or has status local_leader or 𝑏 knows

𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 or ( ∃ neighbor 𝜈 (𝑏 ) , 𝛿𝑤 = 𝛿𝑣 such that 𝑎.𝐼𝐷 < 𝑏.𝐼𝐷)
then

6 𝑎.𝑠𝑡𝑎𝑡𝑢𝑠 ← 𝑠𝑒𝑡𝑡𝑙𝑒𝑟

7 else if ∃ neighbor 𝑣, 𝛿𝑤 = 𝛿𝑣 and 𝑣 is empty then
8 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛_𝑤𝑖𝑡ℎ_𝑃𝑎𝑑𝑑𝑖𝑛𝑔 (𝑎)
9 else if ∀ neighbor 𝑣, 𝛿𝑣 > 𝛿𝑤 but ∃ (at least) a neighbor 𝑣′ which is

empty then
10 𝑎 visits the empty neighbors in the interval of 3𝛿𝑣′ rounds starting

from 𝜈 (𝑎) and ending at 𝜈 (𝑎) . // Stay for one round at
the neighboring node and two rounds spent in
oscillation.

11 if an agent 𝑣′ is found at 𝜈 (𝑣′ ) and 𝑣′ knows 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 or has
status 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 then

12 𝑎.𝑠𝑡𝑎𝑡𝑢𝑠 ← 𝑠𝑒𝑡𝑡𝑙𝑒𝑟

13 if ∀ neighbor 𝑣, 𝛿𝑤 < 𝛿𝑣 and all neighboring agents were initially
singletons and no neighbor has status local_leader and (∀ neighbor 𝜈 (𝑏 ) ,
if 𝛿𝑤 = 𝛿𝑣 and 𝑏.𝐼𝐷 < 𝑎.𝐼𝐷) then

14 𝑎.𝑠𝑡𝑎𝑡𝑢𝑠 ← 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟

Algorithm 3: 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛_𝑤𝑖𝑡ℎ_𝑃𝑎𝑑𝑑𝑖𝑛𝑔(𝑎)
1 B ← number of bits in the ID of 𝑎

2 B + 2B2 ← number of bits in the ID of 𝑎 after padding a sequence of ‘10’

bits B2
times to the LSB in the original B-bit ID.

3 Starting from MSB and ending on LSB, if the bit is ‘1’ visit the 𝑁 (𝑤 ) one by
one and stay for two rounds at the neighboring node which finishes in 3𝛿𝑤
rounds. If the bit is ‘0’ then𝜓 (𝑤 ) stay at 𝑤 for 3𝛿𝑤 rounds.

4 for 3𝛿𝑤 (B + 2B2 ) rounds agent 𝑎 explores 𝑁 (𝑤 ) based on padding do
5 if agent 𝑎 meets an agent 𝑏 which knows 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 or (∃ neighbor

𝜓 (𝑣) , 𝛿𝑤 = 𝛿𝑣 such that 𝑏.𝐼𝐷 > 𝑎.𝐼𝐷) then
6 𝑎.𝑠𝑡𝑎𝑡𝑢𝑠 ← 𝑠𝑒𝑡𝑡𝑙𝑒𝑟 .

7 else if 𝛿𝑢 = 𝛿𝑣 and 𝑎.𝐼𝐷 > 𝑏.𝐼𝐷 then
8 𝑎.𝑠𝑡𝑎𝑡𝑢𝑠 ← 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 .

9 if ∃ neighbor 𝑣, 𝛿𝑤 = 𝛿𝑣 and 𝑣 is empty then
10 𝑎.𝑠𝑡𝑎𝑡𝑢𝑠 ← 𝑠𝑒𝑡𝑡𝑙𝑒𝑟 .

one bit. That is, if one agent has a ‘1’ in the 𝛽-th position from the

most significant bit (MSB), the other agent must have a ‘0’ in that

same position. Agents move to explore their neighbors when they

have a ‘1’ in the current bit and remain stationary when the bit is

‘0’. As a result, agent 𝑎 will find 𝑏 within 3 · 𝛿𝑤 · B rounds, where

𝛿𝑤 is the degree of 𝑎. Since there is at least one bit where their IDs

differ, the total time required for 𝑎 to meet 𝑏 is 𝑂 (𝛿𝑤 log𝑛) rounds.
Now, consider the scenario where the IDs have unequal numbers

of bits. Suppose 𝑎 hasB bits and𝑏 hasD bits, withB ≠ D. Without

loss of generality, let B > D, i.e., B = D + 𝑐1, where D, 𝑐1 ≥ 1.

After padding the ID of 𝑎, the total number of bits becomes B+2B2
.

To compute this explicitly, we have:

B + 2B2 = (D + 𝑐1) + 2(D + 𝑐1)2 = 2D2 + 2𝑐2
1
+ 4 · D · 𝑐1 +D + 𝑐1 .

Similarly, after padding, the total number of bits in the ID of 𝑏

becomes D + 2D2
. Thus, the difference in the number of bits be-

tween 𝑎 and 𝑏 after padding is: 2𝑐2
1
+ 4 · D · 𝑐1 + 𝑐1 . SinceD, 𝑐1 ≥ 1,

this difference is at least 7 bits. Furthermore, out of these 7 bits, at

least 3 are ‘1’s, during which 𝑎 can explore its neighbors, while 𝑏

Algorithm 4: The behavior of local leader 𝑎
1 while 𝑎 does not know the leader and another 2𝑛 rounds do not pass do
2 /********************* Slot 4 begins ********************/

3 Let 𝑤 = 𝜈 (𝑎)
4 if ∃𝑏 ∈ 𝐴𝐿 (𝑤 ) ∪𝐴𝑆 (𝑤 ) : 𝑎 ≺ 𝑏 then
5 𝑎.𝑙𝑒𝑣𝑒𝑙𝐿 ←− 𝑎.𝑙𝑒𝑣𝑒𝑙𝑆 ←− 𝑎.𝑙𝑒𝑣𝑒𝑙

6 𝑎.𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 ←− 𝑏.𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 // 𝑎 becomes a zombie

and stops Algorithm 4

7 /********************* Slot 5 begins ********************/

8 if 𝐴(𝑤 ) ≠ {𝑎} // 𝑎 is an active leader if 𝐴(𝑤 ) ≠ {𝑎}.
9 then
10 if 𝜓 (𝑤 ) =⊥ ∨ 𝜓 (𝑤 ) ≺ 𝑎 then
11 if 𝜓 (𝑤 ) =⊥ then
12 Agent 𝑎 waits for 1 round.

13 if 𝜓 (𝑤 ) =⊥ even after one round or oscillating agent
covering lower priority leader’s node then

14 Settle one zombie from𝐴𝑍 (𝑤 ) at 𝑤.

15 The oscillating agent, if any, settles one zombie

other than node 𝑤 and stops oscillation.

16 𝜓 (𝑤 ) .𝑝𝑎𝑟𝑒𝑛𝑡 ←− 𝑎.𝑝𝑎𝑟𝑒𝑛𝑡 // initially,

𝑎.𝑝𝑎𝑟𝑒𝑛𝑡 =⊥.
17 if ∃𝑏 ∈ 𝐴𝑍 (𝑤 ) : 𝑎.𝑙𝑒𝑣𝑒𝑙 = 𝑏.𝑙𝑒𝑣𝑒𝑙 then
18 (𝑎.𝑙𝑒𝑣𝑒𝑙, 𝑏.𝑙𝑒𝑣𝑒𝑙 ) ←− (𝑎.𝑙𝑒𝑣𝑒𝑙 + 1, 0)
19 𝜓 (𝑤 ) .𝑝𝑎𝑟𝑒𝑛𝑡 ←−⊥
20 𝑎.𝐼𝑛𝑖𝑡𝑃𝑟𝑜𝑏𝑒 ←− true // Dispersion restart from 𝑤.

21 (𝜓 (𝑤 ) .𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟,𝜓 (𝑤 ) .𝑙𝑒𝑣𝑒𝑙 ) ←− (𝑎.𝐼𝐷, 𝑎.𝑙𝑒𝑣𝑒𝑙 )
22 if 𝑎.𝐼𝑛𝑖𝑡𝑃𝑟𝑜𝑏𝑒 = true // Initially, 𝑎.𝐼𝑛𝑖𝑡𝑃𝑟𝑜𝑏𝑒 = true
23 then
24 (𝜓 (𝑤 ) .𝑛𝑒𝑥𝑡,𝜓 (𝑤 ) .checked,𝜓 (𝑤 ) .help,𝜓 (𝑤 ) .𝑑𝑜𝑛𝑒,
25 𝜓 (𝑤 ) .𝑓 𝑖𝑟𝑠𝑡𝑐ℎ𝑖𝑙𝑑,𝜓 (𝑤 ) .𝑙𝑎𝑡𝑒𝑠𝑡𝑐ℎ𝑖𝑙𝑑 ) ←− (⊥, −1,⊥

, false,⊥,⊥)
26 𝑎.𝐼𝑛𝑖𝑡𝑃𝑟𝑜𝑏𝑒 ←− false

27 𝑃𝑟𝑜𝑏𝑒 (𝑎) // See Algorithm 5

28 if 𝜓 (𝑤 ) .𝑑𝑜𝑛𝑒 = true then
29 /******************************* Slot 20 begins ****************/

30 if 𝜓 (𝑤 ) .𝑛𝑒𝑥𝑡 =⊥ then
31 𝜓 (𝑤 ) .𝑛𝑒𝑥𝑡 ←− 𝜓 (𝑤 ) .𝑝𝑎𝑟𝑒𝑛𝑡 // For backward move

32 Agent 𝑎 moves to𝜓 (𝑤 ) .𝑙𝑎𝑡𝑒𝑠𝑡𝑐ℎ𝑖𝑙𝑑 and updates the

nextsibling to ⊥. // The Latest child does not

have the next sibling.

33 Agent 𝑎 returns back to 𝑤.

34 𝜓 (𝑤 ) .𝑙𝑎𝑡𝑒𝑠𝑡𝑐ℎ𝑖𝑙𝑑 ←⊥
35 All agents in𝐴(𝑤 )\{𝜓 (𝑤 ) } move to 𝑁 (𝑤,𝜓 (𝑤 ) .𝑛𝑒𝑥𝑡 )
36 /******************************* Slot 21 begins ****************/

37 𝑎.𝑝𝑎𝑟𝑒𝑛𝑡 ←− 𝑎.pin

38 𝑎.𝐼𝑛𝑖𝑡𝑃𝑟𝑜𝑏𝑒 ←− true // Reached at the next node for
dispersion. To figure out the next port for DFS
Probing would be required.

remains stationary at its position 𝑣 after completing its exploration

in 𝛿𝑣 (𝑑 + 2D2) rounds. Consequently, 𝑎 has at least 3 opportunities

to encounter 𝑏 at node 𝑣 .

Therefore, the round complexity is 𝑂 (𝛿𝑤 (B + 2B2)) =

𝑂 (𝛿𝑤 log
2 𝑛), as B ≤ 𝑐 · log𝑛. The lemma follows. □

Lemma 3.2. An initially singleton agent 𝑎 at node𝑤 running Sin-
gleton_Election (Algorithm 2) either becomes a 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 or a
settler within 𝑂 (𝑛 log2 𝑛) rounds.

We omit the proof of this lemma due to space constraints.

Lemma 3.3. The Line 18 (in Algorithm 1) takes 𝑂 (𝑛) rounds to
inform all the agents in the graph.
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Algorithm 5: 𝑃𝑟𝑜𝑏𝑒 (𝑎)
1 /******************************* Slot 7 begins ***********************/

2 Let 𝑤 = 𝜈 (𝑎)

3 𝜓 (𝑤 ) .𝑛𝑒𝑥𝑡 ←−
{
min 𝑃, if 𝑃 ≠ 𝜙

⊥, otherwise

4 where 𝑃 = [0,𝜓 (𝑤 ) .checked] \ {𝑏.pin | 𝑏 ∈ 𝐴𝑆 (𝑤 )\𝜓 (𝑤 ) }
5 𝑏.help←−⊥ for all 𝑏 ∈ 𝐴𝑆 (𝑤 ) with 𝑏 ≺ 𝑎.

6 Let all agents 𝑏 ∈ 𝐴𝑆 (𝑤 ) with 𝑏 ≺ 𝑎 go back to their homes.

7 if 𝜓 (𝑤 ) .𝑛𝑒𝑥𝑡 ≠⊥ ∨ 𝜓 (𝑤 ) .checked = 𝛿𝑤 − 1 then
8 /******************************* Slot 8 begins *********************/

9 Execute 𝑏.help←−⊥ for each 𝑏 ∈ 𝐴𝑆 (𝑤 )\{𝜓 (𝑤 ) }
10 Let all agents in𝐴𝑆 (𝑤 )\{𝜓 (𝑤 ) } go back to their homes.

11 𝜓 (𝑤 ) .𝑑𝑜𝑛𝑒 ←− true

12 else
13 /******************************* Slots 9 to 10 begins ******************/

14 Let {𝑎1, 𝑎2, . . . , 𝑎𝑥 } be the set of agents in𝐴𝑆 (𝑤 )\{𝜓 (𝑤 ) }
15 Let 𝛿 ′ =𝑚𝑖𝑛 (𝑥, 𝛿𝑤 − 1 −𝜓 (𝑤 ) .checked)
16 Let 𝑢𝑖 = 𝑁 (𝑤, 𝑖 +𝜓 (𝑤 ) .checked) for 𝑖 = 1, 2, . . . , 𝛿 ′

17 for each 𝑎𝑖 ∈ {𝑎1, 𝑎2, . . . , 𝑎𝛿′ } in parallel do
18 𝑎𝑖 moves to 𝑢𝑖 and stays for a round. // Neighboring node

might have an oscillating agent.

19 /******************************* Slot 11 begins ******************/

20 if (𝑎𝑖 .𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟, 𝑎𝑖 .𝑙𝑒𝑣𝑒𝑙 ) =
(𝜓 (𝑢𝑖 ) .𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟,𝜓 (𝑢𝑖 ) .𝑙𝑒𝑣𝑒𝑙 ) and 𝑎𝑖 .𝑓 𝑜𝑢𝑛𝑑 ≠ 𝜓 (𝑤 )
// 𝜓 (𝑤 ) does not consider his home node as empty

node.

21 then
22 𝑎𝑖 .found←− true
23 𝜓 (𝑢𝑖 ) .help←− 𝑎.pin

24 else
25 𝑎𝑖 .found←− false

26 Move to 𝑁 (𝑢𝑖 , 𝑎𝑖 .pin)
27 /******************************* Slots 12 to 15 begins ******************/

28 𝜓 (𝑤 ) .checked←− 𝜓 (𝑤 ) .checked + 𝛿 ′
29 Let all agents in𝐴𝑆 (𝑤 )\{𝜓 (𝑤 ) } go back to their homes.

30 if ∃𝑖 ∈ [1, 𝛿 ′ ] : 𝑎𝑖 .found = false then
31 𝜓 (𝑤 ) .𝑛𝑒𝑥𝑡 ←− 𝑖 +𝜓 (𝑤 ) .checked
32 if 𝜓 (𝑤 ) .𝑓 𝑖𝑟𝑠𝑡𝑐ℎ𝑖𝑙𝑑 =⊥ then
33 𝜓 (𝑤 ) .𝑓 𝑖𝑟𝑠𝑡𝑐ℎ𝑖𝑙𝑑 ← 𝑖 +𝜓 (𝑤 ) .checked
34 𝜓 (𝑤 ) .𝑙𝑎𝑡𝑒𝑠𝑡𝑐ℎ𝑖𝑙𝑑 ← 𝑖 +𝜓 (𝑤 ) .checked
35 else
36 Agent 𝑎 moves to𝜓 (𝑤 ) .𝑙𝑎𝑡𝑒𝑠𝑡𝑐ℎ𝑖𝑙𝑑 and update the

nextsibling at 𝑁 (𝑤, 𝜓 (𝑤 ) .𝑙𝑎𝑡𝑒𝑠𝑡𝑐ℎ𝑖𝑙𝑑 ) .
37 Agent 𝑎 returns back to 𝑤.

38 𝜓 (𝑤 ) .𝑙𝑎𝑡𝑒𝑠𝑡𝑐ℎ𝑖𝑙𝑑 ← 𝑖 +𝜓 (𝑤 ) .checked

Algorithm 6: The behavior of a 𝑠𝑒𝑡𝑡𝑙𝑒𝑟 𝑠 in Slot 6

1 /******************************* Slot 6 begins ****************/

2 if 𝑠.help ≠⊥ then
3 Move to 𝑁 (𝜈 (𝑠 ), 𝑠 .help)

Algorithm 7: The behavior of a 𝑧𝑜𝑚𝑏𝑖𝑒 𝑧 in Slots 16 and

19

1 /******************************* Slot 16 to 17 begins ****************/

2 (𝑧.𝑙𝑒𝑣𝑒𝑙𝐿, 𝑧.𝑙𝑒𝑣𝑒𝑙𝑆 ) ←− (𝜓 (𝑤 ) .𝑙𝑒𝑣𝑒𝑙,max{𝑧′ .𝑙𝑒𝑣𝑒𝑙 |𝑧′ ∈ 𝐴𝑍 (𝜈 (𝑧 ) ) } )
3 if 𝐴𝐿 (𝜈 (𝑧 ) ) ≠ 𝜙 and 𝑧 is a weak zombie then
4 Move to 𝑁 (𝜈 (𝑧 ),𝜓 (𝜈 (𝑧 ) ) .𝑛𝑒𝑥𝑡 )
5 /******************************* Slot 18 to 19 begins ****************/

6 if 𝐴𝐿 (𝜈 (𝑧 ) ) = 𝜙 then
7 Move to 𝑁 (𝜈 (𝑧 ),𝜓 (𝜈 (𝑧 ) ) .𝑛𝑒𝑥𝑡 )

Proof. In Line 18 of Algorithm 1, agent 𝑎 traverses the DFS tree

using the “first child” and “next sibling” ports. The agent 𝑎 performs

DFS traversal, utilizing these ports to navigate the tree. If an agent

is not settled at any node, 𝑎 waits for a round and then settles the

zombie with the minimum ID, provided it is not 𝜓 (𝑤), the home

node of agent 𝑎. This process requires at most 3𝑛 rounds: up to 2𝑛

rounds to traverse all edges twice and an additional 𝑛 rounds for

waiting at nodes where agents may oscillate. Hence, the overall

round complexity is 𝑂 (𝑛). □

Lemma 3.4. The level of an agent is always at most log𝑛 + 1.

Proof. A level-up event involves one 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 , 𝑎, and one

zombie, 𝑏, both at the same level. After the event, zombie 𝑏 is

assigned level 0 and will never initiate a level-up event again, as

the 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 ’s level is non-decreasing, starting from level 1.

Consequently, for any 𝑖 ≥ 1, the maximum number of agents that

can reach level 𝑖 is
⌊
𝑛/2𝑖−1

⌋
, which proves the lemma. □

Lemma 3.5. The location level of a zombie is monotonically non-
decreasing.

Proof. Neither a 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 nor a settler decreases its level in

Dispersion. When a zombie 𝑧 does not accompany a 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 ,

it chases a 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 through port 𝜓 (𝜈 (𝑧)) .𝑛𝑒𝑥𝑡 . This port

𝜓 (𝜈 (𝑧)) .𝑛𝑒𝑥𝑡 is updated only if a 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 makes a forward or

backward move from 𝜈 (𝑧), and the 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 updates the level

of 𝜓 (𝑁 (𝜈 (𝑧),𝜓 (𝜈 (𝑧)) .𝑛𝑒𝑥𝑡)) if it is smaller than its level. Thus, a

zombie never decreases its location level by chasing a 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 .

When a zombie 𝑧 accompanies a 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 , the 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟

copies its level to𝜓 (𝜈 (𝑧)) .𝑙𝑒𝑣𝑒𝑙 in slot 5, which is copied to 𝑧.𝑙𝑒𝑣𝑒𝑙𝐿
in slots 12-15. The 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 that 𝑧 accompanies may change but

does not change to a weaker 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 . Thus, a zombie never

decreases its location level when accompanying a 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 . □

Lemma 3.6. The number of weak zombies with a location level
𝑖 ≥ 0 is monotonically non-increasing starting from any configuration
where min({𝑎.𝑙𝑒𝑣𝑒𝑙 | 𝑎 ∈ 𝐴𝐴𝐿}

⋃ {𝑧.𝑙𝑒𝑣𝑒𝑙𝐿 | 𝑧 ∈ 𝐴𝑍 }) = 𝑖 .

Proof. Let 𝐶 be a configuration where

min ({𝑎.level | 𝑎 ∈ 𝐴𝐴𝐿} ∪ {𝑧.𝑙𝑒𝑣𝑒𝑙𝐿 | 𝑧 ∈ 𝐴𝑍 }) = 𝑖 . When a

𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 at level 𝑖 turns into a zombie, its location level

becomes 𝑖 (Line 5). As a result, a 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 at level 𝑖 may become

a strong zombie with location level 𝑖 , but it will never become

a weak zombie at the same location level. A zombie’s swarm

level only decreases when it accompanies a 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 (and this

𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 settles another zombie). Therefore, a strong zombie

with location level 𝑖 that does not accompany a 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 cannot

turn into a weak zombie without first increasing its location level.

Additionally, starting from 𝐶 , a strong zombie with location level 𝑖

must increase its location level upon encountering a 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟

in slot 4. Thus, the number of weak zombies at location level 𝑖

decreases monotonically. □

Lemma 3.7. In Lemma 3.6, location level 𝑖 is monotone non-
decreasing and increases by at least one in every 𝑂 (𝑛 log𝑛) time
steps unless 𝐴𝐴𝐿

⋃
𝐴𝑍 becomes empty.

Proof. Let 𝑖 be an integer such that 𝑖 ≥ 0 and 𝐶 be a configu-

ration where min ({𝑎.𝑙𝑒𝑣𝑒𝑙 | 𝑎 ∈ 𝐴𝐴𝐿} ∪ {𝑧.𝑙𝑒𝑣𝑒𝑙𝐿 | 𝑧 ∈ 𝐴𝑍 }) = 𝑖 .
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It is sufficient to show that 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟s with level 𝑖 and zom-

bies with location level 𝑖 disappear within 𝑂 (𝑛 log𝑛) time steps,

starting from 𝐶 . Consider an execution starting from configuration

𝐶 . By Lemma 3.6, no weak zombie with location level 𝑖 is newly

created during this execution. Let 𝑧 represent any weak zombie

at location level 𝑖 that is not accompanied by a 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 in

configuration 𝐶 . Over every 21 time slots, 𝑧 moves twice, whereas

both a strong zombie and a 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 only move once, exclud-

ing movement related to probing. Consequently, 𝑧 either catches

up to a strong zombie and becomes strong reaches a 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟

with level 𝑖 , or increases its location level within 𝑂 (𝑛) time steps.

When 𝑧 reaches a 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 , it either joins the 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 ’s

HEO-DFS or the 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 turns into a zombie. In the latter case,

𝑧 becomes a strong zombie. Therefore, within𝑂 (𝑛 log𝑛) time steps,

𝑧 either settles or becomes a strong zombie (aligned with the cur-

rent 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 ). As a result, the number of weak zombies with

location level 𝑖 is reduced to zero in 𝑂 (𝑛 log𝑛) time steps.

Once all weak zombies at location level 𝑖 are gone, no wait-

ing 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 at level 𝑖 will resume its HEO-DFS without first

increasing its level, since no weak zombies remain at that level.

Consequently, every active 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 at location level 𝑖 either

turns into a zombie with location level at least 𝑖 + 1 or becomes a

waiting 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 within𝑂 (𝑛 log𝑛) time steps. Therefore, active

𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟s at location level 𝑖 also disappear within 𝑂 (𝑛 log𝑛)
time steps. From this point onward, no 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 will move

within the territory of a group with level 𝑖 or lower. As a result,

every strong zombie with location level 𝑖 either increases its loca-

tion level or catches up to a waiting 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 . Since the waiting

𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 ’s level is at least 𝑖 , catching up also results in 𝑧 increas-

ing its level by at least one. □

Proof of Theorem 1.1: Lemmas 3.1–3.7 support the round com-

plexity𝑂 (𝑛 log2 𝑛). From Algorithms 1–7, it follows that each agent

𝑎 uses the constant amount of information to track its status – 𝑎.𝐼𝐷 ,

status as a candidate, settler, zombie, local leader, global leader, and

other pointers of a parent, first child, latest child, and next sibling

along with some initial probes. All of these require 𝑂 (log𝑛) bits of
memory. In Algorithm 1, Line 18 ensures that the highest priority

agent completes the DFS traversal in 𝑂 (𝑛) rounds. Since agents
have unique priority, a unique agent is elected as a leader. □

4 APPLICATIONS TO OTHER PROBLEMS
We use leader election Theorem 1.1 and provide improved solutions

to MST, MIS, MDS, and Gathering in the agent-based model (see

Table 2 for result summary and comparison). All these problems

assume 𝑛 agents initially located arbitrarily on the nodes of 𝐺 .

Gathering. The problem of gathering asks the agents to relocate

autonomously to position them on a node of 𝐺 not fixed a priori.

We establish the following result.

Theorem 4.1. There is a deterministic algorithm that solves gath-
ering in 𝐺 in 𝑂 (𝑛 log2 𝑛) rounds with 𝑂 (log𝑛) bits at each agent,
without agents knowing any graph parameter a priori.

This is an improvement over the state-of-the-art result of [10]

which solves gathering in 𝑂 (𝑚) time with 𝑂 (𝑛 log𝑛) bits at each
agent. Our solution is as follows: first elect a leader using Algorithm

1 in 𝑂 (𝑛 log2 𝑛) rounds with 𝑂 (log𝑛) bits at each agent, then ask

the leader to re-traverse the DFS tree built during leader election

to collect the agents to its root node which finishes in 𝑂 (𝑛) time

with 𝑂 (log𝑛) bits per agent.
MIS. The problem of maximal independent set (MIS) asks the agents

to relocate autonomously to find a subset 𝑆 ⊂ 𝑉 of nodes such that

𝑆 forms an MIS of 𝐺 . We establish the following result.

Theorem 4.2. There is a deterministic algorithm that finds an MIS
of𝐺 in𝑂 (𝑛 log2 𝑛 +𝑛Δ) rounds with𝑂 (log𝑛) bits per agent, without
agents knowing any graph parameter a priori.

This is an improvement on memory over the state-of-the-art

result of [10] which finds a MIS in 𝑂 (𝑛Δ) rounds with 𝑂 (𝑛 log𝑛)
bits at each agent. Our solution is as follows: first solve gathering

as above and then use the technique of Pattanayak et al. [18], which
starting from a gathered configuration, finds an MIS of𝐺 in𝑂 (𝑛Δ)
rounds with 𝑂 (log𝑛) bits at each agent.

MDS.A dominating set of𝐺 is a subset𝐷𝑆 ⊂ 𝑉 of nodes such that if

𝑣 ∉ 𝐷𝑆 , 𝑣 has a neighbour in 𝐷𝑆 . We establish the following result.

Theorem 4.3. There is a deterministic algorithm that finds an
MDS of𝐺 in𝑂 (𝑛 log2 𝑛 +𝑚) rounds with𝑂 (log𝑛) bits at each agent,
without agents knowing any graph parameter a priori.

This is an improvement on memory over the state-of-the-art

result of [10] which finds an MDS in 𝑂 (𝑚) rounds with 𝑂 (𝑛 log𝑛)
bits at each agent. Our solution is as follows: first solve gathering as

above and then use the technique of Chand et al. [4], which starting

from a gathered configuration, finds an MDS of 𝐺 in 𝑂 (𝑚) rounds
with 𝑂 (log𝑛) bits at each agent.

MST. An MST of 𝐺 is a spanning tree that includes all vertices in

𝑉 and has the minimum possible total edge weight, with no cycles.

We establish the following result.

Theorem 4.4. There is a deterministic algorithm that finds an
MST of 𝐺 in 𝑂 (𝑚 + 𝑛 log2 𝑛) rounds with 𝑂 (Δ log𝑛) bits at each
agent, without agents knowing any graph parameter a priori.

This is an improvement on memory over the state-of-the-art

result of [10] which finds an MST in 𝑂 (𝑚 + 𝑛 log𝑛) rounds with
𝑂 (𝑛 log𝑛) bits at each agent. Our solution is as follows: first elect

a leader as in Algorithm 1 and then use the MST technique of

Kshemkalyani et al. [10].

5 CONCLUDING REMARKS
In this paper, we have studied leader election, a fundamental and

widely-studied problem, in the agent-based model which extends

the message-passing model in a new direction. Specifically, we have

developed a deterministic algorithm that elects an agent at a graph

node as a leader in 𝑂 (𝑛 log2 𝑛) rounds with only 𝑂 (log𝑛) bits at
each agent, without agents knowing any graph parameter a priori.

This result is interesting and significant from three aspects: (i) It is

a substantial improvement over the best previously known 𝑂 (𝑚)
time𝑂 (𝑛 log𝑛) bits/agent result, (ii) The memory bound is optimal

and time bound is optimal within an 𝑂 (log2 𝑛) factor, and (iii) The

result became central in improve time and/or memory complexities

of many other fundamental distributed graph problems, such as

MIS, MDS, MST, and gathering. For the future work, it would be

interesting to remove 𝑂 (log2 𝑛) factor from time to obtain simulta-

neously time-and-memory-optimal leader election algorithm.
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