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ABSTRACT
Reinforcement learning methods have proposed promising traffic
signal control policy that can be trained on large road networks.
Current SOTAmethods model road networks as topological graph
structures, incorporate graph attention into deep Q-learning, and
merge local and global embeddings to improve policy. However,
graph-based methods are difficult to parallelize, resulting in huge
time overhead. Moreover, none of the current peer studies have de-
ployed dynamic traffic systems for experiments, which is far from
the actual situation.

In this context, we propose Multi-Scene Aggregation Convo-
lutional Learning for traffic signal control (MacLight), which of-
fers faster training speeds and more stable performance. Our ap-
proach consists of two main components. The first is the global
representation, where we utilize variational autoencoders to com-
pactly compress and extract the global representation. The second
component employs the proximal policy optimization algorithm as
the backbone, allowing value evaluation to consider both local fea-
tures and global embedding representations. This backbone model
significantly reduces time overhead and ensures stability in policy
updates. We validated our method across multiple traffic scenar-
ios under both static and dynamic traffic systems. Experimental
results demonstrate that, compared to general and domian SOTA
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methods, our approach achieves superior stability, optimized con-
vergence levels and the highest time efficiency. The code is under
https://github.com/Aegis1863/MacLight.
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1 INTRODUCTION
Traffic signal control (TSC) is an important issue in urban man-
agement. As the number of vehicles owned by residents increases,
the deteriorating traffic conditions have a serious impact on social
development. Traffic signal optimization is a low-cost means to al-
leviate traffic pressure.

The optimization of traffic light timing constitutes a complex
nonlinear stochastic problem, as highlighted in [32]. Traditional
intelligent control solutions often resort to assumptions or lack of
flexibility, such as unlimited lane capacity [24], Christina Diakaki
et al. [6] assumes that the traffic flow is uniform, or fail to adapt
effectively to dynamic traffic flows [7]. Consequently, the perfor-
mance may fall short of that achieved by a fixed timing plan metic-
ulously crafted by human experts.

Although mathematical modeling of real traffic systems is very
difficult, the emergence of mature traffic simulators can provide in-
teractive environments, whichmeans that model-freemethods can
be applied. Reinforcement learning (RL) [21–23] provides SOTA so-
lutions in the field ofmodel-free control. Preliminary RL approaches,
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such as Q-learning [27] and its variants, have shown promising re-
sults in optimizing TSC. By iteratively learning from the environ-
ment, these algorithms can dynamically adjust signal to minimize
congestion.

Intelligent control methods for individual traffic lights are very
mature [28], but they are inefficient for large road networks. Cur-
rent research focuses on whether multiple traffic lights can effec-
tively coordinate to achieve effects such as green wave roads. A
common approach is to model the road network as a topology
graph structure and introduce Graph Attention Networks (GAT)
[25], enabling traffic signals to consider both local and neighbor-
ing features for comprehensive optimization decisions through fea-
ture aggregation. However, current GAT-based approaches [14, 15,
29] are almost used in Deep Q-learning (DQN) [17]. DQN, As an
off-policy framework, despite being data-efficient, graph learning
and batch learning consume significant time and computational
resources. A more critical issue is they are prone to overfitting,
leading to policy collapse.

In this case, we consider both local and global characteristics
and propose a novel global scene aggregation approach. Our ap-
proach is motivated by two key points: firstly, the ability of
decision-making and value evaluation of agents should to be
separated. Thus, we utilize Proximal Policy Optimization (PPO)
[19] as the backbone model, which has a value evaluation mod-
ule and a policy improvement module to process different infor-
mation respectively. Secondly, global scene aggregation does not
necessarily require topological graph modeling. Research by Hua
Wei et al. [29] indicates that in topological graph modeling scenar-
ios, each agent considering only one-hop neighbors yields
the best results, which limits the agent’s understanding of
broader states.Therefore, we aggregate the features of each agent
(scene), using convolutional neural networks (CNN) [11] for a la-
tent global representation. Another important reason for not using
graph convolutional neural networks (GCNs) is that it is difficult
to compute in parallel and apply to the more advanced Actor Critic
RL framework. Consequently, our approach is called multi-scene
aggregation convolutional learning (MacLight).

Furthermore, we are the first construct dynamic traffic flow
scenario by using the professional open-source simulator SUMO
[13]. It can simulate the change of traffic flow distribution caused
by emergency traffic incidents. We incorporate it as a challenging
experimental scenario, alongside other general scenarios to test al-
gorithms. Specifically, we can impose emergency speed limits or
ban traffic on any road and reroute all vehicles. Vehicles take speed
limits or bans into account and choose new routes, similar to what
might happen in real life, causing sudden changes in traffic distri-
bution on some roads. This requires agents not only to cope with
familiar traffic characteristics but also to have the ability to handle
dynamically changing traffic flows.This greatly expands the scope
of existing research.

In summary, the contributions of this paper are as follows:

• We construct a dynamic traffic flow simulation scheme to
simulate any possible emergency traffic events, greatly ex-
panding the current research space.

• Wepropose an online-trained variational autoencoder (VAE)
based on CNN for global state representation, obtaining a

compact and efficient representation from the latent space
for downstream learning.

• We integrate global state representation into the value eval-
uation module of PPO, enabling the algorithm to balance lo-
cal and macro characteristics, and demonstrating superior
performance compared to both general and domain SOTA.

2 RELATEDWORK
Customizable simulator. In the field of TSC, the Simulation of
Urban MObility (SUMO) simulator is widely used for urban plan-
ning and traffic flow simulation. The simulator allows researchers
to define any desired traffic flow scenario. Ma and Wu [16] were
among the first to utilize SUMO for traffic control simulations, and
it has become themain tool for relevant researchers in recent years.
Furthermore, SUMO-RL [1, 2] integrates SUMO with the OpenAI
Gym environment, facilitating RL training in TSC.

Intelligent traffic control. In a multi-agent system, domain
knowledge becomes a key for communication and coordination
between agents. Some early methods such as PressLight [28] have
achieved good single-agent control and proposed feasible train-
ing methods. MPLight [4] is based on PressLight and extends it
to large road networks, using the same model to make decisions
for all intersections, which requires that the state space and action
space of each intersection are consistent. After Afshin Oroojlooy
et al. [18] introduced the attention mechanism into this field, the
GAT method gradually became mainstream. From a multi-agent
perspective, several traffic lights are usually regarded as multiple
different agents, and the road network is regarded as a topological
structure to model the data structure. In this case, GAT becomes
the main optimization method. For example, CoLight [29] is based
on the DQN method and uses GAT to assign weights to neighbors.
Experiments show that each agent works best when it only pays
attention to itself and its one-hop neighbors. STMARL [26] and
DynSTGAT [30] use a LSTM [8] or TCN [12] to capture historical
state information (such as traffic flow) and use a graph convolu-
tional network (GCN) or GAT to obtain spatial dependencies. Dua-
Light [15] introduces scene characteristics based on CoLight, intro-
duces neighbor weighted matrices and feature-weighted matrices
for each agent, and also performs GAT representation on the one-
hop neighbors, further enhancing the agent’s understanding of its
own scene and local coordination capabilities. GuideLight [9] im-
plements a control method that is closer to industrial needs based
on cyclic phase switching and combined with behavioral cloning
and curriculum learning training models.

3 NOTATION
We define the key concepts in RL for TSC before introducing our
model, including the signal configuration and modeling TSC as a
Partially Observable Markov Decision Process (POMDP).

Intersection. Fig. 1 shows a general right-hand 2-way 6-lane
intersection. We define the traffic light numbers starting from the
north and proceeding clockwise. The left-turn lanes can only be
used for left turns, while the right-turn lanes can be used for both
going straight and turning right. Among these, traffic lights num-
bered 1, 5, 9, and 13 are for right-turn lanes and are default to green.
However, when going straight in a right-turn lane, one must obey
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Figure 1: General right-hand 2-way 6-lane intersection with
eight non-conflicting green light signal configurations. The
right turn lane signal is green by default. Traffic signal num-
bers start from the north and go clockwise.

the green signal of going straight. Each time 3 or 4 green light sig-
nals are given to allow passing, a total of 8 signal combinations are
defined in the scenario.

Phase. Referring to the table on the right side of Fig. 1, we de-
fine an equitable signal configuration scheme that ensures no lane
conflicts exist for any passing scenarios within a single cycle and
each lane has two opportunities for passing within the cycle. This
scheme is consistent with most real-world configurations, and the
algorithm can adapt individually even if there are different config-
uration schemes.

POMDP Modeling for TSC. The traffic signal control prob-
lem is modeled as a POMDP. We consider each intersection as an
independent agent that faces continuously changing traffic condi-
tions and can only observe its own information completely, with-
out grasping the global state. Another principle is that the next
state is only affected by the current state and the current decision,
and has nothing to do with the previous state. A POMDP can be
described by a tuple ⟨S,O,A,P,R, 𝜋,𝛾, ⟩ and is introduced below.

Global state space S & Partial state space O. The partial ob-
servation of agent 𝑖 at time 𝑡 is 𝑜𝑡𝑖 ∈ O, while global state 𝑠𝑡 ∈ S
and 𝑜𝑡𝑖 ∈ 𝑠𝑡 . Partial observations are also called local observations
in following context. Refer to [2], each local observation consists
of four parts:

1. The current action represented as a one-hot vector;
2. A boolean value indicating whether the current signal al-

lows switching. We specify that each action must remain
in place for at least 10 seconds to meet real-world require-
ments;

3. The vehicle density in each lane, calculated as the number
of vehicles in the lane divided by the lane capacity;

4. The density of waiting vehicles in each lane, calculated as
the number of stopped vehicles divided by the lane capacity;

These components are encoded into a vector to represent the cur-
rent state of each intersection.

Action A. In the case of Fig. 1, the eight phases correspond to
eight different action choices. At time 𝑡 , the action of agent 𝑖 is
𝑎𝑡𝑖 ∈ A. In the simulation, by default, we provide the correspond-
ing yellow signal before switching the red signal.

Table 1: Comparison of different reward methods. The first
column includes various reward targets and a baseline, and
the first row is the system indicators. Arrows indicate the
better direction, and standard deviations in brackets are ob-
tained from multiple experiments. The fixed time is similar
to the real-life solution, that is, the fixed time switching sig-
nal, which is a baseline.

Waiting↓ Queue↓ Speed↑

Pressure 2106.7 (1283) 40.8 (7) 7.9 (0.4)
Queue 4358.5 (2608) 50.4 (8) 7.5 (0.3)
Speed 1009.9 (597) 31.5 (9) 8.4 (0.4)
Waiting 790.1 (703) 23.8 (10) 8.8 (0.6)
Fixed time 684.8 70.2 8.1
Our adoption 422.0 (577) 21.9 (11) 9.0 (0.6)

Transition probability P. Due to the Markov property, the
probability transfer function is expressed asP(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ).The spe-
cific form of the function is unknown and is usually represented
by reality or a simulator. We perform RL to capture the dynamic
characteristics.

Reward R. Referring to the design of Alegre et al. [2], we first
define the vehicle waiting time. At time 𝑡 , the total waiting time
of all vehicles stopped at intersection (agent) 𝑖 is denoted as𝑊 𝑡

𝑖 .
Then the reward of the agent is 𝑟𝑡𝑖 = 𝑊 𝑡−1

𝑖 −𝑊 𝑡
𝑖 . Our goal is to

maximize the reward, which means that the agent should try to
make the current waiting time shorter than the previous waiting
time. The final reward is expected to converge to around 0, i.e., the
system reaches a state of equilibrium. The advantage of consider-
ing waiting time as a reward is that the agent will not deliberately
delay the release time of some lanes due to fewer cars there, but
instead balanced take all vehicles into consideration.

There aremany reward functions. For example, the reward value
can increase with the decrease in the number of blocked vehicles,
or set a pressure indicator [28] to measure the difference between
the number of vehicles entering and leaving the lane. We test var-
ious reward functions in ”ingolstadt21” [3], and this scenario is
completely different from ours. We adopt the same algorithm in-
dependent PPO (IPPO) for all experiments. In this case, we evaluate
various indicators and determine that the aforementioned method
is the best choice, with superior performance compared to other
methods. The experimental results are shown in Table 1.

Policy 𝜋 . The decision made by agent 𝑖 in time 𝑡 based on the
current partial observation 𝑜𝑡𝑖 is given by policy function 𝜋𝑡𝑖 (𝑎

𝑡
𝑖 |𝑜

𝑡
𝑖 ).

The agent policy should maximize the total reward
∑𝑇
𝑡=𝜏 𝛾

𝑡−𝜏𝑟𝑡𝑖 ,
where 𝛾 is the discount factor, usually 0.98. This means that agents
discount future reward and care first about near-term reward.

4 METHODOLOGY
In this section, we will introduce the implementation of MacLight,
including information aggregation, VAE feature compression, PPO,
and method of dynamic traffic flow construction.
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Figure 2: MacLight framework. The first row shows how to construct the aggregation matrix and the second row introduces
the main model frameworks, including VAE and PPO.

4.1 Multi-scene aggregation matrix
Considering the geographical invariance of intersections, we orga-
nize the global information into a three-dimensional matrix. The
global information is obtained by merging several local informa-
tion, and each local information can be regarded as a scene. The
local information of each intersection can be represented as a fea-
ture vector. Each vector is appropriately transposed and organized
according to its location in geographic space, ultimately forming
a high-dimensional global feature matrix as shown in the upper
right of Fig. 2. The width and height of the matrix correspond to
the geographical locations, and the number of channels is equal to
the length of a single feature vector.

Clearly, the grid-based setting is the foundation for adopting
CNN as the representation model. Although real-world road net-
works do not appear as regular as pixel grids, considering thatmost
intersections are four-armed, the grid-like characteristics can still
be observed when transforming them into a graph.

4.2 Autoencoder
For feature extraction of three-dimensional matrices, we construct
a VAE based on CNN.The structure refers to the VAE in Fig. 2. The
encoder performs downsampling and finally outputs a compact
compressed representation. The decoder restores the representa-
tion to the original matrix. Its training is carried out according to
the method of Diederik P. Kingma and Max Welling [10].

We first give the process of upsampling, for a matrix 𝑥 with a
channel length of 33, the process is

ℎ = Conv2563

[
ReLU(Conv1283 (ReLU(Conv643 (𝑥))))

]
. (1)

The parameters of the Gaussian distribution represented in the
latent space are calculated as

𝜇 =𝑊𝜇ℎ + 𝑏𝜇 ,
log𝜎2 =𝑊logvarℎ + 𝑏logvar,

(2)

where 𝑊𝜇 , 𝑏𝜇 , 𝑊logvar and 𝑏logvar correspond to weights and bi-
ases respectively. Then, an effective compact representation 𝑧 is
obtained by Gaussian distributions built on 𝜇 and 𝜎 :

𝑧 = 𝜇 + 𝜖 · 𝜎, 𝜖 ∼ N(0, 𝐼 ) . (3)

The decoder uses transposed convolution models:

𝑧𝑟𝑒𝑠ℎ𝑎𝑝𝑒 = Reshape(Linear(𝑧)),
𝑥recon = Sigmoid

[
ConvTrans333

[
ReLU(ConvTrans643 (

ReLU(ConvTrans1283 (𝑧𝑟𝑒𝑠ℎ𝑎𝑝𝑒 ))))
] ]
,

(4)

wherewe use sigmoid activation for output because the value range
of the observation vector is between 0 and 1. Thus, The loss func-
tion is expressed as:

𝐿𝑣𝑎𝑒 = 𝐿𝑟𝑒𝑐𝑜𝑛 + 𝐿𝑘𝑙 , (5)
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where 𝐿𝑟𝑒𝑐𝑜𝑛 and 𝐿𝑘𝑙 are simply expressed as
𝐿𝑟𝑒𝑐𝑜𝑛 = − log 𝑝 (𝑥 |𝑧),

𝐿𝑘𝑙 = −1
2

∑(
1 + log𝜎2 − 𝜇2 − 𝜎2

)
.

(6)

In short, the VAE can be trained online during the RL training
process. Due to the efficient calculation of CNNonGPU, the overall
algorithm can maintain its advantage in saving time. The global
feature representation 𝑧 will be concatenated with the local feature
to be local-global aggregation representations 𝑠 𝑓𝑡 and passed to the
corresponding agent for PPO learning.

4.3 PPO
We adopt the PPO algorithm with Generalized Advantage Estima-
tion (GAE) trick as backbone model, refer to bottom right of Fig.
2. The core idea of PPO is to update the policy by maximizing a
clipped objective function, which helps prevent large updates that
could destabilize training.

The policy function for PPO can be expressed as:

𝐿𝐶𝐿𝐼𝑃 (𝜃 ) = E𝑡
[
min

(
𝑟𝑡 (𝜃 )𝐴𝑡 , clip(𝑟𝑡 (𝜃 ), 1 − 𝜖, 1 + 𝜖)𝐴𝑡

)]
, (7)

where 𝑟𝑡 (𝜃 ) is the probability ratio defined as 𝜋𝜃 (𝑎𝑡 |𝑜𝑡 )
𝜋𝜃old (𝑎𝑡 |𝑜𝑡 )

. Here, 𝜋𝜃
denotes the policy parameterized by 𝜃 , 𝑎𝑡 is the action taken, and
𝑜𝑡 is the local observation at time 𝑡 . The term 𝐴𝑡 represents the
estimated advantage, which quantifies how much better the taken
action was compared to the expected action under the current pol-
icy.

We use GAE to compute the advantage estimate𝐴𝑡 . It considers
not only the immediate reward but also the value of future states,
allowing for a more accurate approximation of advantage. The ad-
vantage can be computed as follows:

𝐴𝑡 =
∞∑
𝑙=0

(𝛾𝜆)𝑙𝛿𝑡+𝑙 , (8)

where 𝜆 is a discount factor to balance short-term and long-term
advantages, and 𝛿𝑡 is defined as:

𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉𝜃 (𝑠
𝑓
𝑡+1) −𝑉𝜃 (𝑠

𝑓
𝑡 ), (9)

where 𝑉𝜃 (𝑠 𝑓 ) represents the value function approximated by the
neural network, 𝑟𝑡 is the immediate reward, 𝑠 𝑓𝑡 is global-local ag-
gregation representation introduced in the previous subsection, and
𝛾 is the discount factor that balances the importance of future re-
wards.

In addition, to updating the policy, the value function loss can
be defined as:

𝐿𝑉 (𝜃 ) = E𝑡
[
(𝑉𝜃 (𝑠

𝑓
𝑡 ) −𝑉target,𝑡 )

2
]
, (10)

where 𝑉target,𝑡 is typically the sum of the immediate reward and
the discounted value of the next state:

𝑉target,𝑡 = 𝑟𝑡 + 𝛾𝑉𝜃 (𝑠
𝑓
𝑡+1). (11)

Through this structured approach, PPO with GAE provides a ro-
bust mechanism for policy updates while maintaining stability in
learning, allowing for effective exploration and improved sample

efficiency in the task. MacLight pseudocode is summarized in Al-
gorithm 1. Ultimately, the algorithm will try to maximize the total
reward to achieve the overall goal.

Algorithm 1 The pseudocode of MacLight

Ensure: The neural networks: 𝑓 𝑒 , 𝑓 𝑑 ,𝑉𝑘 ;𝜋𝑘 // Encoder, Decon-
der, ValueNet, PolicyNet;

1: Initialize: 𝐿,𝑇 , 𝐾, 𝐸; // Training episodes, timesteps, number
of intersections (agents), inner updating epoch of PPO;

2: for episode 𝑙 = 1 to 𝐿 do
3: for timestep 𝑡 = 1 to 𝑇 do
4: Global feature matrix 𝑠𝑡 ;
5: Encoder global representation 𝑠𝑔𝑡 = 𝑓 𝑒 (𝑠𝑡 );
6: Decoder reconstruction 𝑠𝑟𝑡 = 𝑓 𝑑 (𝑠𝑔𝑡 );
7: Update the autoencoder 𝑓 𝑒 , 𝑓 𝑑 using Eq. 5;
8: for agent 𝑘 = 1 to 𝐾 do
9: Partial observation 𝑜𝑘𝑡 , global representation 𝑠

𝑔
𝑡 ;

10: Global-local representation 𝑠 𝑓𝑡 = [𝑠𝑔𝑡 , 𝑜𝑘𝑡 ];
11: Calculate advantage 𝐴𝑡 using 𝑉 , 𝑠 𝑓𝑡 by Eq. 8;
12: for train epoch 𝑒 = 1 to 𝐸 do
13: Update 𝑉𝑘 using 𝑠 𝑓𝑡 by Eq. 10;
14: Update 𝜋𝑘 using 𝑜𝑘𝑡 and 𝐴𝑡 by Eq. 7;
15: end for
16: end for
17: end for
18: end for
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Figure 3: The road network of the simulation environment
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Figure 4: Some blocked lane traffic flow distributions

4.4 Dynamic traffic flow construction
In current TSC RL studies, the deployment of traffic flow is typi-
cally fixed, with all vehicles following predetermined routes. Our
experiment, however, is the first to build a dynamic traffic flow
environment that simulates emergency road events, which cause
sudden changes in the distribution of traffic on other roads.

As illustrated in Fig. 3, when four central roads—D3C3, D3D2,
D2C2, and C3C2—are blocked, all vehicles are asked to reroute.
We conduct two experiments to analyze the effects. In Fig. 4, the
gray curve shows the traffic flow distribution on a specific lane un-
der normal conditions (without any interference), while the red
curve shows the distribution after blocking a specific road. The
lane blockage period is marked by a blue vertical dashed line. Dur-
ing this time, the traffic volume on the affected lanes drops signif-
icantly as vehicles select new optimal routes. Fig. 5 illustrates the
changes in traffic flow on other, unblocked roads.

The impact of congestion on one road can be quite complex
and influence other roads in unpredictable ways. Fig. 5 shows the
flow distribution for unblocked lanes after the designated roads
are closed. For example, while the traffic flow distribution on roads
E1E10 remains largely unaffected, there is a significant increase in
traffic on D4C4. On the other hand, B1A1 sees a sharp rise in traf-
fic, while B3B4 experiences a decrease. Such interdependencies are
difficult to model accurately but are common in real-world traffic
systems. Consequently, our algorithmmust account for these com-
plex interactions.

5 EXPERIMENTS
This section introduces the experimental environments, evaluation
indicators, comparison algorithms, main experimental and abla-
tion analysis. Table 3 can quickly check the experimental results.

5.1 Environment and metrics
Environment. In order to comprehensively evaluate algorithms,
three different traffic scenarios are constructed on the same road
network as shown in Fig. 3. The system is represented by a 4×4

Figure 5: Some regular road traffic flow distributions

(a) Average waiting time (b) Average queue length (c) Average speed

Figure 6: Statistics of different experimental scenarios

grid arranged horizontally and vertically, with a distance of 200
meters. The three scenarios are a normal-pressure scenario with
regular traffic flow called Normal, a high-pressure scenario with
extremely high traffic flow called Peak, and a dynamic traffic sce-
nario with normal traffic flow but random emergency road block-
age called Block. The randomly blocked lanes are indicated by yel-
low parts in Fig. 3. In terms of task difficulty, the minimum traffic
pressure for our scenarios is much greater than all the other cur-
rent studies, refer to Table 2. Benchmarking our experimental sce-
narios, when all three scenarios adopt a fixed phase switching time
of every 45 seconds, the system simulation statistics are shown in
Fig. 6. All simulations are performed on the SUMO [13] simulation
platform.

Metrics. In each scenario, we not only present the total reward
results for all algorithms but also establish three objective metrics
for comprehensive evaluation: the system’s average waiting time,
the queue length of waiting vehicles, and the average speed. These
metrics take into account both temporal and spatial factors, en-
abling a more holistic assessment of the transportation system and
preventing reward hacking [20]. The training seed range for all al-
gorithms is set from 42 to 46, with details provided in the following
subsection.
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(a) Normal (b) Peak (c) Block

Figure 7: Training details of cumulative rewards

Table 2: Number of vehicles deployed on different scenario.
Normal&Block and Peak are ours, while arterial4x4 and
grid4x4 are the two similar scenarios tested in DuaLight.

Normal&Block Peak arterial4x4 grid4x4
Vehicles 8000 10286 2485 1472

5.2 Comparison methods
MacLight will be compared with a variety of algorithms, including
the traditional method of setting a fixed time switching phase and
a variety of advanced algorithms based on RL.

The parameters of MacLight can be found in our code, where a
clear table is also provided. The parameters of other methods are
from the general settings or the corresponding papers and related
codes.

Fixed time. Similar to the control method in reality, we con-
figure the same fixed time switching method for all traffic lights:
switching the phase every 45 seconds.

IPPO. Refer to [5]. A separate agent with PPO algorithm is con-
structed for each intersection, and each agent only focuses on its
own local information. IPPO can be regarded as the ablation object
of MacLight.

MAPPO. Refer to [31]. Similar to IPPO, but only one value eval-
uation network is used globally, whose input is the concatenation
of local observations of all agents, while policy modules are as
same as IPPO.

IDQN. Similar to IPPO, but replaces the PPO with DQN. IDQN
is the backbone model of CoLight and DuaLight.

CoLight. Referring to [29], a strong algorithm for applying RL
to TSC tasks using GAT, built on top of DQN.

DuaLight. Reference [15], a SOTA based on CoLight, adds fea-
ture weight matrix and neighborhood weight matrix for different
scenarios to the backbone network for Q learning, which shows
better representation effect than CoLight. It is also based on DQN.

5.3 Main results
Comparative experiments. Table 3 shows comprehensive com-
parison of experimental results. MacLight performs best in theNor-
mal scene, with relatively good average performance and stability,
followed by IPPO. In the high-pressure traffic environment Peak,

the return and waiting time indicators are not as good as the Fixed
method, because the indicators represent the average of the entire
process, and if we check the final value, MacLight still has the best
performance. In the dynamic traffic environment Block, indicators
are inferior to IPPO. IDQN and the DQN-based CoLight and Dua-
Light methods perform poorly and are very prone to overfitting
and policy collapse when faced with relatively sparse rewards and
unstable data.

Training and testing. Fig. 7 shows the change of cumulative
rewards during the entire training process, with the shadows indi-
cating the maximum and minimum regions recorded for different
seed experiments. On-policy approaches MacLight and IPPO, con-
sistently demonstrates stable policy improvement across all sce-
narios. In contrast, off-policy methods such as IDQN and CoLight,
while exhibiting robust initial performance, tend to collapse shortly
thereafter.These methods are better suited for less challenging sce-
narios, leveraging the advantages of smaller models to avoid over-
fitting. However, they falter in high-difficulty, sparse-reward envi-
ronments.

We show the test results of all algorithms in Table. 4, where the
indicator is average return. These results show the scores achieved
by each method with the best performance on a completely new
seed environment. It can be noted that there are some differences
with the training data, for example, MacLight is slightly better than
IPPO in Block at this time, but lags behind IPPO inNormal. In short,
although MacLight does not show a clear advantage over IPPO in
some aspects, the cooperation mechanism is still an issue worth
discussing.

Ablation analysis. IPPO in Table 3 can be regarded as an abla-
tion experiment of MacLight, because MacLight modifies the input
of the value module from local features to local-global aggregate
representation. On most indicators, MacLight shows advantages,
while the second-best method is IPPO.

Training time on wall clock. Table 5 shows the training time
of MacLight compared to other off-policy algorithms. We tested
multiple random number seeds, each seed trained 80 episodes, and
each episode contained 3600 seconds simulation. The times in the
table are calculated as the average of the total length of 80 episodes
on each seed. MacLight requires less than 1 hour to train, while
off-policy algorithm IDQN needs at least 2 hours, Colight and Du-
aLight are even slower. This is because the GCN-based method
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Table 3: Experimental results of each scenario and indicator. IPPO can be considered as an ablation experiment. The specific
values in the table include the mean of the current column indicator and the standard deviation in brackets. Best results in
boldface, and the second-best results underlined. The preferred direction of the indicator is marked by up and down arrows.
The waiting time is not given corresponding standard deviation due to the large value.

Scenario Normal Peak Block
Indicator Return↑ Wait↓ Queue↓ Speed↑ Return↑ Wait↓ Queue↓ Speed↑ Return↑ Wait↓ Queue↓ Speed↑
Fixed time -37.14(9) 56409 785(170) 2.1(1) -171.0(98) 292582 1526(236) 1.2(1) -179.5(59.3) 253944 1477(210) 1.1(0)

IPPO -6.6(22) 10254 152(114) 6.2(1) -434.8(451) 1258399 1456(1262) 2.8(3) -12.0(28) 13144 221(197) 5.4(1)

MAPPO -67.8(65) 122793 509(186) 3.3(1) -924.2(117) 2559550 2942(165) 0.1(0) -127.8(81) 190998 972(211) 1.7(0)

IDQN -598.2(276) 1650798 2474(956) 0.7(1) -1054.4(101) 4546469 3498(248) 0.0(0) -796.6(198) 2625699 3136(610) 0.1(0)

CoLight -716.2(283) 2538938 2913(969) 0.5(1) -969.5(146) 4747313 3438(436) 0.0(0) -788.1(228) 3360669 3186(772) 0.2(1)

DuaLight -712.8(293) 2630974 2858(1009) 0.5(1) -977.9(154) 4664564 3410(423) 0.0(0) -770.5(246) 3221476 3146(816) 0.2(1)

MacLight -4.02(10) 4737 140(90) 6.3(1) -362.3(423) 998411 1267(1237) 3.3(3) -17.3(44.0) 24224 249(237) 5.2(1)

Table 4: Test results of each algorithm on the average return.
Slight differences from the training metrics can be noticed.

Normal Peak Block
Fixed -31 -100 -312
IPPO -0.68 -1.60 -1.18
MAPPO -202 -977 -206
IDQN -842 -1051 -891
CoLight -937 -997 -942
DuaLight -878 -1034 -876
MacLight -0.71 -1.46 -1.17

Table 5: Comparison of training wall time (minute) for 80
episodes between MacLight (Ours) and off-policy methods.
All algorithms run on a single A100.

Normal Peak Block
IDQN 137.4 178.9 186.4
CoLight 373.7 405.1 391.7
DuaLight 413.2 456.4 283.2
MacLight 43.0 58.1 39.1

cannot be massively parallelized, further slowing down the com-
putational efficiency.

6 CONCLUSION
In this paper, we proposed the MacLight for TSC and construct
both static and dynamic traffic flow for evaluation. The main con-
tribution of MacLight is to construct a CNN-based VAE for global
state feature extraction, and connect with the local state to form a
local-global representation, which is used as the input of the value
evaluationmodule to guide the policy improvement.MacLight uses
the PPO algorithm as the backbone so that global and local infor-
mation can be processed in parallel and improve each other. In
addition, as an on-policy algorithm, MacLight provides high op-
erating efficiency, taking only about one-third of the time of the

off-policy method. Finally, the dynamic traffic simulation environ-
ment we constructed greatly expands the current research space
and provides a basis for applying RL in emergency traffic scenar-
ios.

7 LIMITATIONS
There is still room for improvement in our work. Although CNN
is more efficient than GCN-based methods, real road networks are
usually not as regular as Manhattan roads and cannot be directly
constructed as pixel matrices. We can use multiscale convolution
to alleviate this problem in the future. In addition, there is room
for improvement in the reward function, such as introducing both
local and global indicators.
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