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ABSTRACT
In language games a speaker and a listener attempt to coordinate on
a shared mapping between words and concepts. The usual approach
in the literature is to study convention emergence in well-mixed
populations, where pairs of agents are randomly matched to play
the role of speaker and listener, respectively. This way of pairing
agents can be shown to promote the emergence of a unifying com-
mon language in the long run. Despite the theoretical guarantee,
convention emergence can be very slow and practically unfeasi-
ble, especially in large populations with many words and concepts.
Here, we propose an alternative approach, where we allow agents
to selectively partner with other agents based on their past experi-
ence. To this aim, we study Boltzmann Q-learning agents that are
curiosity-driven, i.e., more likely to choose partners they misun-
derstood in the past. We show that this selection method signifi-
cantly accelerates convention emergence when compared against a
random-matching baseline and is even more pronounced in graph
generation models restricting agents’ communication channels. By
inspecting the evolution of the agents’ interaction frequency we
see that partner selection induces low treewidth and high degree
variance at the early stages of learning, to then converge to a reg-
ular graph, which allows for settling misunderstandings in the
population at a faster rate than the traditional approaches.
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1 INTRODUCTION
The emergence of language is considered one of the distinctive fea-
tures of intelligent social behaviour [21, 22] and it has been strictly
linked with the development of a theory of mind [8], as well as the
capacity of individuals to establish social ties and adapt to one an-
other [10]. Partner selection plays a significant role in establishing
social conventions and norms [20] and it is no surprise that both
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developmental and evolutionary psychology have emphasised the
importance of social ties in language development [27, 31].

From the computational point of view, the problem of language
coordination is more complex than a traditional coordination game
[7]. Typical language games are characterised by large action spaces
mapping words to concepts, as well as an asymmetric relation be-
tween a speaker and a listener. These two attempt to come up with
a shared mapping between words and concepts by repeated interac-
tions, what is commonly known as a Naming Game (NG) [29]. The
features of the NGmake the complexity of equilibrium computation
nontrivial and, as we shall see, naive learning approaches hardly
scale up. Indeed, although feasible in theory [6, 33], learning in
well-mixed populations is not guaranteed to be fast. With large
action spaces, reaching uniform convergence in the induced uni-
formly random graphs is often unfeasible in practice. However, the
tools of RL can come to our rescue. Partner selection can itself be
modelled as a decision and, albeit often constrained by the envi-
ronment, agents can be equipped with stochastic policies dictating
who they would like to interact with. This approach was success-
fully attempted to solve social dilemmas [1], extending Q-learning
agents with the possibility of keeping Q-values for each poten-
tial partner and choosing accordingly. Language games present
challenges of their own, as the occurrence of positive payoffs (e.g.,
successful communication) is generally sparse, especially in the
initial learning phase, where as a result of randomisation each agent
speaks a different language with high probability. One might argue
that partner selection can only worsen the emergence of unifying
conventions, as agents would be taking local decisions on who to
interact with only based on their own utility. Indeed, this is what
would happen if agents chose to be paired with those they under-
stood the most, quickly leading to closed linguistic communities. As
it turns out, the opposite direction, incentivising agents to connect
to unlike-minded partners, induces dynamic interaction structures
that quickly promote unifying conventions.

Contribution. In this paper, we study language games where
agents autonomously learn a mapping between words and con-
cepts and, for the first time, equip them with the capacity to choose
the partners whom to interact with and learn from. We model our
agents as Boltzmann Q-learners that are curiosity-driven, i.e., more
likely to choose partners they misunderstood in the past. Agents
keep track of the Q-values for their potential partners, estimat-
ing the expected reward associated with the interaction. This is a
measurement of how well they expect to understand others and
the basis for choosing them as partners. We show that this learn-
ing method significantly accelerates convention emergence when
compared against a random-matching baseline, using established
metrics such as Average Communicative Efficacy, Percentage of
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Agents Converged to a Convention and Dominant Lexicon Speci-
ficity. By inspecting the evolution of the interaction frequency, i.e.,
how often agents are chosen by others, we see that curiosity-driven
partner selection induces low treewidth and high degree variance
at the early stage of learning, to then approximate a regular graph
later on. In other words, some agents are chosen significantly more
often than others early on, to then revert to the mean at the later
stages. Intuitively, the initial tree-like structure is beneficial for
building fewer and stronger local conventions quickly, while the
regular graph structure at the later stage merges them into one,
which turns out to promote convention emergence at a faster rate
than the traditional approach. We also considered language co-
ordination in restricted communication channels, where agents
can only talk to a subset of others, implementing them as regular,
scale-free and small-world networks. The result shows that the
performance gap between partner selection and random matching
is even more pronounced. Finally, we look at the role of inverse
temperature, which determines how curiosity-driven agents are,
showing the effect of different values on convergence rates.

Related Research. The language coordination problem has drawn
the attention of researchers in the computational and social sciences
for decades, with various attempts to come up with consensus-
reaching mechanisms.

Simple spreading approaches based on strategy copy-transfer [2]
were shown not to be sufficient to achieve consensus and, leverag-
ing the tools from evolutionary algorithms, they were extended to
define complex agent behaviours on information transfer, lexicon
selection, innovation and self-protection [26]. The enriched frame-
work showed promising results in terms of convergence speed and
reached largely shared conventions, under various graph generation
models, e.g., scale-free and small-world networks. However, besides
not guaranteeing consensus, this approach requires extensive ad-
ditional built-in architecture. To resolve the issue, [12] introduce
influencer agents as network seeds and simplify the agent’s be-
haviours, while achieving comparable performance to the previous
method. Others [14] propose a network-aware utility for lexicon
selection and allow agents to rewire their links to others, which
contributes to faster convergence speed as well as overall quality.

None of these approaches, though, model populations of utility-
maximising agents that learn from their local interactions, and
instead resort to spreading-based mechanisms, where agents dis-
seminate and adopt language conventions according to some pre-
determined rules, or manipulate the network properties altogether,
either forcing change by introducing seeds or granting access to
other agents’ connections for decision-making purposes.

In recent years, learning-based approaches have arisen as a dis-
tributed optimisation framework for the emergence of language
among self-interested agents. Inspired by double-Q learning [35],
two learning algorithms, multiple-Q and multiple-R, were proposed
[36], which significantly improve the speed of convergence in mul-
tiagent scenarios. However, the proposed algorithms were shown
to work on multi-stage pure coordination games, which are an
oversimplified version of the classical NG [29]. The emergence
of conventions was also studied on static networks from an RL
point of view, showing the effect of various network structures on
convergence [28].

Multiagent reinforcement learning (MARL)methods have proven
effective in striking a good balance between the complexity of
the language game formulation and the requirement for learning
among autonomous decision-makers. The language coordination
problem was formulated as a MARL problem using bidirectional
dynamic Q-learning [34], demonstrating that full coordination can
be achieved with distributed learning as well, matching the results
obtained using the more constrained diffusion models. [24] show
that agents are able to learn a more stable and structured language
in the reconstruction games when they are trained at different
learning speeds. Others [11, 15, 19] study the effect of population
size and communication networks among agents on the learning
outcome in the referential games.

While the MARL approach showed significant progress in terms
of learning capabilities, the underlying well-mixed population dy-
namics were not tested for large-scale problems, which provides an
important bottleneck when we want to achieve coordination in a
complex state space. This paper is about driving the randomness of
population dynamics in language games using a partner selection
approach, where we optimise the agents’ exploration-exploitation
tradeoff to select who to interact with. A similar approach combin-
ing partner selection with Q-learning was successfully employed
when studying the emergence of cooperation in social dilemmas
[1], where agents use epsilon-greedy Q-learning to select partners
that have given them higher rewards in the past. Even minimal
forms of partner selection were shown to be key in leading to a
cooperative society among Q-learning agents [16].

All in all, we know from evolutionary biology that cooperation
does not emerge in societies of self-interested agents unless a spe-
cific mechanism is at play [20]. Coordination games do not share the
same incentive structures of social dilemmas, and the emergence of
consensus is still possible without partner selection. However, as it
turns out, having a say on whom to interact accelerates learning
across the board and makes practically unfeasible coordination
problems achieve a successful solution.

Paper Structure. In Section 2 we provide the necessary technical
background describing the language coordination problem as well
as Boltzmann and bidirectional Q-learning. Section 3 describes the
algorithm we use for partner selection, the communication restric-
tions and the experimental setup. Section 4 analyses the results. We
conclude by discussing various other potential directions.

2 PRELIMINARIES
We first review the problem of language coordination, introducing
the Naming Game (NG) as well as the performance metrics used in
language coordination. We then recall Q-learning and bidirectional
Q-learning for NG.

2.1 The Language Coordination Problem
Following [12, 14, 26] our framework features a population of 𝑁
agents aiming to develop a common lexicon (word-to-concept map-
ping) through local interactions. We refer to𝐶 as the set of concepts
and𝑊 as the set of words, assuming throughout that |𝐶 | = |𝑊 | and
thus ideally seeking a bijective function that is uniformly shared in
the population. The language coordination is attempted through
repeated plays of the Naming Game (NG), which is an interaction
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Figure 1: An example of an unsuccessful communication in
the Naming Game (NG). The speaker’s intended choice of
word does not match the listener’s understanding.

happening between two agents drawn from the population follow-
ing some distribution. The agents will revise their lexicon based
on the outcome of the game, and the goal is to achieve the highest
communication efficacy with others.

2.1.1 The Naming Game. Two agents, drawn from a distribution,
take the role of speaker and listener, respectively. Then, a concept
𝑐 ∈ 𝐶 is randomly selected and revealed to the speaker. The speaker
will utter the word 𝑤 ∈𝑊 referring to that concept in their own
language, i.e., will select the word𝑤 matching 𝑐 according to their
current policy. Upon hearing the word, the listener will interpret
it into a concept 𝑐′ ∈ 𝐶 and respond. The game is successful if the
response matches the original concept 𝑐 = 𝑐′, with both agents
receiving the reward of 1; and receiving −1 each, otherwise. Figure
1 shows an example of an unsuccessful communication.

2.1.2 Performance Metrics. To evaluate the agents’ communicative
performance and the quality of the produced lexicon, we adopt four
key metrics used in previous research [12, 26]:

Average Communicative Efficacy (ACE): It measures the per-
centage of communicative success in NG when the agents
are matched uniformly at random, reflecting the global level
of coordination of the current population.

Percentage of Agents Converged to a Convention (ACC):
The mode lexicon is defined as the lexicon used by the most
number of agents. The ACC measures the size of the mode
convention in the population.

Dominant Lexicon Specificity (DLS): The quality of a lexi-
con is measured by the lexicon specificity, i.e., the proportion
of words that can identify a single concept. Let𝑊𝑐 be the set
of words that are mapped to the concept 𝑐 in a given policy.
The specificity of concept 𝑐 in that given policy is then eval-
uated as 𝑆𝑐 = 1

|𝑊𝑐 | . If no word is mapped to a concept, then
𝑆𝑐 = 0. The lexicon specificity 𝑆 is defined as the average of
the specificity of all concepts:

𝑆 =

∑
𝑐∈𝐶 𝑆𝑐

|𝐶 |
Therefore, the lexicons with maximum specificity (𝑆 = 1) are
those with one-to-one mappings. In that case, the communi-
cation between agents is unambiguous. Note that a lexicon
with 100% specificity would not be particularly useful if

adopted by only a few agents, therefore the DLS measures
the specificity of the mode lexicon, which is adopted by the
highest number of agents.

Number of Distinct Lexicons (NDL) : This is the number of
distinct lexicons, i.e., mappings, adopted by the agents. The
maximum value equals 𝑁 , where every agent has its own
language. The minimum value equals 1, where everyone
shares the same lexicon.

In our experiments, we will use these metrics to analyse the effec-
tiveness of partner selection strategies and compare them to random
matching, over various network structures and hyperparameters.

2.2 Q-Learning
Our agents use Q-learning, a widely established Reinforcement
Learning algorithm [37] and act on a Markov decision process
(MDP). Each agent maintains a Q-table for each state-action pair
(𝑠, 𝑎) to estimate the expected accumulated reward of using each
action 𝑎 ∈ A under each state 𝑠 ∈ S. Suppose the agent at state 𝑠
has performed action 𝑎, let 𝐺 be the accumulated reward, then the
Q-value for the state-action pair (𝑠, 𝑎) is updated as follows:

𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼 (𝐺 −𝑄 (𝑠, 𝑎)) (1)

where 𝛼 ∈ (0, 1) is the learning rate. An exploration mechanism
aims to strike a good balance between exploitation and exploration
such that the performance of the agent is maximised during learn-
ing while ensuring the convergence guarantees are met. Boltzmann
exploration is a commonly used mechanism, where the stochastic
policy 𝝅 (𝑠) = (𝜋 (𝑠, 𝑎1), ..., 𝜋 (𝑠, 𝑎𝑁 )) = (𝜋1, ..., 𝜋𝑁 ) ∈ Δ is evalu-
ated as

𝜋𝑖 =
𝑒𝜏𝑄 (𝑠,𝑎𝑖 )∑𝑑
𝑗=1 𝑒

𝜏𝑄 (𝑠,𝑎 𝑗 )
(2)

where 𝜏 is a parameter known as the inverse temperature.

2.2.1 Bidirectional Q-learning for the Naming Game. Bidirectional
Q-learning is a method proposed in the literature [34] for solving
the problem of language coordination. By exploiting the speaker-
listener dual relationship, each agent stores a single Q-table for
decision-making purposes. Let𝑄 (𝑐,𝑤) be the Q-value of a concept-
word pair. The action is then selected greedily, that is, the word is
selected by𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤𝑄 (𝑐,𝑤) if the agent is in the speaker role,
and the concept is selected by 𝑐′ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑄 (𝑐,𝑤) if the agent
is in the listener role. In this manner, we are able to construct the
lexicon (the word-to-concept mapping) and the reverse lexicon (the
concept-to-word mapping) for each agent. The lexicon will be used
to compile various statistics (ACC, DLS and NDL) to evaluate the
status of convention emergence. Note that compiling the same sta-
tistics for the reverse lexicon would yield the same results, therefore
we disregard the reverse lexicon in our discussion.

Upon receiving the reward 𝑟 from the NG, the Q-value is updated
accordingly.

𝑄 (𝑐,𝑤) ← 𝑄 (𝑐,𝑤) + 𝛼𝑁𝐺 (𝑟 −𝑄 (𝑐,𝑤)) (3)

for the speaker, and

𝑄 (𝑐′,𝑤) ← 𝑄 (𝑐′,𝑤) + 𝛼𝑁𝐺 (𝑟 −𝑄 (𝑐′,𝑤)) (4)

for the listener, where 𝛼𝑁𝐺 is the learning rate for NG. To prevent
the emergence of synonyms, the Q-values for other actions are
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reduced when the agent encounters a success. That is

𝑄 (𝑐,𝑤 ′) ← 𝑄 (𝑐,𝑤 ′) + 𝛼𝑁𝐺 (−𝑟 −𝑄 (𝑐,𝑤 ′))

for𝑤 ′ ≠ 𝑤 for a successful speaker, and

𝑄 (𝑐′′,𝑤) ← 𝑄 (𝑐′′,𝑤) + 𝛼𝑁𝐺 (−𝑟 −𝑄 (𝑐′′,𝑤))

for 𝑐′′ ≠ 𝑐′ for a successful listener.
In [34] agents are paired at random, while concepts and words

are chosen greedily. In our approach, we keep the greedy selection
of concepts and words, but partners are instead selected through
low temperature, e.g., curiosity-driven, Boltzmann exploration.

3 LANGUAGEWITH PARTNER SELECTION
Consider a population of agents learning to play the Naming Game
(NG) from pairwise interactions. The goal is to come up with a
choice of lexicon that maximises the reward from the NG through
repeated gameplay. Our computational model is described in Al-
gorithm 1. The agents are initialised with the learning rate for NG
𝛼𝑁𝐺 , the learning rate for partner selection (PS) 𝛼𝑃𝑆 and the in-
verse temperature for PS 𝜏𝑃𝑆 (line 1). Depending on the existence of
a constrained communication network, this is initialised with the
graph-specific parameters (line 2, see Section 3.1 for the network
models). At each iteration, each agent 𝑖 selects an opponent from
their neighbours to play the NG sequentially (line 5). Thus, the set of
available actions is 𝐴𝑃𝑆 = {𝑎𝑔𝑒𝑛𝑡1, ..., 𝑎𝑔𝑒𝑛𝑡 |𝑁 (𝑖 ) | } for state 𝑠 = 𝑃𝑆 ,
where 𝑁 (𝑖) is the set of agents in the population except itself, or the
neighbours for agent 𝑖 when a constrained communication network
is considered. Partner selection is carried out through Boltzmann
exploration. NG is then initialised (lines 6-10, see Section 2.1.1 for
the game description), where the indices 𝑆 and 𝐿 indicate the roles
of speaker and listener, respectively. Upon receiving the reward 𝑟 ,
both agents will update their Q-value for the NG accordingly (lines
11-12). The agent who has made the selection will then update the
corresponding PS policy (line 13).

Algorithm 1 Language coordination with partner selection
Input: 𝑁𝑎, 𝑁𝑐,𝑇 , 𝛼𝑁𝐺 , 𝛼𝑃𝑆 , 𝜏𝑃𝑆 ,𝐺𝑝

1: Initialize 𝐴𝑔𝑒𝑛𝑡𝑠 with 𝑁, 𝛼𝑁𝐺 , 𝛼𝑃𝑆 , 𝜏𝑃𝑆
2: Initialize 𝐺𝑟𝑎𝑝ℎ = 𝑟𝑎𝑛𝑑𝑜𝑚𝑁𝑒𝑡𝑤𝑜𝑟𝑘 (𝐺𝑝)
3: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1 to 𝑇 do
4: for 𝑖 = 1 to 𝑁 do
5: 𝑗 = 𝐴𝑔𝑒𝑛𝑡𝑠 [𝑖] .𝑐ℎ𝑜𝑜𝑠𝑒𝑃𝑎𝑟𝑡𝑛𝑒𝑟 (𝐺𝑟𝑎𝑝ℎ[𝑖]) with eq.(2)
6: 𝑆, 𝐿 = 𝑟𝑎𝑛𝑑𝑜𝑚𝐴𝑠𝑠𝑖𝑔𝑛( [𝑖, 𝑗])
7: 𝑐1 = 𝑟𝑎𝑛𝑑𝑜𝑚𝐶ℎ𝑜𝑖𝑐𝑒 (𝑁𝑐)
8: 𝑤1 = 𝐴𝑔𝑒𝑛𝑡𝑠 [𝑆] .𝑐ℎ𝑜𝑜𝑠𝑒𝑊𝑜𝑟𝑑 (𝑐1)
9: 𝑐2 = 𝐴𝑔𝑒𝑛𝑡𝑠 [𝐿] .𝑐ℎ𝑜𝑜𝑠𝑒𝐶𝑜𝑛𝑐𝑒𝑝𝑡 (𝑤1)
10: 𝑟 = 2 ∗ (𝑐1 == 𝑐2) − 1
11: 𝐴𝑔𝑒𝑛𝑡𝑠 [𝑆] .𝑡𝑟𝑎𝑖𝑛𝐿𝐶 (𝑐1,𝑤1, 𝑟 ) with eq.(3)
12: 𝐴𝑔𝑒𝑛𝑡𝑠 [𝐿] .𝑡𝑟𝑎𝑖𝑛𝐿𝐶 (𝑤1, 𝑐2, 𝑟 ) with eq.(4)
13: 𝐴𝑔𝑒𝑛𝑡𝑠 [𝑖] .𝑡𝑟𝑎𝑖𝑛𝑃𝑆 ( 𝑗, 𝑟 ) with eq.(1)
14: end for
15: end for

3.1 Constraining the Communication Network
As we shall see, partner selection induces specific networks on the
interaction frequencies of the agents, when starting from a complete
graph. On top of that, we can study the partner selection process on
a priori constrained communication networks, where agents can
only perform partner selection with a subset of others, following
the hypothesis that constraining the interaction structure has an
effect on convention emergence, as well as language [12, 14, 28].
Intuitively, if the network is extremely sparse, a unifying conven-
tion will be less likely to emerge fast. Compared to communication
without restriction (the complete graph), introducing a network
structure will increase the separation between agents, favouring
the emergence of local conventions at the expense of a collective
shared one. Especially when evaluating the resulting language at
the population level using randommatching, highly irregular graph
structures will necessarily hinder successful communication. How-
ever, as we shall see, partner selection can still have pronounced
positive effects then.

Parameters such as degree distribution, centrality and starting
conditions of central highly influential nodes will be key in deter-
mining how a communication network will shape the resulting
convention. We compare three main graph generation models:

Regular (RG) Wegenerate themusing the configurationmodel
[30], setting the node degree to be 20.

Scale-Free (SF) We generate them using the Barabási–Albert
model [3] setting the initial sampling parameter to be𝑚 = 11.
The network is formed by sequentially adding a node with
𝑚 edges preferentially attached to high-degree nodes until
𝑁 = 100. The average degree is 19.58, the closest to an
average degree of 20 we can get in a BA graph 1.

Small-World (SW) This is generated using theWatts–Strogatz
model [38] setting parameters 𝑘 = 20, 𝑝 = 0.3, The network
is formed by first creating a ring of 𝑁 = 100 nodes joined to
its 𝑘 nearest neighbours, then each edge (𝑢, 𝑣) is randomly
replaced with a new edge (𝑢,𝑤) with probability 𝑝 . The
average degree is 20.

Each graph generation model will output the network that will
be fixed throughout training and evaluation. All networks are gen-
erated with the NetworkX library [13].

3.2 Experimental Parameters
In our experiments, we work with a population of 𝑁 = 100 agents,
each attempting to map a set of |𝑊 | = 100 words, to |𝐶 | = 100 con-
cepts. The population performance is evaluated every 100 iterations,
and measured against the Average Communicative Efficacy (ACE)
and the percentage of Agents Converged to a Convention (ACC).
Partner selection will typically induce interaction frequencies that
do not follow a regular graph. To avoid biasing the evaluation
by correlating it to the induced network structure, we conduct it
using random matching. In other words, we still judge language
performance in a population by disregarding agents’ connections.

We conducted the experiments up to 300, 000 iterations, and all
the statistics are averaged over 100 simulations. The learning rate

1We have conducted the same experiments with𝑚 = 12, resulting in 21.12, the closer
to 20 from above average degree achievable in a BA. Results and conclusions remain
the same.
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(a) Population Performance (b) Mode Lexicon Quality

Figure 2: Figure (a) shows the performance of agents in the language game across iterations averaged over 100 simulations,
when trained under random matching (RM) and partner selection (PS), measured by the Average Communicative Efficacy
(ACE) and the percentage of Agents Converged to a Convention (ACC). The Average Communicative Efficacy during training
(ACE-training) is also presented for agents trained under PS. Figure (b) shows the statistics on the most popular lexicon,
measured by the Dominant Lexicon Specificity (DLS), and the Number of Distinct Lexicons (NDL) in the population. The
learning rate for the NG is 𝛼𝑁𝐺 = 0.7, and the learning rate and the inverse temperature for partner selection are 𝛼𝑃𝑆 = 0.05 and
𝜏𝑃𝑆 = −15, respectively. The results are averaged over 100 simulations. The dashed lines are marked to indicate the ending of
each phase when agents are learning under PS. Agents trained under PS clearly outperform those trained under RM.

𝛼𝑁𝐺 for NG is optimised over [0, 1] with step size 0.05, to achieve
the best ACC at 𝑇 = 300, 000 under random matching, in the case
of the complete graph. This serves as the baseline for the best
performance achieved on language coordination without partner
selection. The learning rate 𝛼𝑃𝑆 and inverse temperature 𝜏𝑃𝑆 for
partner selection are optimised through a grid search over [0, 1]
with step size 0.05, and [−25, 25] with step size 5, respectively,
to achieve the best ACC at the end of training. The optimised
parameters are 𝛼𝑁𝐺 = 0.7, 𝛼𝑃𝑆 = 0.05 and 𝜏𝑃𝑆 = −15.

4 EXPERIMENTAL ANALYSIS
In this section, we present our results, showing how partner selec-
tion accelerates convention emergence in language games. We then
look at the evolution of the interaction frequency graph, tracking
how partner selection shapes the graph structure during learning.
We also look at the effectiveness of partner selection across re-
stricted communication networks obtained by graph generation
models. Finally, we zoom in on the key role of the inverse tempera-
ture 𝜏𝑃𝑆 in convention emergence.

4.1 Partner Selection versus Random Matching
When agents are allowed to select their partner actively, conven-
tion emerges much quicker than it would under random matching.
Figure 2a displays the population performance in language games
for learning under random matching (RM) and partner selection
(PS), measured against Average Communicative Efficacy (ACE) and
Percentage of Agents Converged to a Convention (ACC). The Av-
erage Communicative Efficacy during training (ACE-training) is
also presented for agents trained under PS. Note the ACE during

training and evaluation are identical for agents trained under RM.
Figure 2b displays the statistics on the most popular lexicon, mea-
sured by the Dominant Lexicon Specificity (DLS), and the Number
of Distinct Lexicons (NDL) in the population. We can see how the
introduction of partner selection has largely promoted the speed of
convergence and the quality of the most popular lexicon. It takes
more than 255, 000 iterations to achieve a 95% convergence rate
under RM, while it takes around 210, 000 to achieve the same level
of convergence with PS.

Looking at the results in Figure 2, we can observe four different
phases of learning under partner selection.

• Phase 1 (iterations 0 to 10, 000). The quality of the lexicon
has decreased. The ACE-training starts to be higher than the
ACE in evaluation.
• Phase 2 (iterations 10, 000 to 50, 000). The ACE-training is
significantly higher than the ACE in evaluation. The DLS
ends the decrease and rises to 0.6.
• Phase 3 (iterations 50, 000 to 110, 000). The ACE-training
matches the ACE in evaluation. The ACE and DLS grow
steadily, and the communication success achieves 95%.
• Phase 4 (iterations 110, 000 to 300, 000). The ACC increases
and goes up to 99% at the end of training, and the NDL
decreases correspondingly.

In the first phase, we observe no performance difference between
agents trained with partner selection and random matching. Yet,
the lexicon quality is higher when we train the agents allowing
for partner selection. Perhaps counterintuitively curiosity-driven
agents get a higher ACE-training and are thus able to form local
conventions quickly. This is because, at the beginning of training,
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the communication is almost always unsuccessful (99%), as agents
are effectively guessing at random. With the ability to choose their
partner, agents tend to experience a loss with high probability, and
are therefore more willing to select that partner once more. This
encourages agents to choose a stable opponent to play the NG for
some time, before changing their selection. It turns out this will
reduce the discrepancy between different languages quickly and
improve communications locally, since coordinating with a smaller
number of agents is easier than in a larger pool, thus increasing
the ACE-training. In the second phase, agents start to come up
with a more accurate lexicon. On the other hand, agents trained
under randommatching have struggled to improve communications
and the DLS keeps at a low level. In the third phase, The ACE-
training and the ACE in evaluation match. This reflects agents
having learnt to select their partners approximately randomly. This
is key since, at the later stage of learning, we need to avoid the
formation of local dialects, and random matching is an efficient
way to prevent this. In the fourth phase, the ACE has reached
95%, meaning that agents’ policies are approximately 95% the same.
The final stretch has agents coming up with a high-quality lexicon
seeing communication effectiveness maximised.

(a) T=5000 (b) T=50000

(c) T=60000 (d) T=100000

Figure 3: The partner selection frequency graph generated
from a representative simulation, with nodes representing
agents and edges representing partner choice. Lexicon simi-
larity is calculated with respect to a reference agent to show
how the population is converging towards the same conven-
tion. As lexicon similarity between agents grows, the selec-
tion graph turns from tree-like into a regular graph.

4.2 Interaction Frequency Graph
We present the partner selection frequency graph from a represen-
tative simulation in Figure 3. The nodes represent the agents in the
population. The edges draw the directions from the partner selec-
tion over the last 10 iterations at specific times 𝑇 ∈ {5000, 50000,
60000, 100000}. The thickness of the edge reflects the frequency
of the same agent being selected - the thicker the edge the more

often the agent is chosen by others. The colour of a node measures
the lexicon similarity between that node and a reference agent 1,
which is the percentage of word-to-concept matches between their
lexicons. Blue represents high similarity, and red low similarity.

At the earlier stage of learning (𝑇 = 5000, 35000), the frequency
graph exhibits a tree-like structure, where agents mainly choose the
same partner over the last 10 iterations. As the similarity between
agents rises, the graph becomes more like a regular graph. The
tree structure is beneficial to maintaining the lexicon similarity at
a sufficient level, as local conventions are passed over.

It is worth observing that, although we are only displaying a
single simulation in Figure 3, the partner selection frequency graph
exhibits a similar shape in all others. Figure 4 plots the treewidth of
the partner selection graph presented above, as well as the variance
of the in-degree, by summing all agents’ partner selection policies.
The statistics are averaged over 100 simulations. Treewidth is a
standard measurement of how close a graph is to a tree [4]. A graph
with a treewidth of 1 is exactly a tree, while a clique has a treewidth
of 𝑁 − 1, where 𝑁 is the number of vertices. The treewidth is
compiled using the minimum degree heuristic [5]. We also plot
in-degree variance, as a dual measure [9]. We can see how the plots
support our analysis of interaction frequency graphs.

Figure 4: The blue line (with the left axis) presents the
treewidth (TW10) statistics of the partner selection frequency
graph across iterations, the corresponding treewidth statis-
tics under random matching is 67.84marked with the black
dotted line. The orange line (with the right axis) presents the
in-degree variance (Var(Deg)) from aggregating agents’ part-
ner selection policies across iterations, the corresponding
in-degree variance under random matching is 0.

4.3 Constrained Communication Networks
Figures 5 and 6 show the evolution of the various performance
metrics in constrained communication networks. We can see how
agents trained under PS outperform those trained under RM. The
latter ones have suffered from being separated into a variety of local
conventions, which is reflected in the low value of ACC throughout
the simulation. In a more challenging scenario of small-world net-
works, the ACC under RM is still at 1.52% after 300, 000 iterations,
while, for PS, the value goes up to 78.88%. Compared to the case of
the complete network, the performance gap on ACE between PS
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Table 1: Iterations needed to achieve specific ACCs under different interaction topologies

ACC (%) Complete Regular Scale-Free Small-World
RM PS RM PS RM PS RM PS

80 222,200 183,400 - 211,100 - 213,400 - 306,300
85 229,300 189,800 - 219,100 - 221,300 - 336,100
90 240,100 197,700 - 235,500 - 234,300 - -
95 255,300 209,800 - 255,000 - 277,700 - -

ACC (%) at 𝑇 = 300, 000 96.94 99.09 75.15 96.11 73.69 95.89 1.52 78.88

(a) Regular (RG) (b) Scale-Free (SF) (c) Small-World (SW)

Figure 5: Performance across iterations over different communication networks, measured by the ACE, ACC, and ACE-training,
for agents trained under PS. The average degree of the regular graph, the scale-free network, and the small-world network are
20, 19.58, and 20 respectively. The convention emerges significantly faster when agents are trained using PS.

(a) Regular (RG) (b) Scale-Free (SF) (c) Small-World (SW)

Figure 6: Mode lexicon statistics, measured by DLS and NDL in the population. The average degree for regular, scale-free and
small-world networks are 20, 19.58, and 20, respectively. DLS generally achieves the maximum faster when agents are trained
under PS. The DLS under RM has raised above the DLS under PS for a short period for RG and SW.

and RM has reduced when we have constrained communication
networks. This is because the evaluation of communication success
is based on matching agents with their neighbours, and a lower
average degree (compared to the complete network) favours the
emergence of local conventions. The ACC does not suffer from
this fact and we therefore see a large performance gap when it is
used as a measurement. When we look at the statistics for mode
lexicon, the DLS achieve its peak faster when agents are trained

under PS. Unlike for complete graphs, we can see the differences
in DLS between PS and RM have reduced, and that the DLS under
RM has raised above the DLS under PS for a short period under the
cases of RG and SW. This is because, when a small number of agents
coordinate locally, they will tend to improve lexicon quality, which
in turn improves ACE, but also makes local conventions stronger
and harder to merge. After all, a high-quality lexicon is not useful
if the adoption rate is too low.
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Figure 7: TheACCs across iterations for different inverse tem-
peratures 𝜏𝑃𝑆 ∈ {−20,−15,−10, 0, 10, 15} under PS, the learning
rates are fixed at 𝛼𝑁𝐺 = 0.7, 𝛼𝑃𝑆 = 0.05. As 𝜏𝑃𝑆 decreases, the
rate of convergence increases, until 𝜏𝑃𝑆 reaches −15 (the or-
ange solid line). When 𝜏𝑃𝑆 = 0 (the orange dashed line), the
partner selection policy is equivalent to random matching.

Table 1 displays the statistics for the iterations needed to achieve
specific ACCs for constrained communication networks under RM
and PS.We compared the benchmark convergence rates from 80% to
95%. In the complete graph, agents trained under PS always achieve
the benchmarks about 40, 000 iterations faster than RM. In the case
of regular graphs and scale-free networks, the agents trained under
RM cannot even achieve an 80% convergence rate at the end of
training at 𝑇 = 300, 000, while agents trained under PS achieve
beyond 95% convergence at the end of training. For small-world
networks, we have extended the training to 𝑇 = 500, 000 and the
ACC for agents trained under PS attained 89.06% at the end of the
training, while for RM still at the value of 4.34%. All in all, this
illustrates the increased effectiveness of partner selection across
the different communication networks.

4.4 On the Role of the Inverse Temperature
Finally, we examine the key role of inverse temperature 𝜏𝑃𝑆 in part-
ner selection, which dictates the mode of exploration the agents
employ. The intensity of 𝜏𝑃𝑆 affects the greediness of action selec-
tion, while the sign of 𝜏𝑃𝑆 affects the preference towards larger or
smaller Q-value. In the case of 𝜏𝑃𝑆 = 0, it reduces to the case of
random matching. Figure 7 presents the ACCs across iterations for
different inverse temperatures 𝜏𝑃𝑆 ∈ {−20,−15,−10, 0, 10, 15}.

We can see the performance of PS surpasses RM when 𝜏𝑃𝑆 be-
comes negative. In this case, agents do not keep interacting with
those other agents they have had success with but, rather, are more
willing to connect to those with lower associated Q-values, in other
words, they are curiosity-driven. Our study shows that “talking to
strangers" is generally a good strategy, as the lower expected value
of the partner choice allows for settling lexical differences faster.
The result also explains the behaviour of agents during different
phases of learning. In the earlier phases, the communication failures
reduce the Q-values for certain neighbours, causing the agent to
be more willing to communicate with them further. Therefore, we
can see agents selecting a stable partner for a period of time before

moving on to selecting others. In the later phases of learning, where
some lexicon uniformity is established, the agents become focused
on increasing the communication efficacy with every agent in a
balanced manner, which results in partner selection converging
towards random matching. If we considered the case of positive
𝜏𝑃𝑆 , the above points would be reversed, and would then result in
the emergence of a multitude of languages and therefore be worse
in terms of global convention emergence.

When the value of 𝜏𝑃𝑆 drops below −15, the performance on
language coordination starts to reduce. This shows the greediness
in partner selection should be at the "right" level, having a good
balance between focusing on less familiar agents, as well as com-
municating with everyone effectively.

5 DISCUSSION
While the standard approach to convention emergence in language
games hinges on the theoretical guarantee that well-mixed popu-
lations will eventually converge to a unique fully shared mapping
between words and concepts, this is often unfeasible to achieve in
practice. In this paper, we have shown that curiosity-driven partner
selection leads to convention emergence by transforming the inter-
action structure in a distributed manner, settling misunderstandings
among agents at a faster rate, without sacrificing the convergence
guarantees. This is even more evident when constraining communi-
cation channels upfront, where random matching performs poorly
in comparison to optimised Boltzmann Q-learners taking decisions
on who to partner with.

Despite the progress, a number of research questions are still left
unanswered. The interplay between language games and partner se-
lection makes the theoretical analysis more challenging, as the main
tool of evolutionary game theory for studying population dynam-
ics, the replicator equation, abstracts away from spatio-temporal
considerations [25]. This begs the question of whether a mean dy-
namics analysis can still provide meaningful insights on the policy
change, perhaps under fixed partner selection strategies as iden-
tified in the simulations, or we would need to explore variance
using stochastic dynamics [17, 32]. Moreover, while we know that a
uniform convention will emerge quickly with partner selection, we
do not know what this convention will look like, or whether some
of its high-level properties could be predicted from the starting
conditions. A similar point could be made regarding how agents
select one another. Recent contributions [16, 18] have shown that
partner selection rules co-evolve with in-game strategies to pro-
mote cooperation in social dilemmas. What the co-evolving partner
selection rules are that sustain convention emergence in language
games is unclear if agents can learn as well the hyperparameters.
Finally, networks with a multitude of relationship types [23] and
correlated starting lexicons are worth investigating.
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