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ABSTRACT
Traditional visual SLAM systems (dense and sparse) focus on build-
ing metric maps, but the internal representations are misaligned
with human vision, making it insufficient for assisting robots in
scene perception and interpretation. Conversely, aligning robot
scene representation with human vision enables more intuitive
human-to-robot commands and improves the generalization ca-
pability of deployed neural networks trained on natural images.
Neural scene representation-based visual SLAM system, with its
consistent and high-fidelity mapping, provides a novel way to assist
robots in detailed scene depiction and comprehensive perception.
However, end-to-end methods suffer from low accuracy in robot
localization, which inevitably degrades mapping quality and limits
their practical applications. In this paper, we propose a robust hy-
brid SLAM system, named OGS-SLAM, which integrates traditional
visual SLAM with 3D Gaussian Splatting (3D GS) mapping. This
system inherits the high localization accuracy of traditional SLAM
while providing a scene model that aligns with human cognition,
thereby offering a reliable foundation for downstream human-robot
interaction tasks. Experiments demonstrate that our method out-
performs state-of-the-art (SOTA) end-to-end SLAM systems in lo-
calization, mapping, and map semantic segmentation. Code will be
available at: https://github.com/realXiaohan/OGS-SLAM.
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1 INTRODUCTION
With the advancement of robotics, accurate mapping is crucial for
tasks such as navigation, path planning, and scene exploration. Si-
multaneous Localization and Mapping (SLAM) collects data from
on-board sensors and offers real-time scene representation while
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simultaneously estimating ego-motion within the map. The con-
structed internal representations store the geometric features of
a scene, typically in the form of discrete point clouds. Although
the point cloud maps assist robots in ego-motion estimation, they
fail to support robots in performing high-level tasks. For instance,
consider the task of instructing robots to make a cup of coffee. Tra-
ditional topological maps fail to provide sufficient support for such
tasks because the significant disparity between the metric maps
and human perception of the environment. Thus, there is an urgent
need for a high-fidelity, anthropomorphic scene representation to
better support high-level tasks in human-robot interaction. Scenes
typically consist of various semantic objects, such as the ’cup’ in the
example. As a result, extracting semantic information from maps is
fundamental to effective human-robot interaction. Currently, main-
stream SLAM systems for scene representation are categorized into
two types: metric maps and neural scene representations.

Based on the sparsity of scene representation, metric maps can be
divided into sparse mapping and dense mapping. Sparse mapping
[17, 22, 34] typically extracts feature points from video streams,
storing optimized 3D keypoints and camera poses within the map.
Feature points extraction is the core of pose estimation and opti-
mization; however, it only utilizes a small portion of pixels, primar-
ily concentrated in high-gradient areas, resulting in underutilization
of rich scene information and low tolerance to textureless scenes.
Dense mapping methods [13, 33] select pixels that surpass a cer-
tain threshold within image blocks to estimate the camera pose
by minimizing photometric error. The selected 3D points are then
stored on the map. Compared to sparse mapping, dense mapping
involves more pixels, making it more effective in handling weak tex-
tures, repetitive areas, and edges. However, dense mapping heavily
depends on the photometric consistency assumption, which may
not always hold in practical applications. Although both feature-
based and direct visual SLAM have been proven capable of effective
mapping and localization in specific scenarios, they still produce
discrete maps with relatively low quality. This limitation signifi-
cantly reduces the effectiveness of SLAM in supporting high-level
robot tasks in a human compatible manner.

Due to the excellent noise resistance and high-fidelity mapping,
neural representation methods have been extensively researched
in recent years [18, 25, 36], demonstrating significant potential for
scene modeling in SLAM. Compared to metric maps, radiance-field-
based mapping methods generate comprehensive and consistent
scene representation. These methods directly backpropagate gra-
dients inside scene representations, which is certainly beneficial
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for high-level anthropomorphic tasks, such as semantic segmenta-
tion and scene editing [8, 9]. Neural mapping significantly outper-
forms metric maps in generating high-fidelity scene representations
and 3D GS-based methods, with their advantage of fast rendering,
perfectly meet the demands of SLAM, making them the top per-
formance. However, mapping quality also heavily relies on the
accuracy of ego-motion estimation. Given the real-time running
requirements of SLAM and the limitations of the neural networks,
current end-to-end SLAM [11, 18] systems simply rely on per-pixel
RGB and depth loss for supervision and mistakenly optimize the
camera ego-motion in vector space rather than in tangent space [30].
The rotation matrix is non-additive; therefore, directly performing
gradients backpropagation in vector space inevitably introduces
noise and reduce the robustness of the optimization process, which
leads to a lower precision in camera pose estimation and conse-
quently limits the accuracy of scene modeling. In contrast, sparse
SLAM employs a well-designed and robust optimization framework
for camera pose estimation. Inspired by this, we propose a hybrid
SLAM system, named OGS-SLAM, which combines the strengths
of localization in sparse SLAM with the high-fidelity mapping ca-
pabilities of 3D Gaussian Splatting (3D GS).

The proposed OGS-SLAM is designed to bridge the gap between
robotic scene modeling and human visual perception. Our method
enhances the quality of neural scene representation while main-
taining high localization accuracy through the integration of sparse
active SLAM and 3D Gaussian Splatting. In this work, we first lever-
age the initialized point cloud map from sparse SLAM to initiate
the training of the 3D Gaussian Splatting map, thereby ensuring
that the constructed map is both detailed and geometrically accu-
rate. Second, our system fuses the keyframe camera poses gener-
ated from various Lie group-based bundle adjustment optimization
frameworks with poses from 3D GS to refine the local Gaussian
Splatting map for high-fidelity scene representation. Finally, we
conducted semantic-level testing of the constructed maps in both
real and synthetic indoor scenarios, demonstrating the potential of
our method for practical applications.

2 RELATEDWORK
2.1 Localization
Classic SLAM systems, whether sparse [4, 16, 22] or dense [6, 23, 32],
primarily focus on improving the accuracy of localization through
well-designed optimization algorithms. Ego-motion estimation can
be viewed as a state estimation problem in mathematics [1]. Thus,
early SLAMmethods typically formulated an explicit motion model
and predicted the robot’s current state using filtering algorithms
(e.g., Particle Filter [19], Extended Kalman Filter [24]). Then, the
predictions of current camera pose are optimized with observation
from sensors. However, the filter-based SLAM methods require an
explicit distinction between the motion and observation models,
which leads to low efficiency and robustness in the optimization
process. Subsequent researchers formulated SLAM as a maximum a
posteriori estimation (MAP) problem [3], treating both motion and
observation models as factors and seamlessly incorporating them
into the estimation process. Leveraging the sparsity of the Hessian
matrix, the camera poses and landmark points are jointly optimized

within a bundle adjustment (BA) framework [2] to provide accu-
rate camera pose for the mapping process, which has become the
mainstream approach in traditional SLAM systems.

Recently, numerous studies have focused on training methods
for particular subproblems or modules within SLAM. ∇SLAM [10]
implements several existing SLAM modules as differentiable com-
putation graphs, enabling the backpropagation of reconstruction
errors to sensor measurements. DeepFactors [5] jointly optimizes
both pose and depth, adjusting the parameters of a learned depth
basis during inference. DROID-SLAM [29] introduces a dense bun-
dle adjustment layer that iteratively updates the residuals of inverse
depths and camera poses using estimated optical flow and weights,
leading to improved localization accuracy and making it the most
practical end-to-end SLAM system. However, all end-to-end meth-
ods still fall short of classical sparse methods in robot localization.

2.2 Mapping
Classical SLAM systems initially model scene as a segmentation
problem involving a grid of occupied space. These methods [7, 20]
describe the scene as a lightweight graph that captures its topo-
logical structure. While the graph-based representation facilitates
graph theory to assist robots in some tasks, merely storing the
scene’s topological structure results in significant information loss.
Subsequent sparse metric maps [17, 22] constructed sparse point
cloud map, which are particularly useful in optimal control and
belief-space planning approaches. In contrast, dense metric maps
[6, 23, 32], based on the assumption of grayscale invariance, divide
images into blocks and extract points with significant gradients in
each block as candidates for scene reconstruction. These methods
jointly optimize photometric loss with geometric parameters to
improve the accuracy of camera poses and scene representation.
Although dense metric maps provide more detailed representations
of the scene, including meshes [21] and occupancy grids [31], they
remain fundamentally discrete representations of the environment.

Neural methods have garnered extensive attention due to their
consistent and high-fidelity scene representation. iMAP [28] is the
first work to integrate neural representation into SLAM. The map-
ping thread of iMAP optimizes camera poses and scene model of
selected frames under the supervision of per-pixel error between
the rendered and real images. NICE-SLAM [36] encodes the scene
as multi-dimensional vectors within voxel feature grids and decodes
the trained features into spatial occupancy and color. However, the
aforementioned methods are based on NeRF which consumes long
training times that cannot satisfy the real-time requirements of
SLAM. Additionally, they require prior allocation of spatial grids
for scenes, which limits the scalability of maps. In 2023, Kerbl et al.
proposed 3D Gaussian splatting [12], which offers efficient render-
ing and high-fidelity scene representation. SplaTAM [11] represents
as the first work introducing 3D GS into SLAM. SplaTAM generates
the scene by utilizing per-pixel RGB-D loss with multiple frames in-
sides a sliding window. Unlike SplaTAM, MonoGS [18] incorporates
efficient online optimization and keyframemanagement techniques,
keeping keyframes organized within a sliding window based on the
inter-frame co-visibility. Furthermore, MonoGS performs resource
allocation and employs pruning methods to eliminate unstable
Gaussians, thereby reducing artifacts in the scene model.
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Figure 1: Overview of the Proposed OGS-SLAM. OGS-SLAM takes RGB-D images as input, the images will be firstly processed
with depth estimation network if in monocular setting. In the tracking thread, ORB feature points are extracted from the input
image, and a motion-only BA is employed to estimate the camera pose for current frame. A local map is constructed based on
frame covisibility, and a local BA is performed to jointly optimize keyframe camera poses and 3D mappoints. In the mapping
thread, the system is first initialized with the ORB-based point cloud map. Then, under the supervision of per-pixel RGB-D
loss, the observed 3D Gaussians in the local map are further optimized to generate a high-quality scene representation.

3 METHOD
OGS-SLAM inherits the localization algorithms from ORB-SLAM2
while refining the tracking thread to align seamlessly with 3DGS. In
the tracking thread, we primarily leverage the pose estimation and
backend optimization strategies from ORB-SLAM2 while discard-
ing the relocalization and loop closure modules to ensure system
efficiency. In the initialization module, our method achieves high-
fidelity scene mapping by fusing the local metric map from sparse
SLAM with 3D Gaussian splatting scene representation. Addition-
ally, OGS-SLAM improves the accuracy of camera pose estimation
through the multi-view geometry pose optimization framework,
combined with per-pixel loss supervision. A comprehensive illus-
tration of OGS-SLAM is in Fig. 1.

3.1 Localization
The proposed OGS-SLAM supports both monocular video streams
and RGB-D video streams as input. Notably, for monocular setting,
we preprocess the RGB input by applying a monocular depth esti-
mation network [15] to generate depthmaps. Similar to traditional
sparse SLAM, OGS-SLAM is primarily divided into two parallel
threads: tracking and mapping. The tracking thread extracts ORB
feature points from input and output the optimized ego-motion
estimation, which is robot localization. The mapping thread further
optimizes the camera poses and generates a high-fidelity scene
representation. In the tracking thread, ORB features are first ex-
tracted from each frame and establish a set of correspondences
with ORB descriptors between consecutive frames. These corre-
spondences are then used to estimate the camera pose T (Rotation
R ∈ 𝑆𝑂 (3) and Translation 𝑡 ∈ R3) by performing a motion-only

bundle adjustment (BA). Motion-only BA simultaneously optimizes
both camera pose T of current frame and 3D positions of feature
points by minimizing the reprojection error between matched 3D
points X𝑖 ∈ R3 and the correspondences 𝑥𝑖 ∈ R2, where 𝑖 ∈ X the
collection of matches. The projected 𝑥𝑖 ∈∈ R2 in pixel plane can be
generated with the pinhole camera model:

𝑥𝑖 = 𝜋 (T𝑐𝑤𝑘
X𝑖 ) = 𝐾 (RX𝑖 + t), (1)

where T𝑐𝑤𝑘
∈ 𝑆𝐸 (3) is the camera pose projecting 3D world points

to camera plane and 𝑘 stands for 𝑘𝑡ℎ frame, 𝜋 (·) is the projection
function and 𝐾 is camera intrinsic. The projection error measures
the distance of projected 𝑥𝑖 (marked as measurement) and corre-
spondence 𝑥𝑖 (marked as observation) can be expressed as:

𝑒𝑖 (T𝑐𝑤𝑘
) = 𝑥𝑖 − 𝑥𝑖 . (2)

By combining all 𝑒𝑖 ∈ X, the motion-only BA is:

T𝑐𝑤𝑘
= argmin

T𝑐𝑤𝑘

∑︁
𝑖∈X

H(·)∥𝑥𝑖 − 𝜋 (RX𝑖 + t)∥2Σ, (3)

where H(·) is Huber cost function and Σ the covariance matrix
associated to the scale of keypoints. Parameterizing 𝜉C ∈ 𝑠𝑒 (3)
with Lie-algebra, the camera pose is optimized with the Levenberg-
Marquardt method in tangent space. To maintain spatiotemporal
consistency, a sliding window is applied to manage a set of covisi-
ble keyframes K𝐶 and optimize the camera poses T𝐶 along with
all points P𝐶 observed in those keyframes through local bundle
adjustment. Keyframes within of the sliding window K𝐿 , which
observes points in K𝐶 but lack direct co-visibility with the active
frames, also contribute to the loss function but remain fixed dur-
ing the optimization process. This ensures that the optimization
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focuses on local consistency while maintaining global constraints
for long-term robust tracking. The local bundle adjustment is:

{X𝑖 ,R𝑙 , t𝑙 |𝑖 ∈ P𝐶 , 𝑙 ∈ K𝐶 } = argmin
X𝑖 ,R𝑙 ,t𝑙

∑︁
𝑘∈K𝐶∪K𝐿

∑︁
𝑖∈X𝑘

H(·)𝑒 (T𝑐𝑤𝑘
, X𝑖 ),

(4)
whereX𝑘 is the set of matches between points in P𝐶 and keypoints
in 𝑘𝑡ℎ keyframe, 𝑒 (T𝑐𝑤𝑘

, X𝑖 ) can be calculated with equation 1 and
equation 2. Similarly, by parameterizing 𝜉C ∈ 𝑠𝑒 (3) with Lie algebra
and leveraging the sparsity of the Hessian matrix, the local BA can
be modeled as a factor graph to jointly optimize the camera pose
and map points. The local keyframes and the observed 3D map
points (marked as landmarks) are represented as vertices in the
factor graph, with projection errors set up the corresponding edges.
This facilitates efficient optimization of both camera poses and map
landmarks within the sliding window.

3.2 3D Gaussian Mapping
3.2.1 3D Gaussian Representation. OGS-SLAM utilizes a set
of 3D Gaussian ellipsoids as the exclusive representation of the
scene, denoted as G. Each 3D Gaussian ellipsoid G𝑖 contains both
optical parameters (color 𝑐𝑖 and opacity𝛼𝑖 ) and pose (rotation Σ𝑖W ∈
𝑆𝑂 (3) and spatial position 𝜇𝑖W ) parameters. During training, the 3D
Gaussian ellipsoids are initially projected onto the 2D camera plane.
Then, the optical and pose parameters are iteratively optimized
under the supervision of per-pixel loss between the groundtruth
and rendered RGB-D images generated through rasterization to
achieve high-fidelity scene modeling. The projection from world
space to the camera plane is expressed as:

𝑓 (𝑥) = 𝛼 exp(− ∥𝑥 − 𝜇∥2

2𝑟2
), (5)

where 𝑟 is the radius. Rasterization is a core module of 3D Gaussian
Splatting, making the entire rendering process fast and efficient.
The rasterization process can be represented as follows:

𝜇I = 𝜋 (T𝑐𝑤 · 𝜇W ), ΣI = JWΣWW𝑇 J𝑇 , (6)

where G(𝜇I , ΣI ) is the 2D Gaussians,W is the rotation matrix in
𝑆𝑂 (3) and J is the Jacobian matrix which performs linear approxi-
mation of the projective transformation. With alpha blending, the
color and depth can be renderrd which are directly compared with
groundtruth to calculate the per-pixel loss. The loss is then back-
propagated to iteratively optimize the parameters of all observed
3D Gaussians in current view. For more details, please refer to [12].

3.2.2 Map Fusion. Most 3D Gaussian Splatting-based end-to-end
SLAM systems rely on the depthmap from the first frame to ini-
tialize the 3D Gaussian ellipsoids. However, SLAM systems require
sufficient translational movement to generate a robust initial scene
representation. Relying solely on depthmaps from a few frames
inevitably introduces significant optimization errors, leading to
geometrically inaccurate scene representations. Thus, in the ini-
tialization module, our approach begins by utilizing a 3D map
generated from ORB point cloud and RGB images to initiate the 3D
Gaussian scene representation. This ensures that our initial repre-
sentation is geometrically accurate and detailed. However, since
ORB features are primarily extracted from high-gradient areas, such
as regions with high-frequency details, and subsequent filtering

methods marginalize incorrect matches, the point cloud generated
from ORB features tends to be overly sparse, failing to adequately
cover the scene structure. To ensure that the sparse point cloud
used for the initialization process provides a relatively complete and
detailed description of the scene, OGS-SLAM first divides the image
into several blocks and evenly extracts ORB features within each
block. Moreover, our method utilizes the densification scheme of 3D
Gaussian Splatting, which increases the number of 3D Gaussians
to enhance the scene representation during the training phase.

3.2.3 Mapping. The mapping thread takes the camera pose from
the tracking thread and further optimizes it with 3D Gaussian Splat-
ting while generating a high-fidelity scene representation. First,
based on the projective transformation described in equation 6 and
the camera pose T𝑐𝑤 output by the tracking thread, the relationship
between the observed 3D Gaussians in world coordinates and the
2D Gaussians in image plane is established. Then, by splatting and
blending the observed 3D Gaussians, the synthesized color and
depth of a pixel are computed as follows:

𝐶𝑝 =

𝑛∑︁
𝑖=1

𝑐𝑖𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 ),

𝐷𝑝 =

𝑛∑︁
𝑖=1

𝑑𝑖𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 ).

(7)

Under the supervision of groundtruth RGB-D images, the mapping
thread computes a per-pixel photometric loss 𝐿𝑝ℎ𝑜 and geometric
loss 𝐿𝑔𝑒𝑜 between the rendered RGB-D images and the groundtruth.

𝐿𝑝ℎ𝑜 = ∥𝐼 (G,𝑇𝐶𝑊 ) − 𝐼 ∥1,
𝐿𝑔𝑒𝑜 = ∥𝐷 (G,𝑇𝐶𝑊 ) − �̃� ∥1,

(8)

where 𝐼 (G,𝑇𝐶𝑊 ) is RGB rasterization, 𝐷 (G,𝑇𝐶𝑊 ) is depth rasteri-
zation, 𝐼 and �̃� are groundtruth RGB and depthmap. The total cost
function in mapping thread is:

𝐿𝑚𝑎𝑝𝑝𝑖𝑛𝑔 = 𝑤1𝐿𝑝ℎ𝑜 +𝑤2𝐿𝑔𝑒𝑜 , (9)

where𝑤1 and𝑤2 are weights. During training, by minimizing the
per-pixel error and backpropagating the gradient flow to all the
observed 3D Gaussians, our method achieves precise camera pose
estimation and high-fidelity scene reconstruction.

4 EXPERIMENTS
We conduct a comprehensive evaluation of OGS-SLAM in both real
and synthetic datasets. The qualitative and quantitative results are
provided to demonstrate the performance of OGS-SLAM. Finally,
we conduct the experiments of semantic segmentation both on the
rendered images and scene modeling, demonstrating the potential
of assisting robots in executing tasks in a human-cognitive manner.

4.1 Datasets and Baselines
The proposedOGS-SLAM is verified on TUM-RGBD [27] and Replica
[26] datasets. The TUM-RGBD dataset is a real-world indoor dataset
captured with handheld cameras. The RGB images in the TUM-
RGBD dataset suffer from significant lighting variations and motion
blurs, and the depthmap often contains lots of missing holes. Addi-
tionally, TUM-RGBD features high-dynamic and large-scale scene
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Table 1: Localization Accuracy ATE RMSE [cm]↓ on the TUM RGB-D dataset. Note that fr2/large is significant challenging for
end-to-end SLAM systems. We conduct experiments on fr2/large to evaluate the robustness and scalability of different methods.

Bold numbers indicate the best result.

Methods fr1/desk fr1/desk2 fr1/room fr2/xyz fr3/office Avg.-5 fr2/large Avg.-6

ORB-SLAM2 1.60 2.20 4.70 0.40 1.00 1.98 24.20 5.68
Vox-Fusion 3.52 6.00 19.53 1.49 26.01 11.31 196.34 42.15
NICE-SLAM 4.26 4.99 34.49 31.73 3.87 15.87 171.81 41.86
Point-SLAM 4.34 4.54 30.92 1.31 3.48 8.92 164.59 34.86

SplaTAM 3.35 6.54 11.13 1.24 5.16 5.48 204.40 38.64
MonoGS 1.52 5.10 6.30 1.58 1.65 3.23 165.14 30.22
Ours 1.71 2.80 5.82 0.31 1.62 2.45 18.04 5.05

Table 2: Quantitative Evaluation of Mapping on the TUM RGB-D dataset. Bold numbers indicate the best result.

Methods Metrics fr1/desk fr1/desk2 fr1/room fr2/xyz fr3/office fr2/large Average

SplaTAM
PSNR ↑ 22.00 20.20 20.24 24.50 21.90 16.62 20.91
SSIM ↑ 0.86 0.79 0.82 0.95 0.88 0.63 0.82
LPIPS ↓ 0.23 0.27 0.26 0.10 0.20 0.37 0.24

MonoGS
PSNR ↑ 19.67 19.16 18.41 16.17 20.63 19.48 18.92
SSIM ↑ 0.73 0.66 0.64 0.72 0.77 0.72 0.71
LPIPS ↓ 0.33 0.48 0.51 0.31 0.34 0.38 0.39

Ours
PSNR ↑ 22.03 20.07 22.20 26.42 22.71 24.38 22.96
SSIM ↑ 0.83 0.77 0.87 0.95 0.91 0.85 0.86
LPIPS ↓ 0.28 0.31 0.23 0.09 0.20 0.26 0.23

Table 3: Quantitative Evaluation of Mapping on the Replica dataset. Bold numbers indicate the best result.

Methods Metrics room0 room1 room2 office0 office1 office2 office3 office4 Average

NICE-SLAM
PSNR ↑ 22.12 22.47 24.52 29.07 30.34 19.66 22.23 24.94 24.42
SSIM ↑ 0.69 0.76 0.81 0.87 0.89 0.80 0.80 0.86 0.81
LPIPS ↓ 0.33 0.27 0.21 0.23 0.18 0.23 0.21 0.20 0.23

SplaTAM
PSNR ↑ 32.86 33.89 35.25 38.26 39.17 31.97 29.70 31.81 34.11
SSIM ↑ 0.98 0.97 0.98 0.98 0.98 0.97 0.95 0.95 0.97
LPIPS ↓ 0.07 0.10 0.08 0.09 0.09 0.10 0.12 0.15 0.10

Ours
PSNR ↑ 33.82 34.04 36.11 39.90 40.14 32.25 30.48 32.96 34.96
SSIM ↑ 0.98 0.97 0.98 0.98 0.98 0.96 0.95 0.95 0.97
LPIPS ↓ 0.06 0.09 0.06 0.06 0.09 0.09 0.12 0.14 0.09

changes, making it challenging for end-to-end SLAM methods. In
contrast, the Replica dataset is a synthetic indoor dataset that pro-
vides comprehensive RGB images and depthmaps. Since the Replica
dataset is generated with dense meshes, the sequences tend to
be smoother compared to those real captured. While the Replica
dataset may not fully showcase the strengths of our method in long-
term, large-scale scenarios, it remains an important benchmark, as
most end-to-end methods are validated on this dataset. Therefore,
we also provide both quantitative and qualitative results on the
Replica dataset for reference. We compare the proposed OGS-SLAM
against SOTA neural representation-based SLAM methods, primar-
ily including NeRF-based methods [25, 35, 36] and 3D Gaussian

Splatting-based methods [11, 18]. For baselines that provide specific
results, we directly use the reported performance for comparison.
For those that do not include results, we conduct each experiment
three times and take the average as the final result.

4.2 Metrics
For robot localization evaluation, following [27], we calculate the
Root Mean Square Error (RMSE) of the Absolute Trajectory Error
(ATE) between camera poses estimation and trajectory groundtruth.
Formapping quality evaluation, similar to SplaTAM [11] andMonoGS
[18], we report PSNR, SSIM, and LPIPS for photometric rendering.
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Figure 2: Visualization of Rendering Quality on the TUM RGB-D datasets. The yellow box in column 1 shows the rendering
distortion of Point-SLAM and the erroneous splatting of SplaTAM, while our method achieves accurate rendering. The red and
green boxes in column 3 highlight blurs and distortions from baselines, which our OGS-SLAM recovers more fine details.

4.3 Quantitative and Qualitative Evaluation
4.3.1 Localization Accuracy. We compared the performance
of OGS-SLAM with SOTA neural representation-based SLAM and
sparse SLAM in terms of localization accuracy on the TUM-RGBD
dataset. The results are shown in Table. 1, where the methods be-
tween two dashed lines are NeRF-based SLAM, and those below
the second dashed line are 3D Gaussian Splatting (3D GS)-based
methods. As indicated in Table. 1, current NeRF-based SLAM meth-
ods perform worse in visual localization compared to 3D GS-based
methods, even Point-SLAM uses the groundtruth depthmap as in-
put. Our proposed OGS-SLAM demonstrates a 24% improvement
in visual localization (Avg.-5) compared to the SOTA end-to-end
MonoGS. The fr2/large sequence, which spans two distinct scenes
and involves significant lighting changes and intense camera move-
ments, leads to substantial trajectory drift, making it particularly
challenging for SLAM systems. Referring to Avg.-6, the proposed
OGS-SLAM utilizes the the bundle adjustment framework and Lie
group optimization to provide robust and accurate camera pose

estimation, significantly improving visual localization accuracy in
high-dynamic, large-scale scenarios compared to other SOTA ap-
proaches. Notably, due to the benefit of loop closure (global BA)
and visual relocalization, ORB-SLAM2 outperforms our method in
localization on certain sequences. However, this also introduces
additional computation cost. In contrast, our method, aided by
the supervision of per-pixel RGB-D loss in the mapping thread,
performs better in localization on large-scale scenarios fr2/large.

4.3.2 Mapping Quality. Table. 2 and Table. 3 present the quanti-
tative evaluation of mapping on TUM-RGBD and Replica datasets
for the baselines and our OGS-SLAM. Regarding the TUM-RGBD
dataset, Table. 2 demonstrates that our method achieves compara-
ble rendering performance to SplaTAM on the fr1/desk2 sequence,
while on other sequences, it outperforms the SOTA end-to-end
SLAM methods in rendering. Specifically, in high-dynamic and
large-scale scene fr2/large, thanks to the accurate visual localization,
our method shows almost 5dB improvement in PSNR compared

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

1305



GT

O
ur
s

Sp
la
TA
M

Po
in
t-S
LA
M
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in recovering high-frequency details and exhibits fewer erroneous splats compared to Point-SLAM and SplaTAM.
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Figure 4: Semantic segmentation on Rendering Images.

to MonoGS. In summary, on the TUM-RGBD dataset, our method
shows a PSNR improvement over 2dB compared to SplaTAM.

Table. 3 provides the comparison of rendering performance be-
tween neural representation-based SLAM and our OGS-SLAM on
the Replica dataset. Since the Replica dataset is synthetic and pro-
vides comprehensive and accurate RGB images and depthmaps, all
neural representation-based methods achieve promising rendering
performance. However, our method still shows a 0.85dB improve-
ment in PSNR compared to the SOTA method. Fig. 2 and Fig. 3
show the qualitative evaluation of mapping performance on both
TUM-RGBD and Replica datasets. Fig. 2 shows the results of our
OGS-SLAM and baselines on TUM-RGBD sequences with different
scales. In the fr2/xyz sequence, Point-SLAM exhibits significant
rendering errors in high-frequency details, particularly along the
edges. SplatTAM, due to its lower localization accuracy, results in
erroneous splatting and noticeable blur, such as the floaters around
the plants highlighted in the yellow box. In contrast, the proposed
OGS-SLAM, benefiting from accurate visual localization, produces
high-fidelity scene details. In the challenging large-scale fr2/large
sequence, although all methods suffer from performance degra-
dation, our method still surpasses the baselines in scene details
recovering. Fig. 3 presents the visualization of rendering quality on
the Replica dataset, due to the high quality of this dataset, both the

Figure 5: Visualization of Semantic Segmentation on theMap-
ping of OGS-SLAM.

baselines and our method achieves promising results. Nonetheless,
our method exhibits fewer erroneous splats and superior scene
detail recovery compared to baselines.

4.3.3 Semantic Segmentation. Fig. 4 presents the results of se-
mantic segmentation using the SAM model[14] on rendered real-
world images generated by different methods. It is evident that
Point-SLAM and SplaTAM renderings suffer from distortion, lead-
ing to inaccurate semantic segmentation, such as the computer
screen and the white paper stick highlight in the yellow boxes. In
contrast, our method produces more realistic renderings that yield
accurate semantic segmentation. This not only reduces data storage
cost for robots but also effectively mitigates the challenges asso-
ciated with deploying neural networks trained on natural images.
Fig. 5 shows the semantic segmentation of the map representation
modeled by OGS-SLAM using SAM. The scene representation con-
structed by OGS-SLAM provides rich semantic information, which
is able to enhance the robots scene perception and interpretation.

5 CONCLUSION
This paper presents a hybrid SLAM that combines traditional sparse
SLAMwith 3D Gaussian Splatting to bridges the gap between robot
and human vision. The proposed OGS-SLAM inherits the accurate
localization of sparse SLAM while achieving high-fidelity scene
representation. The map fusion algorithm ensures a geometrically
accurate scene representation during initialization. By utilizing
motion-only and local bundle adjustment optimization frameworks,
OGS-SLAM significantly improves visual localization accuracy com-
pared to SOTA end-to-end SLAM systems and ORB-SLAM2. This
robust visual localization further enhances the capability of 3D
Gaussian Splatting to accurately and meticulously model large-
scale scenes. The semantic segmentation results of the 3D GS scene
representation demonstrate that the system’s mapping aligns with
human visual perception, presenting potential for robots to perform
tasks in human understandable manner.
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