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ABSTRACT
Learning decentralized policies for agents has drawn increasing
interest in recent works to solve the scalability issue that arises in
Multi-Agent Reinforcement Learning (MARL), where all agents may
share the parameters of a policy network to make action decisions.
However, such parameter sharing can hinder efficient exploration,
as some agents may learn similar behaviors. Unlike previous fully-
supervised mutual information-based methods that encourages
multi-agent diversity, in this paper, we propose a novel multi-agent
exploration method called Contrastive Trajectory Entropy Maxi-
mization (CTEM). Our method adopts a non-parametric entropy
estimator to maximize the entropy of trajectories of different agents
in a self-supervised contrastive representation space, leading to
diverse policies and sufficient exploration. Such an entropy esti-
mator avoids complex density modeling and scales well in high-
dimensional multi-agent environments. We deploy our method in
MARL by introducing an intrinsic reward for agents to achieve
entropy maximization. To demonstrate the effectiveness of our
method, we conduct experiments on multiple challenging MARL
benchmark tasks. Our method yields superior performance than
existing state-of-the-art methods.
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1 INTRODUCTION
Multi-Agent Reinforcement Learning (MARL) has shown promise in
solving various multi-agent tasks such as multiplayer video games
[30] and traffic light control [35], which has drawn increasing atten-
tion in recent years. MARL enables efficient cooperation by jointly
training multiple agents to maximize the team returns. However,
learning efficient cooperative policies for agents in challenging
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multi-agent tasks still remains a challenge due to the partial obser-
vation constraint and the high scalability demand. A common-used
framework in recent works to resolve these issues is Centralized
Training with Decentralized Execution (CTDE) [17], where each
agent makes action decisions based on its local observation us-
ing a decentralized policy that is jointly trained leveraging global
information in order to achieve robust and stable performance.

The CTDE framework learns an individual decentralized policy
for each agent. However, training a large number of policy network
parameters can be inefficient. The parameter sharing technique has
been widely adopted in the CTDE framework, allowing all agents
to share the same policy network parameters when making action
decisions. Consequently, parameter sharing significantly reduces
the amount of policy network parameters, efficiently reducing com-
putational complexity and accelerating training speed. Moreover,
parameter sharing enables sharing of experience among agents dur-
ing centralized training, which not only contributes to the learning
of a robust and stable policy but also enhances the overall learning
efficiency [32].

Benefiting from these advantages, a variety of MARL algorithms
have incorporated the parameter sharing technique, including value-
decomposition methods [9, 23, 29, 31, 36] and policy gradients
[18, 21, 34, 38]. Unfortunately, the agents sharing the policy net-
work parameters easily learn homogeneous behaviors since the
agents tend to behave similarly under similar observations [8], im-
peding the emergence of multi-agent diversity and efficient explo-
ration. Challenging multi-agent tasks typically require extensive
exploration and diversified policies among agents. To illustrate,
consider a football game where agents must collaboratively work
towards scoring a goal. When agents exhibit uniform policies, they
may compete for the ball, consequently resulting in ineffective com-
petition. To win the game, the agents need to learn diverse policies
and play different roles to effectively pass the ball.

Several methods [2, 10, 12, 14] have been proposed to encourage
identity-aware multi-agent diversity in a fully-supervised manner
by maximizing the mutual information between the trajectories
and agent identities. These methods aim to distinguish the trajecto-
ries of different agents according to the agent identities. However,
despite their achievements, this category of methods easily falls
into local optimum since the agents prefer to visit known trajec-
tories that contain more identity information and do not explore
comprehensively. As a result, the agent trajectories may overfit
agent identities.

In this paper, we propose a novel exploration method called
Contrastive Trajectory Entropy Maximization (CTEM) to promote
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multi-agent diversity in a self-supervised manner while guarantee-
ing efficient exploration. Unlike previous work, we adopt neither
mutual information nor a trajectory discriminator. The intuition
behind our method is that the agents need to explore the environ-
ment sufficiently to visit any states where they might get rewards.
To achieve this goal, our method relies on maximizing the entropy
of trajectories of different agents. Since it is intractable to maxi-
mize the entropy in the high-dimensional trajectory space as the
density model of the agent’s trajectory is unknown, our method
instead employs a nonparametric particle-based entropy estimator
[1, 26] that is asymptotically unbiased for the entropy. The particle-
based entropy estimator calculates the mean Euclidean distance
between a particle and its neighbors. To make the distance mean-
ingful, we construct a contrastive representation space by encoding
trajectory space to a low-dimensional representation space using
self-supervised contrastive learning [3]. Our method can be applied
to MARL algorithms by introducing an intrinsic reward for the
agent to maximize the entropy. The contributions of this work can
be summarized as follows: first, we propose a novel self-supervised
exploration method called CTEM to encourage multi-agent diver-
sity bymaximizing the trajectory entropy based on a nonparametric
particle-based entropy estimator in a contrastive representation
space; second, we evaluate our method in various challenging multi-
agent tasks. The experimental results demonstrate the significant
outperformance of our method compared to other existing state-of-
the-art MARL algorithms.

2 BACKGROUNDS
We consider modeling the fully cooperative multi-agent tasks as
a Decentralized Partially Observable Markov Decision Process
(Dec-POMDP) [22] defined as a tuple ⟨𝐴, 𝑆,𝑈 , 𝑃, 𝑅,𝑂,Ω, 𝛾⟩, where
𝐴 = {1, . . . , |𝐴|} denotes a set of |𝐴| agents, 𝑠 ∈ 𝑆 represents the en-
vironment state, and𝑈 is the set of actions. At each time step, each
agent 𝑎 receives an observation 𝑜𝑎 ∈ Ω drawn from the function
𝑂 (𝑠, 𝑎) and subsequently selects an action 𝑢𝑎 ∈ 𝑈 . The selected
actions of all agents form a joint action denoted as 𝒖. The environ-
ment then transitions to a new state 𝑠 ′ with the probability defined
by the transition function 𝑃 (𝑠 ′ | 𝑠, 𝒖). Simultaneously, the environ-
ment provides a shared reward 𝑟 = 𝑅(𝑠, 𝒖) for the agents. 𝛾 ∈ [0, 1)
serves as a reward discount factor. The trajectory of each agent is
denoted as 𝜏𝑎 ∈ T that is composed of observation-action history.
Each agent learns a decentralized policy 𝜋𝑎 (𝑢𝑎 | 𝜏𝑎), assembling a
joint policy 𝝅 , towards maximizing a joint action-value function
𝑄𝝅 (𝑠, 𝒖) = E𝑠0:∞,𝒖0:∞

[∑∞
𝑡=0 𝛾

𝑡𝑟𝑡 | 𝑠0 = 𝑠, 𝒖0 = 𝒖, 𝝅
]
.

3 THE LIMITATION OF MUTUAL
INFORMATION-BASED METHODS

One of the common approaches to encourage multi-agent diversity
is to maximize the mutual information between trajectories and
agent identities [2, 10, 12, 14]. However, these works share a limi-
tation that the agents are likely to prefer known trajectories that
contain more identity information than novel trajectories, resulting
in inefficient exploration. We next analyze this limitation from a
theoretical standpoint. We present the reward functions associated
with the exploration of both familiar and new trajectories. The
theoretical results reveal that agents attain higher rewards when
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Figure 1: Diagram of our proposed CTEM.

visiting known trajectories compared to their exploration of new
trajectories.

Given the mutual information between the trajectory 𝜏 and agent
identity 𝑖 as

𝐼 (𝑖;𝜏) = E𝑖,𝜏 [log𝑝 (𝑖 | 𝜏)] − E𝑖 [log𝑝 (𝑖)]
≥ E𝑖,𝜏 [log𝑞𝜃 (𝑖 | 𝜏)] − E𝑖 [log𝑝 (𝑖)] (1)

where the unknown posterior distribution 𝑝 (𝑖 | 𝜏) is approximated
by a variational distribution 𝑞𝜃 (𝑖 | 𝜏). We parameterize 𝑞𝜃 (𝑖 | 𝜏)
with 𝜃 and update 𝜃 towards maximizing the likelihood on (𝑖, 𝜏)-
tuples stored in the replay buffer. Prior works maximize the mutual
information by employing the variational lower bound as an intrin-
sic reward

𝑟
(
𝜏, 𝑖 ′

)
= log𝑞𝜃

(
𝑖 ′ | 𝜏

)
− log 𝑝

(
𝑖 ′
)

= log𝑞𝜃
(
𝑖 ′ | 𝜏

)
+ log |𝐴|

(2)

where 𝑖 ′ ∼ 𝑝 (𝑖), a uniform distribution, thus − log 𝑝 (𝑖 ′) = log |𝐴|,
where |𝐴| is the number of agents. We assume access to a perfect
distribution 𝑞𝜃 (𝑖 | 𝜏), yielding

∑ |𝐴 |
𝑎=1 𝑞𝜃 (𝑖𝑎 | 𝜏) = 1.

Intrinsic reward for known trajectories The intrinsic reward
function motivates the agents to visit known trajectories 𝜏 where
𝑞𝜃 (𝑖 ′ | 𝜏) → 1. As a result,

𝑟max = log 1 + log |𝐴| = log |𝐴|. (3)

Intrinsic reward for new trajectories For new trajectories,
𝑞𝜃 (𝑖 ′ | 𝜏) is unknown. Here, we assign a null probability to unseen
trajectories by adding a background class to the model. The pe-
nalization received by agents when they visit unseen trajectories
is

𝑟 ′new = lim
𝑞𝜃 (𝑖′ |𝜏)→0

log𝑞𝜃
(
𝑖 ′ | 𝜏

)
+ log |𝐴| = −∞ (4)

We note that when the distribution 𝑞𝜃 (𝑖 ′ | 𝜏) converges, the
agents can achieve larger rewards for visiting known trajectories
than exploring new trajectories.
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4 CONTRASTIVE TRAJECTORY ENTROPY
MAXIMIZATION

To resolve this limitation, in this paper, our aim is to encourage
multi-agent diversity by maximizing the entropy of trajectories
of different agents in an abstract representation space, unlike the
previous mutual information maximization method. First, we map
the trajectory space to a latent contrastive representation spacewith
a self-supervised contrastive learning method. Then, we propose a
novel nonparametric method to maximize the trajectory entropy
by introducing per-agent intrinsic rewards.

4.1 Learning Contrastive Trajectory
Representation

Wepropose a novel trajectory representation learningmethod based
on contrastive learning. Recent work [13, 28] shows promise in
using contrastive learning to learn meaningful representations in
RL. The reason we choose contrastive learning is that we aim to
distinguish trajectories of different agents based on the distance
between them in the representation space to ensure that our entropy
maximization objective works properly.

Concretely, our representation learning method is based on the
contrastive learning loss employed in simCLR [3]. Different from
simCLR that is designed to learn representations of images, we
propose a novel structure to learn distinguishable representations
of different agents’ trajectory sequences. First, we randomly sample
a batch of trajectories of all agents from the replay buffer {𝜏𝑎} |𝐴 |

𝑎=1.
Then, we apply the data augmentation operation, denoted as 𝑎𝑢𝑔(·),
that adds Gaussian noise randomly sampled from the normal distri-
butionN

(
0, 0.12) to each observation 𝑜𝑎𝑡 in the trajectory sequence

𝜏𝑎 , improving the robustness and generalization of the representa-
tion learning model. We augment each observation 𝑜𝑎𝑡 two times
to obtain a key (𝑜𝑎𝑡 )𝑘 = 𝑎𝑢𝑔(𝑜𝑎𝑡 ) and a query (𝑜𝑎𝑡 )𝑣 = 𝑎𝑢𝑔(𝑜𝑎𝑡 ),
which are then encoded into a latent representation space by an
encoder 𝑧𝑎𝑡 = 𝑔𝜃𝑒 (·), respectively. Next we summarize the latent
representations with an autoregressive model 𝑔𝜃𝑔 to a trajectory
representation 𝑐𝑎𝑡 = 𝑔𝜃𝑔 (𝑧𝑎≤𝑡 ), which alleviates the non-stationary
issue caused by partial observability constraints in multi-agent en-
vironments and leads to more stable policies. For simplicity, we
denote 𝑔𝜃 =

{
𝑔𝜃𝑒 , 𝑔𝜃𝑔

}
. Note that 𝑔𝜃 only encodes the observa-

tions of agents since we hope to motivate agents to explore diverse
observations via entropy maximization. The trajectory represen-
tation is then input to a projection network ℎ𝜙 to obtain a final
output where the contrastive learning loss is imposed. We train
the network 𝑔𝜃 and the projection network ℎ𝜙 by minimizing the
contrastive learning loss:

ℓ (𝜃,𝜙) = − 1
2 |𝐴 |

|𝐴|∑︁
𝑎=1

[
log

exp
(
sim

(
ℎ𝜙

(
𝑔𝜃

(
(𝑜𝑎𝑡 )𝑘

) )
, ℎ𝜙

(
𝑔𝜃

(
(𝑜𝑎𝑡 )𝑣

) ) ) )
𝑥 + 𝑦

]
,

where 𝑥 =

|𝐴|∑︁
𝑎′=1

1[𝑎≠𝑎′ ] exp
(
sim

(
ℎ𝜙

(
𝑔𝜃

(
(𝑜𝑎𝑡 )𝑘

) )
, ℎ𝜙

(
𝑔𝜃

(
(𝑜𝑎′𝑡 )𝑘

))))
,

𝑦 =

|𝐴|∑︁
𝑎′=1

1[𝑎≠𝑎′ ] exp
(
sim

(
ℎ𝜙

(
𝑔𝜃

(
(𝑜𝑎𝑡 )𝑘

) )
, ℎ𝜙

(
𝑔𝜃

(
(𝑜𝑎′𝑡 )𝑣

))))
. (5)

In Equation 5, 1[𝑎≠𝑎′ ] is an indicator function evaluating to 1
iff 𝑎 ≠ 𝑎′ and sim(𝑢, 𝑣) is the cosine similarity between 𝑢 and 𝑣 .
The goal of contrastive learning loss shown in Equation 5 is to
guarateen that the key (𝑜𝑎𝑡 )𝑘 is more close to the query (𝑜𝑎𝑡 )𝑣 than

other key-query points
{
(𝑜𝑎′𝑡 )𝑘 , (𝑜𝑎

′
𝑡 )𝑣

} |𝐴 |

𝑎′=1,𝑎′≠𝑎
in the contrastive

representation space.
In practice, for simplicity, we employ resnet blocks [7] for the en-

coder and a GRU unit [4] for the autoregressive model. It is notable
that the trajectory representation learning relies on a complete
self-supervised method to achieve distinguishability among agents
without using explicit pre-defined identities of agents, e.g., label-
ing agents with one-hot vectors like prior works [2, 10, 12, 14].
We find it helps to use the self-supervised method to improve the
exploration of the MARL algorithm.

4.2 Nonparametric Entropy Maximization
Maximizing entropy using density estimation like the previous
work [6] is non-trivial and challenging in high-dimensional multi-
agent settings. To maximize the entropy of trajectory representa-
tions of different agents, our method uses a nonparametric particle-
based entropy estimator [1, 26] that has been widely investigated
in statistics [11]. The particle-based entropy estimator gives the
measurement of the sparsity of data distribution depending on
the distance between the sampled data point and its 𝑘-th nearest
neighbor point.

We then present the implementation of the particle-based en-
tropy estimator in our method. In this paper, we treat each trajec-
tory representation as a particle. Concretely, given a set of trajec-

tory representations of all agents
{
𝑐𝑎𝑡 ∈ R𝑑

} |𝐴 |

𝑎=1
learned by 𝑔𝜃 , the

particle-based entropy estimator can be defined as

H(𝑐𝑡 ) = − 1
|𝐴|

|𝐴 |∑︁
𝑎=1

log
𝑘

|𝐴|v𝑘𝑎
+ 𝑏 (𝑘) ∝

|𝐴 |∑︁
𝑎=1

log v𝑘𝑎 , (6)

where 𝑏 (𝑘) works as a bias correction depending on the hyperpa-
rameter 𝑘 , and 𝑣𝑘𝑎 is the volume of a hypersphere with a radius of𝑐𝑎𝑡 − (𝑐𝑎𝑡 ) (𝑘)

,
v𝑘𝑎 =

𝑐𝑎𝑡 − (𝑐𝑎𝑡 ) (𝑘)
𝑑 · 𝜋𝑑/2

Γ (𝑑/2 + 1) (7)

where (𝑐𝑎𝑡 ) (𝑘) is the 𝑘-th nearest neighbor of 𝑐𝑎𝑡 in set
{
𝑐𝑎𝑡

} |𝐴 |
𝑎=1, the

operator ∥·∥ is used to calculate the Euclidean distance, and Γ is
the gamma function. Intuitively, v𝑘𝑎 serves as an indicator of the
sparsity around the trajectory representation of each agent and the
entropy estimatorH(𝑐𝑡 ) quantifies the average volume around the
trajectory representation of each agent.

Given the definition of v𝑘𝑎 , we can thus simplify the particle-
based entropy estimator in Equation 6 as follows:

H(𝑐𝑡 ) ∝
|𝐴 |∑︁
𝑎=1

log
𝑐𝑎𝑡 − (𝑐𝑎𝑡 ) (𝑘)

𝑑 (8)

where H(𝑐𝑡 ) is proportional to the sum of the log of the Euclidean
distance between the trajectory representation and its 𝑘-th nearest
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neighbor. However, we empirically observe that using the entropy
estimator given by Equation 8 easily leads to learning unstable
policies. To ensure proper operation in multi-agent settings, we
present a novel entropy estimator that calculates the average value
of all 𝑘 nearest neighbors around the trajectory representation:

H(𝑐𝑡 ) :=
|𝐴 |∑︁
𝑎=1

log
©«𝑏 + 1

𝑘

∑︁
(𝑐𝑎𝑡 ) ( 𝑗 ) ∈N𝑘 (𝑐𝑎𝑡 )

𝑐𝑎𝑡 − (𝑐𝑎𝑡 ) ( 𝑗)
𝑑ª®®¬ , (9)

where N𝑘

(
𝑐𝑎𝑡
)
is a set of 𝑘 nearest neighbors around a trajectory

representation 𝑐𝑎𝑡 . We additionally introduce a constant 𝑏 for nu-
merical stability that is set to 1 for all experiments.

In order to encourage multi-agent diversity by maximizing the
entropy H(𝑐𝑡 ), we can treat the entropy as an intrinsic reward
𝑟𝑎𝑒𝑛𝑡𝑟𝑜𝑝𝑦 , where the representation of 𝑜𝑎

𝑡+1 is treated as a particle in
the entropy. Concretely, given a transition (𝑜𝑎𝑡 , 𝑢𝑎𝑡 , 𝑜𝑎𝑡+1) of agent 𝑎,
we define the intrinsic reward function for agent 𝑎 as follows:

𝑟𝑎𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = log
©«𝑏 + 1

𝑘

∑︁
𝑔𝜃 (𝑜𝑎

𝑡+1 )
( 𝑗 ) ∈N𝑘

(
𝑔𝜃 (𝑜𝑎

𝑡+1 )
)
𝑔𝜃 (𝑜𝑎𝑡+1) − 𝑔𝜃 (𝑜𝑎𝑡+1)

( 𝑗 )
|𝐴|ª®®®¬ . (10)

Intuitively, the intrinsic reward incentivizes agents to visit di-
verse trajectories that have larger distances in contrastive represen-
tation space. For the pytorch-style pseudocode of CTEM, we refer
the reader to Technical Appendix 3 in the supplemental material.
We also provide the source code of our method in the supplemental
material.

Differences to previous methods Note that our objective is
completely different from prior methods [2, 10, 12, 14] that max-
imize the objective of mutual information between trajectories 𝜏
and agent identities 𝑖 by introducing an intrinsic reward

𝑟𝑀𝐼 (𝜏, 𝑖) = log𝑞𝜃 (𝑖 | 𝜏) − log𝑝 (𝑖) (11)
where 𝑞𝜃 (𝑖 | 𝜏) is a variational distribution that is trained towards
maximizing the likelihood on (𝑖, 𝜏)-tuples stored in the replay buffer,
and 𝑝 (𝑖) is a fixed uniform distribution. The above intrinsic re-
ward 𝑟𝑀𝐼 encourages the agents to visit trajectories that contain
more identity information. In contrast, our intrinsic reward 𝑟𝑎𝑒𝑛𝑡𝑟𝑜𝑝𝑦
given by Equation 10 encourages agents to visit diverse trajectories
with larger distances in contrastive representation space, leading
to entropy maximization.

4.3 Learning Algorithm
In this section, we introduce how to integrate our algorithm with
QMIX [23], a value-decomposition-basedMARL algorithm. InQMIX,
each agent learns its individual policy through optimizing an ap-
proximation 𝑄𝑡𝑜𝑡 for the joint action-value function 𝑄𝝅 . QMIX
monotonically mixes the agent utilities (where the agents’ policies
are derived) of all agents with a mixing network to output the𝑄𝑡𝑜𝑡 .
To implement our method on top of QMIX, we introduce an addi-
tional intrinsic reward for each agent and simultaneously learn an
intrinsic utility network 𝑄𝑒𝑛𝑡𝑟𝑜𝑝𝑦

𝑎 for each agent 𝑎 towards maxi-
mizing the total intrinsic rewards, yielding entropy maximization.
Concretely, the intrinsic utility network 𝑄

𝑒𝑛𝑡𝑟𝑜𝑝𝑦
𝑎 takes as input

the agent utility 𝑄𝑎 (𝑜𝑎𝑡 , 𝑢𝑎𝑡 ) and current trajectory representation
𝑐𝑎𝑡 . To learn the intrinsic utility network 𝑄

𝑒𝑛𝑡𝑟𝑜𝑝𝑦
𝑎 , we minimize

the TD loss with our intrinsic rewards:

L𝑒𝑛𝑡𝑟𝑜𝑝𝑦

𝑇𝐷
= E(𝑜𝑎𝑡 ,𝑢

𝑎
𝑡 ,𝑜

𝑎
𝑡+1 )∼D

[(
𝑄

𝑒𝑛𝑡𝑟𝑜𝑝𝑦
𝑎

(
𝑐𝑎𝑡 ,𝑄𝑎 (𝑜𝑎𝑡 ,𝑢𝑎𝑡 )

)
− 𝑦

)2
]
,

𝑤ℎ𝑒𝑟𝑒 𝑦 = 𝑟𝑎𝑒𝑛𝑡𝑟𝑜𝑝𝑦 + 𝛾�̄�𝑒𝑛𝑡𝑟𝑜𝑝𝑦
𝑎

(
𝑐𝑎𝑡+1, �̄�𝑎

(
𝑜𝑎𝑡+1,𝑢

𝑎
𝑡+1

) )
.

(12)

𝑄
𝑒𝑛𝑡𝑟𝑜𝑝𝑦
𝑎 and 𝑄𝑎 are target networks to stablize training. Each

time we randomly take a minibatch of trajectory samples from the
replay buffer D for training. Notably, the loss function L𝑒𝑛𝑡𝑟𝑜𝑝𝑦

𝑇𝐷
introduces an auxiliary gradient to train the agent utility network.
The agent utility of QMIX has no actual meaning and constraints,
enabling our method to be safely integrated with QMIX. We can
thus get the total loss function to learn optimal policies for agents:

L𝑡𝑜𝑡𝑎𝑙 = L𝑄𝑀𝐼𝑋

𝑇𝐷
+ 𝛽L𝑒𝑛𝑡𝑟𝑜𝑝𝑦

𝑇𝐷
, (13)

where L𝑄𝑀𝐼𝑋

𝑇𝐷
is the TD loss function of QMIX to learn 𝑄𝑡𝑜𝑡 and

update parameters of agent utility networks towards maximizing
team returns. 𝛽 is a cofficient to change the weight of L𝑒𝑛𝑡𝑟𝑜𝑝𝑦

𝑇𝐷

compared with L𝑄𝑀𝐼𝑋

𝑇𝐷
. The overall framework of our method is

trained end-to-end in a centralized manner by minimizing L𝑡𝑜𝑡𝑎𝑙 ,
where the agent learns its policy towards maximizing both the team
returns and the entropy of trajectory representations of different
agents. Our method thus promotes multi-agent diversity. Note that
our method can also be integrated with policy gradient methods.
We refer the reader to Technical Appendix 2 in the supplemental
material for the impelementation of our method on top of policy
gradient methods.

5 EXPERIMENTS
In this section, we evaluate our proposed CTEM in Pac-Men, SMAC,
and SMACv2 benchmarks to demonstrate the superior performance
of our proposed method. We compare our proposed CTEM with the
state-of-the-art methods, including value-decomposition methods
(such as QMIX [23] andQTRAN [27]) andmutual information-based
exploration methods (including MAVEN [19], EOI [10], SCDS [14],
PMIC [15], LIPO [2], and FoX [12]). For generality, we report both
the mean and standard deviation of the performance for CTEM and
baselines, derived from five random seeds. For a fair comparison,
the hyperparameters across various methods are consistent in each
multi-agent task. Hyperparameters and training details are provided
in Technical Appendix 5 in the supplemental material.

5.1 Pac-Men
To showcase the effectiveness of our method in promoting multi-
agent diversity, we design a grid world environment called Pac-Men,
illustrated in Figure 2a, to compare our method to the baselines.
In Pac-Men, we initialize four agents positioned in the central
room of a maze. Each agent moves in the maze with only partial
observability. There are some randomly initialized dots distributed
in each edge room. The agents can move to the four edge rooms
along paths to eat dots. To intensify the challenge, we set distinct
path lengths for each path to the edge rooms. Note that only the
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downward path is within the agent’s observation scope, which
imposes a high demand on efficient exploration.

As shown in Figure 2b, our method achieves significant improve-
ment over QMIX and dramatically outperforms other baselines.
QMIX does not learn optimal policies in Pac-Men. To achieve more
rewards, the agents require to move to the four edge rooms, respec-
tively, to collect dots. However, the visitation heatmap of QMIX
illustrated in Figure 2c demonstrates that some agents learn simi-
lar behaviors and go to the same bottom room. These agents may
compete for the dots in the same room, resulting in inefficient co-
operation. With the help of our method, as shown in Figure 2d, the
agents efficiently learn diverse policies and move to the four edge
rooms, respectively. This indicates that the objective of entropy
maximization promotes the learning of diverse policies. Moreover,
we note that the baselines maximizing the mutual information
between trajectories and agent identities such as EOI and SCDS
achieve similar performance and do not yield satisfactory perfor-
mance. We argue that this is because these algorithms suffer from
insufficient exploration and the agents may not discover the up-
ward room with the longest path. We further present the mutual
information-based and our entropy maximization-based intrinsic
rewards in Figure 2e, respectively. The results demonstrate that
the mutual information-based intrinsic reward does not provide
efficient incentives, while our entropy maximization-based intrinsic
rewards continuously encourage the agent to explore the optimal
cooperative policies.

5.2 SMAC
After initially evaluating ourmethod in a straightforward gridworld
environment, we advance to a more complex multi-agent setting
known as the StarCraft Multi-Agent Challenge (SMAC) [24]. To
indicate the effectiveness of our method, we conduct experiments
in 6 scenarios of SMAC: 3s5z (easy), 2c_vs_64zg (hard), 7sz (hard),
6h_vs_8z (super hard), corridor (super hard), and 3s5z_vs_3s6z
(super hard). Note that performance comparison are not applicable
across different SMAC versions. We use the version SC2.4.10 of
SMAC to conduct our experiments.

The performance comparison between our proposed CTEM and
baselines in the SMAC scenarios is shown in Figure 3. In the three
super hard scenarios (6h_vs_8z, corridor, and 3s5z_vs_3s6z), where
the strength of enemies is more powerful than that of agents, our
method significantly outperforms baselines, indicating that our
method is more robust in exploring cooperative policies than base-
lines by maximizing trajectory entropy. Although QMIX achieves
satisfactory performance in the 3s5z and 2c_vs_64zg scenarios, it
fails to learn effective policies in other challenging scenarios re-
quiring complex and diverse cooperative policies and needs our
method to get better performance.

MAVEN is less efficient in exploring cooperative policies, demon-
strating that the trajectory entropy maximization objective yields
more efficient exploration than encouraging the visitations of di-
verse joint behaviors employed in MAVEN. EOI and SCDS achieve
promising results in the 3s5z and 2c_vs_64zg scenarios, however,
they do not achieve robust results in other more challenging sce-
narios. We attribute this to the strong mutual dependence between
trajectories and agent identities, which impedes further exploration

of complex cooperative policies. Similarly, the mutual information-
based formation diversity from FoX also suffers from this problem.

We provide the visualization examples of diverse policies learned
by our method shown in Figure 6, that emerge in the super hard
scenarios (6h_vs_8z, corridor, and 3s5z_vs_3s6z). For example, in
the 6h_vs_8z scenario, to cover other agents, one agent quickly
moves in the opposite direction to the team. Then most of the en-
emies are attracted by the agent’s movements. The agent keeps
kiting the following enemies and draws the most of the enemies’
fire. Meanwhile, the few remaining enemies are surrounded by the
other agents. As a result, the agents cooperatively distribute the en-
emies’ attacks by taking diverse policies. However, if all the agents
take similar behaviors and rush toward enemies, they will soon be
defeated by the powerful enemies. We can also note such diverse
policies learned by our method in the other two scenarios. These
results demonstrate the effectiveness of our method in learning
diverse policies, enabling the agents to cooperatively defeat the
enemies.

Homogeneous behaviors Notably, our method also achieves
superior performance in the easy 3s5z scenario, where agents may
sometimes need to behave in the same way in order to master the
’focus fire’ trick. We further evaluate our method in similar homo-
geneous scenarios. The results, presented in Table 1, demonstrates
that our method would not impede the learning of homogeneous
behaviors that can contribute to more environmental rewards. Our
entropy maximization-based method can efficiently balance explo-
ration and exploitation in MARL.

Table 1: Performance of our method and QMIX in homoge-
neous scenarios.

Method 8m 5m_vs_6m 8m_vs_9m 10m_vs_11m
CTEM+QMIX 0.93±0.03 0.90±0.05 0.91±0.03 0.89± 0.04

QMIX 0.87±0.03 0.65±0.04 0.58±0.05 0.43±0.04

Stochasticity andExplorationAlthough the scenarios of SMAC
are challenging, one limitation of SMAC is that it lacks enough
stochasticity in the combat scenarios to test the exploration of
MARL algorithms, as the initial positions and compositions of
the team are typically fixed. We further adopt a more challeng-
ing SMACv2 benchmark [5], enabling stochasticity in the SMAC
benchmarks through deploying random start positions and random
team compositions in each episode.

We evaluate our method in three scenarios of SMACv2: ter-
ran_5_vs_5, protoss_5_vs_5, and zerg_5_vs_5. The experimental
results, illustrated in Figure 4, demonstrate that our method per-
forms substantially better than baselines in all the scenarios. Note
that QMIX fails to learn optimal policies and lacks sufficient ex-
ploration to adapt to the stochasticity in the SMACv2 scenarios.
However, by integrating with our method, QMIX significantly im-
proves its performance and learns more exploratory and diverse
policies. The mutual information-based baselines such as MAVEN,
EOI, and SCDS also fall into local optimum. We argue that this is
because the mutual dependence between trajectories and agent
identities learned in these algorithms forces agents to visit known
trajectories instead of discovering new trajectories. However, our
method can continuously explore new trajectories and search for
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(a) Illustration of Pac-Men (b) Learning curves
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(c) Visitation heatmap of QMIX

ÊÊ Agent 1
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Agent 3

Agent 4

(d) Visitation heatmap of CTEM (e) Normalized average intrinsic
rewards

Figure 2: Performance comparison between our proposed CTEM and baselines in Pac-Men.

(a) 3s5z (easy) (b) 2c_vs_64zg (hard) (c)7sz (hard)

(d) 6h_vs_8z (super hard) (e) corridor (super hard) (f)3s5z_vs_3s6z (super hard)

Figure 3: Performance comparison between our proposed CTEM and baselines in the SMAC scenarios.

(a) terran_5_vs_5 (b) protoss_5_vs_5 (c)zerg_5_vs_5

Figure 4: Performance comparison between CTEM and baselines in the SMACv2 scenarios.

(a) MAVEN (b) EOI (c)SCDS (d) LIPO (e) FoX (f) CTEM

Figure 5: Visitation heatmaps of different algorithms in the terran_5_vs_5 scenario.

exploratory policies. We further provide the visitation heatmaps of agents trained by the baselines and our method in Figure 5. The re-
sults intuitively demonstrate that the movements of agents trained
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Figure 6: Visualization examples of diverse policies emerg-
ing in 6h_vs_8z (top), corridor (medium), and 3s5z_vs_3s6z
(bottom) from initial (left) to final (right).

by the baselines are distributed in only partial areas of the envi-
ronment. In contrast, our method motivates the agents to visit any
possible states that contain environmental rewards and sufficiently
explore the whole environment.

Scalability We next evaluate the scalability of our method with
an increasing number of agents. As the number of agents increases,
the state-action space expands exponentially, underscoring the crit-
ical need for exploration. In this section, we test the scalability of
our method across four SMACv2 scenarios with an increasing num-
ber of agents: terran_5_vs_5, terran_10_vs_10, terran_15_vs_15,
and terran_20_vs_20, with results shown in Table 2. Our method
consistently outperforms QMIX in all scenarios. QMIX struggles to
achieve satisfactory performance due to inadequate exploration. In
contrast, our method exhibits robust scalability, demonstrating that
maximizing the trajectory entropy allows for sufficient exploration.

Table 2: Performance of our method and QMIX in scenarios
of SMACv2 with different number of agents

Method terran_5_vs_5 terran_10_vs_10 terran_15_vs_15 terran_20_vs_20
CTEM+QMIX 0.82±0.03 0.84 ±0.03 0.81 ±0.03 0.78 ±0.04

QMIX 0.68±0.03 0.39±0.04 0.24 ±0.06 0.11±0.05

5.3 Ablation Study
In this section, we conduct several ablation studies to investigate
the contribution of each component in our method. To investigate
the impact of the autoregressive model used to learn the trajectory
representation, we design a variant that ablates the autoregressive
model and only uses the observation encoder. To measure the con-
tribution of contrastive representation learning, we design a variant
that encodes trajectories using a randomly initialized encoder with
fixed parameters. Moreover, we also design a variant that learns the
representations in a supervised manner by directly predicting the
agent identities of trajectories. To test the entropy maximization
objective, we design two variants that use the 𝑘-th nearest neighbor
and randomly selected neighbors in the entropy, respectively.

We conduct experiments in 3 SMAC scenarios including 3s5z
(easy), 2c_vs_64zg (hard), and corridor (super hard) to test these
variants. The performance of ablation variants is shown in Fig-
ure 7a. Using the 𝑘-th nearest neighbor in the entropy estimator
downgrades the performance and leads to a large variance. We also
note an evident decrease in performance caused by using randomly
selected neighbors. However, they still achieve higher win rates
than QMIX, indicating our representation learning method is quite
robust. As illustrated by Figure 7b, using 𝑘 nearest neighbors in the
entropy estimator allows for more efficient intrinsic rewards than
the other two methods, encouraging sufficient exploration.

Using a fixed encoder without representation learning leads to
sub-optimal performance, providing inefficient intrinsic rewards
for agents to explore. Compared with self-supervised contrastive
representation learning, the representations learned by predicting
the agent identities of trajectories incur a noticeable decline in
performance. We believe this is because the representations su-
pervised by the agent identity are harmful to efficient exploration.
Moreover, the ablation of the autoregressive model achieves similar
performance to our method in 3s5z and 2c_vs_64zg, however, it
yields a significant performance drop in the super hard corridor
scenario. This phenomenon indicates that learning trajectory repre-
sentations with the autoregressive model can lead to a more robust
result, especially in challenging multi-agent tasks.

6 EVALUATIONS OF CTEMWITH DIFFERENT
VALUES OF 𝑘

To test whether our method’s performance is highly sensitive to
𝑘 , we present its performance with various 𝑘 values in the ter-
ran_5_vs_5 (with 5 agents) and terran_20_vs_20 (with 20 agents)
scenarios, as shown in Table 3. The results indicate that different
values of 𝑘 result in only minor performance variations in both
scenarios, demonstrating that our method remains robust across a
range of 𝑘 values.

7 COMPARISONWITH 𝜖-GREEDY
The 𝜖-greedy approach is a widely used exploration strategy in
many reinforcement learning (RL) algorithms. Typically, increasing
the 𝜖 value promotes more exploration. In this section, we com-
pare our entropy maximization method to the 𝜖-greedy strategy
to demonstrate its advantages in encouraging exploration within
MARL. For this comparison, we set the 𝜖 values to 0.05, 0.08, and
0.12 for QMIX and evaluate these settings across challenging scenar-
ios, including corridor and 3s5z_vs_3s6z. The results, summarized
in Table 4, indicate that our entropy maximization method is more
effective at promoting exploration than simply increasing the 𝜖
values. Notably, higher 𝜖 values do not yield substantial perfor-
mance improvements. In multi-agent environments, increasing 𝜖
primarily adds randomness to individual agents’ action selection
without improving coordination or diversity among agents, as it
overlooks the trajectories of other agents. This leads to inefficient
exploration.

8 RELATEDWORKS
Agent Diversity Diversity in MARL settings aims to foster the
learning of diverse policies among agents. For instance, SVO [20]
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Table 3: Performance of our method with different values of k

Method terran_5_vs_5 terran_20_vs_20
k=1 k=2 k=3 k=4 k=1 k=4 k=10 k=15 k=18

CTEM+QMIX 0.87 ±0.07 0.84 ±0.03 0.86 ±0.05 0.90 ±0.02 0.76 ±0.09 0.72 ±0.04 0.77 ±0.03 0.75 ±0.03 0.78 ±0.04

Table 4: Comparisons of the performance of our method
against QMIX with different values of 𝜖

Method corridor 3s5z_vs_3s6z
Trajectory entropy maximization (Ours) 0.92 ±0.03 0.87 ±0.04

𝜖 = 0.05 (QMIX) 0.57 ±0.07 0.36 ±0.12
𝜖 = 0.08 (QMIX) 0.63 ±0.05 0.41 ±0.08
𝜖 = 0.12 (QMIX) 0.65 ±0.03 0.44 ±0.09

(a)

(b)

Figure 7: (a) Performance comparison of our method against
different variants in the scenarios of SMAC. (b) Different
kinds of intrinsic rewards in the corridor scenario.

draws upon social value orientation to tackle multi-agent social
dilemmas. It achieves this by introducing an intrinsic reward that
encourages agents to learn diverse policies. RODE [33] promotes
diversity by assigning distinct actions to predefined roles. Although
RODE is effective for agents with small action spaces, it may face
challenges in scenarios with continuous actions and extensive ac-
tion spaces. MAVEN [19] introduces a value-based approach that
conditions joint behaviors of agents on a shared latent variable
controlled by a hierarchical policy by maximizing the mutual infor-
mation objective. EOI [10] learns a probabilistic classifier to predict
the probability distribution over agents based on their observations.
The correctly predicted probability serves as an intrinsic reward
for policy training. CDS [14] focuses on encouraging multi-agent
diversity by optimizing mutual information. It achieves this goal by
creating lower bounds based on the Boltzmann softmax distribution

and variational inference. PMIC [15] encourages learning of supe-
rior policies by maximizing the mutual information with regard
to superior cooperative behaviors while minimizing mutual infor-
mation associated with inferior behaviors. LIPO [2] regards policy
compatibility as a proxy to learn diverse behaviors and identifies
behaviors of each policy by maximizing the mutual information
objective. FoX [12] introduces formation-based exploration, which
promotes visiting diverse formations by directing agents to com-
prehensively understand their current formations. Despite their
successes, they tend to overemphasize the relationship between
the agent identity and trajectories. This emphasis sometimes leads
agents to repeatedly visit similar observations, restricting their
ability to explore new possibilities.

Entropy Maximization Entropy maximization has been em-
ployed in some RL works to efficiently encourage state exploration.
RE3 [25] tries to improve sample efficiency by efficient exploration.
It converts the high-dimensional observations into a compact low-
dimensional representation space with a fixed encoder and lever-
ages an entropy estimator to estimate state entropy in the low-
dimensional representation space. Different from RE3, we adopt
contrastive learning to learn a contrastive representation space,
which captures more relevant information. APT [16] proposes a
pre-training method maximzing the state entropy to explore the
environment. An intrinsic reward based on the entropy estima-
tor is used to train the agent policy in a reward-free environment.
ProtoRL [37] learns representations through prototypes, which
simultaneously serve a summary of the agent’s exploration expe-
rience. The prototype based representations not only generalizes
across tasks, but also efficiently accelerate exploration. In multi-
agent settings, inspired by these methods, our method encourages
multi-agent diversity by maximizing trajectory entropy in a con-
trastive representation space, which induces efficient exploration
and collaboration.

9 CONCLUSION
Observing the behavioral similarities among agents arising from
parameter sharing, in this paper, we propose a novel method en-
couraging multi-agent diversity through maximizing the entropy of
agents’ trajectories in an abstract contrastive representation space.
We evaluate our method in multiple challenging benchmark tasks
and demonstrate the significant outperformance of our method
over existing state-of-the-art methods.
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