
MAGNET: AMulti-Agent
Graph Neural Network for Efficient Bipartite Task Assignment

Donald Loveland
University of Michigan
Ann Arbor, United States
dlovelan@umich.edu

James Usevitch
Brigham Young University

Provo, United States
james_usevitch@byu.edu

Zachary Serlin
MIT Lincoln Laboratory
Lexington, United States
zachary.serlin@ll.mit.edu

Danai Koutra
University of Michigan
Ann Arbor, United States
dkoutra@umich.edu

Rajmonda Caceres
MIT Lincoln Laboratory
Lexington, United States

rajmonda.caceres@ll.mit.edu

ABSTRACT
Assignment problems are prevalent in many autonomous agent con-
texts, where the learning task involves mapping elements from a
domain set to a range set. While current state-of-the-art machine
learning solutions employ graph neural networks (GNNs) on bipar-
tite agent-task graphs, these approaches frequently fall short when
addressing more complex constraints and objectives. To broaden
the utility of GNNs for a wider variety of assignment problems, we
introduceMAGNET—a novelMulti-AgentGraphNeural network
designed for EfficientTask assignment. MAGNET is composed of
three integral components that together deliver enhanced perfor-
mance: (1) a pre-processor that expands the bipartite graph such that
it is amenable to multi-task assignment, (2) an edge-centric GNN,
enabled through a line graph transformation, which generates candi-
date assignments, and (3) a post-processor that filters these candidate
assignments to ensure they meet the feasibility criteria. Recogniz-
ing that the line graph transformation can affect execution time,
we enhance MAGNET’s efficiency by incorporating an inference-
time pruning strategy. This strategy leverages both GNN scoring
and sparsification techniques to streamline the assignment process.
Experimental evaluations demonstrate that MAGNET delivers sub-
stantial performance improvements over previous GNN-based and
heuristic methods, and notably reduces execution time by several or-
ders of magnitude compared to state-of-the-art commercial solvers.

KEYWORDS
Assignment; Graph Neural Network; Bipartite

DISTRIBUTION STATEMENTA. Approved for public release. Distribution is unlimited.
This material is based upon work supported by the Under Secretary of Defense for
Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any
opinions, findings, conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the Under
Secretary of Defense for Research and Engineering. © 2025 Massachusetts Institute
of Technology. Delivered to the U.S. Government with Unlimited Rights, as defined
in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice,
U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS
252.227-7014 as detailed above. Use of this work other than as specifically authorized
by the U.S. Government may violate any copyrights that exist in this work.

This work is licensed under a Creative Commons Attribution Interna-
tional 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

ACMReference Format:
Donald Loveland, James Usevitch, Zachary Serlin, Danai Koutra, and Raj-
monda Caceres. 2025. MAGNET: AMulti-Agent Graph Neural Network for
Efficient Bipartite Task Assignment. In Proc. of the 24th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2025), Detroit,
Michigan, USA, May 19 – 23, 2025, IFAAMAS, 9 pages.

1 INTRODUCTION
Assignment is a fundamental optimization problem that involves
mapping elements from a domain set to a range set, aiming to maxi-
mize an objective while adhering to certain constraints. Assignment
problems appear in various applications, with the goal of allocating
agents to tasks. Notable examples include vehicle routing [32], robot
coordination [49], and exploration andmapping [50], energy conser-
vation inwireless networks [22], and industrial plant inspection [24].
Despite their broad applicability, assignment problems are typically
NP-hard due to their combinatorial nature. However, while high-
stakes applications can require guaranteed optimality, such as search
and rescue [57], many settings can relax optimality to improve effi-
ciency. For example, a near-optimal solution for vehicle routingmay
enable faster servicedelivery tomostusers rather thancausingdelays
for all due to computational constraints. Despite the effort to build
efficient algorithms to solve assignment problems [20], execution
timesoften scale poorlywith input size, especiallywhendealingwith
complex objectives and constraints. Thus, scalable solutions require
algorithms that quickly provide high-quality and feasible solutions.

In scenarios where guarantees can be relaxed, deep learning has
shown promise in efficiently learning heuristics for assignment.
Early approaches employed convolutional and recurrent neural net-
works on the cost matrix of agent-task pairs [35, 42, 53]. However,
these architectures impose an artificial ordering on agents and tasks,
ignoring inherent problem invariances. To address this, graph neural
networks (GNNs)havebeenadapted for assignmentproblemsby rep-
resenting them as weighted bipartite graphs [39, 45]. Despite their
promise, GNNs often lack mechanisms to ensure feasible solutions
when objectives and constraints become complex. Furthermore, the
node-centric focus ofGNNs canhinder learning for assignment prob-
lems, which require learning over agent-task pairs, or edges. While
edge-centric GNNs are still emerging [6], some node-centric GNNs
have adopted edge convolutions that update edges with summary
statistics or embeddings of node features [39, 52]. Recent advance-
ments have also explored using line graph transformations to learn

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1399

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

edge representations directly [4, 23]; however, these techniques have
primarily been applied to node-level tasks.

To address these challenges, we propose MAGNET, a Multi-
AgentGraphNeural network for Efficient Task assignment. MAG-
NET predicts feasible solutions for the probabilistic multi-agent
knapsackproblem,encompassingdiverseapplicationsandmanaging
both multi- and duplicate-task assignments. MAGNET uses an edge-
centric learningstrategyviaa linegraph transformation todetermine
candidate assignmentswithGNN-learned edge scores. To reduce the
computational cost of this transformation on GNN aggregation, we
incorporate an inference-time pruning technique that exploits the
assignment solutions’ sparse structure, accelerating inference. Fea-
sibility is ensured through post-processing of the GNN outputs. We
demonstrateMAGNET’s effectiveness throughcomprehensive empir-
ical analysis, comparing itwith node-centricGNNs andhand-crafted
heuristics, showing enhanced edge scoring. Additionally, we study
MAGNET’s efficiency, revealing significant acceleration compared
to MOSEK, a leading commercial solver. Lastly, we showMAGNET
generalizes to larger problem sizes impractical for traditional solvers,
even when trained on smaller problems. Our contributions are:

• We proposeMAGNET, a GNN framework that expands the class
of assignment problems solvable by GNNs and improves on the
quality of solutions generated by learning-based algorithms.

• WeprovideacomprehensivestudyofMAGNET, showing strong
performance across problems sizes with superior execution time.

• We demonstrate that inference-time pruning can accelerate
execution time while maintaining performance quality.

2 BACKGROUNDANDNOTATION
In this section, we outline the studied assignment problem and pro-
vide notation for GNNs.

2.1 Assignment Problem Formulation
The assignment problem aims to find a mapping between a set of 𝑛
agents𝐴 and a set of𝑚 tasks𝑇 . Each agent, 𝑎𝑖 ∈𝐴, has an associated
capacity, 𝛼𝑖 ∈R≥0, and each task, 𝑡 𝑗 ∈𝑇 , has an associated reward
𝜏 𝑗 ∈R≥0, if completed. There is a cost matrix C∈R𝑛×𝑚

≥0 with entries
𝑐𝑖, 𝑗 , denoting the cost of a successful interaction between an agent
𝑎𝑖 and task 𝑡 𝑗 . The matrix P ∈ [0,1]𝑛×𝑚 , with entries 𝑝𝑖, 𝑗 , denotes
the probability of an agent 𝑖 successfully accomplishing a task 𝑗 .
Agent-task interactions are assumed to be independent events. The
decision variables determining the number of interactions between
agents and tasks are represented by a matrix Y∈Z𝑛×𝑚≥0 , where𝑦𝑖, 𝑗
represents the number of times agent 𝑖 attempts task 𝑗 . The objective
is tomaximize the expected value of completed tasks, while ensuring
that each agent’s total cost is less than or equal to its capacity. This
can be formalized as a mixed-integer convex program:

max
Y

∑︁
𝑡 𝑗 ∈𝑇

𝜏 𝑗
©«1−

∏
𝑎𝑖 ∈𝐴

(1−𝑝𝑖, 𝑗)𝑦𝑖,𝑗
ª®¬

s.t.
∑︁
𝑡 𝑗 ∈𝑇

𝑐𝑖, 𝑗𝑦𝑖, 𝑗 ≤𝛼𝑖 ,𝑖 ∈1,2,...,𝑛,

𝑦𝑖, 𝑗 ∈Z≥0∀𝑖, 𝑗 .

(1)

Intuitively, each term represents the success probability for task
𝑡 𝑗 . These tasks areweighted by their reward𝜏 𝑗 and summed to obtain
the total expected reward. The constraints ensure that the total cost
of assignments for eachagent is less than that agent’s capacity𝛼𝑖 , and
that the agent-task interactions are discrete. This problem is amixed-
integer convexprogram, since the objective is convex in each𝑦𝑖, 𝑗 and
the constraints are affine in each𝑦𝑖, 𝑗 . Additionally, this formulation
includes several classical problems, including the unbounded knap-
sack problem when 𝑝𝑖, 𝑗 =1 for all 𝑖, 𝑗 [14], and the weapon-to-target
assignment problemwhen 𝑐𝑖, 𝑗 =1 and 𝛼𝑖 ∈Z for all 𝑖, 𝑗 [28].

Remark 2.1. The difficulty of assignment problems can be organized
by classes [8]. Previous neural network solvers consider simple (in-
teger) Linear Programs (LP) with equality constraints [2, 39]. LPs are
a subset of quadratic programs (QPs), which are further subsets of
quadratically constrained quadratic programs (QCQPs), and these,
in turn, are a subset of conic programs (CPs). Typically, solving LPs
is easier thanQPs, QPs are easier thanQCQPs, andQCQPs are easier
than CPs. This hierarchy also applies to (mixed) integer LPs, QPs,
etc. as solving the relaxed problem (where integer constraints are
ignored) is a fundamental technique to obtain the mixed integer so-
lution. According to this hierarchy, previously studied problems lie
at the bottom of the difficulty spectrum, while the problem in equa-
tion (1) is classified as an integer conic program and thus lies at the
top of the difficulty spectrum. Consequently, modern optimization
software often scales poorly for larger instances of equation (1). To
our knowledge, no neural network-based attempts have been made
to solve this challenging formulation despite its broad applicability.

2.2 Representing the Optimization Problem
Previouswork represents assignmentproblemsasweightedbipartite
graphs [16, 39].Overloading thenotation, the graph is denoted as𝐺 =

(𝐴,𝑇 ,𝐸), where nodes𝐴 encode the agents, and nodes𝑇 encode the
tasks.Eachnode𝑎𝑖 ∈𝐴hasa feature scalar/vector𝛼𝑖 that corresponds
to 𝑎𝑖 ’s capacity, and each node 𝑡 𝑗 ∈𝑇 has a feature scalar/vector 𝜏 𝑗
that corresponds to 𝑡 𝑗 ’s reward. The cost matrix is encoded as edge
weights on 𝐸, where an edge between𝑎𝑖 and 𝑡 𝑗 , 𝑒𝑖, 𝑗 , will haveweight
𝑐𝑖, 𝑗 . The goal is to predict an assignmentmatrixY′with𝑦′

𝑖, 𝑗
elements

denoting the predicted assignments between 𝑎𝑖 and 𝑡 𝑗 , while satis-
fying that 𝑎𝑖 does not surpass capacity 𝛼𝑖 . This structure is shown
in Figure 1a, and is extended to more complex problems in Section 3.

2.3 Graph Neural Networks
GNNs are designed to operate directly on graph data. In a 𝑘-layer
GNN, learningoccurs throughmessagepassingover𝑘-hopneighbor-
hoods of a graph [18]. A node𝑢’s representation is updated by itera-
tively aggregating the features from its 1-hop neighborhood (AGGR)
and embedding the aggregated features with 𝑢’s features, usually
throughanon-linear transformationparameterizedbyW (ENC).The
update is expressed for 𝑢 as 𝑟 𝑙𝑢 = ENC(𝑟 𝑙−1𝑢 ,AGGR(𝑟 𝑙−1𝑣 ,𝑣 ∈𝑁 (𝑢)))
for 𝑙 ∈ {1,2,...,𝑘}, where 𝑟0𝑢 =𝑥𝑢 ,𝑢’s original node features, and 𝑁 (𝑢)
is the set of one-hopneighbors around𝑢.WithinAGGR, it is common
to modulate the incoming messages from neighboring nodes, either
through degree, attention weights, or more complicated statistics.
In weighted graphs, the modulation is performed through the edge
weights. The update function is applied𝑘 times, resulting in updated
representations for the node𝑢.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1400

Figure 1: Blue and orange nodes are tasks and agents, respectively. The final assignments are green. (a) Single task: The GNN
scores each agent-task pair. Then, the continuous scores are transformed into assignments via argmax. (b)MAGNET’smulti-task:
The graph is expanded to enable multiple and repeated task assignment. Then, a line graph transformation is performed to
enable direct edge learning. Finally, a greedy assignment procedure, based on the logit scores, ensures feasibility.

3 MAGNET: A FRAMEWORK
FORCOMPLEXASSIGNMENT PROBLEMS

We focus on supervised learning over the assignment task, where
a ground truth assignment matrix Y ∈ Z𝑛×𝑚≥0 is known. Starting
from the weighted bipartite graph discussed in Section 2.2, we ex-
tend the scalar edge weights to vectors, encoding both costs and
probabilities. The goal is then to find a mapping 𝐹 : 𝐺 → Y′, pa-
rameterized by a GNN, that captures the objective in Equation (1).
Here, Y′ represents the predicted assignments with𝑦′

𝑖, 𝑗
indicating

an assignment between agent 𝑎𝑖 and task 𝑡 𝑗 . Beyondminimizing the
error between Y and Y′, we focus on ensuring feasibility of Y′. Note
that while the optimization objective can be used as a loss function,
whendifferentiable, thismight not be available in real-world settings.
Instead, we rely on access to historic assignment instances, and use
the optimization objective as a post-hoc evaluation of the GNN.

Tohandlemore complexproblems,weproposeMAGNET, improv-
ing upon current assignment GNNs in three ways: (1) MAGNET sup-
ports multi-task and probabilistic settings, (2) MAGNET leverages
edge-centric learning to better align with the optimization task, (3)
MAGNET ensures feasibility. These improvements are integrated as
components within MAGNET. First, the bipartite graph is processed
to expandnodes, converting themulti-taskproblem into abinaryone.
Then, MAGNET advances beyond node-centric approaches [2, 39]
by applying a line graph transformation, enabling direct learning
over edges. Finally, feasibility is assured through a greedy selec-
tion of candidate assignments provided by the edge-based learning
component. Details of MAGNET’s components are discussed below.

3.1 Probabilistic andMulti-Task Learning
Adapting multi-agent, multi-task assignment problems to GNNs re-
quires outputting a variable number of unbounded positive integers.

MAGNET addresses this by preprocessing the agent-task bipartite
graph, transforming the problem into a series of binary classifica-
tions, as seen in the first step of Figure 1b. Specifically, for an agent
𝑎𝑖 with capacity 𝛼𝑖 , the maximum number of assignments that can
be given to 𝑎𝑖 is 𝜙𝑖 = ⌊𝛼𝑖/min(𝑐𝑖)⌋, where 𝑐𝑖 is the cost vector across
targets for𝑎𝑖 .MAGNETduplicates each agent node into𝜙𝑖 instances,
each retaining the same characteristics of their original agent, includ-
ing thecapacity, edges, andedgeweights.Y is alsoexpandedsuch that
eachagent’sduplicates are labeledwithpossible assignmentsuntil all
are allocated. Specifically, the𝑘𝑡ℎ duplicateof agent 𝑖 has label𝑦𝑖, 𝑗,𝑘 =
1 if the agent is assigned to 𝑗 . If the number of duplicates exceeds
the total assignments, extra duplicates do not receive labels. As the
local neighborhood of duplicated agents are similar, we use dropout
during training and inference to encourage diverse assignments.

3.2 GNNs for Edge Scoring
High-quality solutions for complex assignment problems require
a GNN that can effectively score edges. While previous GNNs for
assignment rely on node-centric learning with an edge scoring oper-
ator, this paradigm fails to directly learn over the decision variables.
Instead, edge-centric learning offers a more direct method to learn
edge scores without introducing any artificial bottlenecks through
fixed operators [19, 26] or additional convolution modules to design
and learn over [39]. Thus, our second contribution is facilitating
edge-centric learning through a line graph transformation, defined
inDefinition 3.1, of theweighted bipartite graph, allowingMAGNET
to directly update edge representations. MAGNET is the first direct
use case of edge-centric learning for assignment and is notably dif-
ferent from previous applications of edge-centric learning – many
applicationsuseedge-centric learning toaugmentnodeclassification
tasks or perform link prediction of missing edges [4, 6, 44].

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1401

Definition 3.1. A line graph transformation of a graph𝐺 results in
a graph𝐺 ′, where edges in𝐺 are nodes in𝐺 ′, and for every two edges
incident to the same node in𝐺 , there is an edge between their corre-
sponding nodes in𝐺 ′. The vertex set𝑉 (𝐺 ′) and edge set 𝐸 (𝐺 ′) are:

𝑉 (𝐺 ′)=𝐸 (𝐺)= {𝑒1,...𝑒𝑘 },
𝐸 (𝐺 ′)= {(𝑒𝑖 ,𝑒 𝑗) :𝑒𝑖∩𝑒 𝑗 ≠∅}.

(2)

where 𝑒𝑖 and 𝑒 𝑗 are edges in𝐺 , and𝐺 has 𝑘 edges.

To create the attributed line graph, we convert the bipartite graph
𝐺 , as detailed in Definition 3.1, without attributes. Then, edge fea-
tures in𝐺 become node features in𝐺 ′. Node features in𝐺 become
edge features in𝐺 ′ by extracting the shared node between the orig-
inal edges in𝐺 and assigning the corresponding node feature. This
transformation allows for the application of many GNNs as the edge
weights in𝐺 ′ are now scalarswhen the node features in𝐺 are scalars.
The ground truth assignments Y are not changed, other than being
associated with the nodes in𝐺 ′, rather than the edges in𝐺 . Coupled
with theexpansioncomponent, assignment scores fornodes in𝐺 ′ are
trained directly through a balanced multi-task binary cross-entropy
(BCE) loss function. The balancing parameter 𝛾 =𝑚−1 serves as a
positive class weight, due to there being only one assignment label
per expanded agent and𝑚−1 no assignment labels.

3.2.1 Speeding Up Inference via Pruning. Assignment problems,
traditionally solved through supervised learning [2, 16, 39], can
also be viewed as a graph pruning task, where the remaining edges
represent assignments.While pruning is commonly applied for com-
pression [46] and sparsification [37, 40], its potential in assignment
remains under explored. Thus, we employ an inference-time prun-
ing strategy that prunes the graph during MAGNET’s forward pass
to minimize the elements aggregated during message passing, un-
like traditional pruning, which focuses on reducing model weights.
We perform pruning by scoring edges according to their respective
activation output after the encoding step (ENC), and remove low
scoring edges. As node-centric learning paradigms do not have edge
activation, i.e. no edge scores, we focus on pruningMAGNET’s edge-
centric GNN. The percent of the total edges per agent for a layer 𝑙
after pruning is expressed as ⌈𝑚𝜌

𝑙+1 ⌉, where𝑚 is the number of tasks,
and𝜌 ∈ (0,1) is thepruning factor.When𝜌 is small, fewedges arekept
and the pruning is stronger, andwhen 𝜌 is large, more edges are kept
and the pruning isweaker. Tomaintain feasibility, edges are dropped
on aper-agent basis to ensure agents are never disconnected.Wealso
include an L1 regularization of the activation scores to encourage
sparsity. While this is similar to channel-wise L1 regularization to
remove weights [54], coupling this technique to a GNN architecture
offers a unique capability to edit the underlying graph. The final loss
function ofMAGNET becomes the sum of the balanced BCE loss and
L1 regularization, with the regularization weighted by 𝜆.

3.2.2 Weighted Bipartite Edge Vectors. In the case of edges possess
feature vectors, such as in the weighted bipartite representation,
we employ two convolution modules per layer: one for probability
values and one for cost values. After each layer, we concatenate the
resulting aggregated representations, weighted by their respective
property, creating new node representations. Thus, for a single node
𝑣 , where 𝑃 is the matrix of interaction probabilities and 𝐶 is the

matrix of interaction costs:

𝑟 𝑙+1𝑣,𝑝 =𝐸𝑁𝐶 (𝑟 𝑙𝑣,𝐴𝐺𝐺𝑅(𝑟 𝑙𝑢 ,𝑃𝑣,𝑢 :𝑢 ∈𝑁 (𝑣))),

𝑟 𝑙+1𝑣,𝑐 =𝐸𝑁𝐶 (𝑟 𝑙𝑣,𝐴𝐺𝐺𝑅(𝑟 𝑙𝑢 ,𝐶𝑣,𝑢 :𝑢 ∈𝑁 (𝑣))).
(3)

The final representation for the node 𝑣 is below,where | | denotes con-
catenation and 𝑓 is an embedding function, represented as an MLP:

𝑟 𝑙+1𝑣 = 𝑓 (𝑟 𝑙+1𝑣,𝑝 | |𝑟 𝑙+1𝑣,𝑐). (4)

3.3 Ensuring Feasibility
Previous works have treated feasibility as a soft constraint [39]. In
contrast, MAGNET guarantees feasible solutions using a greedy
algorithm based on assignment scores. To accomplish this, we utilize
MAGNET’s first component by predicting an edge scoring matrix
for each duplicate of agent 𝑎𝑖 with 𝜙𝑖 duplicates. An argmax oper-
ation identifies the highest-scoring tasks for each duplicated agent,
forming the candidate assignment set. Motivated by the greedy as-
signment process for single-agent knapsack [14], we generate the
final assignment set by sorting the candidate set based on their pre-
dicted scores and greedily adding assignments to the solution set
from the sorted candidate set. If an assignment for𝑎𝑖 causes the total
cost to exceed𝛼𝑖 , the assignment is discarded. This is done until all𝜙𝑖
possible candidates are checked. An example of this process can be
found in the third stepofFigure1b. Forproblemswithout costs and/or
probabilities, attaining feasibility can be seen as special cases of this
component. In thenocost case, all costs equalone,makingassignment
dependent solely on capacity, allowing direct use of the candidate
assignment set. In thenoprobabilities case,we canassume that all con-
nections succeed, and thus agents do not need to be assigned to the
same task multiple times. In this scenario, the expansion component
is turned off, and the same greedy algorithm can be applied over each
agent’s individual task scoring vector. Additionally, pruning does
not impact feasibility given edges are dropped on a per-agent basis.

4 EXPERIMENTS
This section presents experiments demonstrating the efficacy of
MAGNET (code is available at github.com/dloveland/MAGNET).
Through our empirical analysis, we aim to answer the following
research questions (RQ):

• RQ1: How effective is MAGNET at solving the complex as-
signment problem formulated in Equation (1) compared to
previous baselines?

• RQ2: HowdoesMAGNET’s performance generalize to prob-
lems of varying size?

• RQ3: HowdoesMAGNET’s execution time scale across vary-
ing problem sizes?

4.1 (RQ1) How effective is MAGNET?
This RQ aims to study how effective MAGNET is at solving the as-
signment problem specified in Equation (1), compared to previous
GNN baselines and a state-of-the-art traditional solver. Specifically,
we seek to understand how close the predicted assignments are to
the optimal assignments, and how quickly MAGNET can predict
such assignments.
Data. Benchmark datasets for assignment problems are limited, es-
pecially as complexity increases. Following pastwork [16, 25, 39, 48],

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1402

https://github.com/dloveland/MAGNET

Table 1: Optimality gaps and execution times on the continuous and discrete cost probabilistic assignment tasks. Blue is used to
indicatebestmetric.Acrossallmodels,MAGNETproduces thehighestqualityassignments forboth tasks, as seenby loweroptimal-
ity gaps. MAGNET is also several orders ofmagnitude faster thanMOSEK, while being competitive with other GNN approaches.

Model Probabilistic and Continuous Cost Data Probabilistic and Discrete Cost Data
Optimality Gap (↓) Execution Time (s) (↓) Optimality Gap (↓) Execution Time (s)(↓)

MOSEK [3] 0.00±0.00 2.0710±0.2589 0.00±0.00 0.5642±0.0870
Greedy [28] 0.27±0.09 0.0003±0.00012 0.35±0.09 0.00035±0.00015
DOT-GCN 0.90±0.03 0.0119±0.0017 0.90±0.02 0.0070±0.0002
DOT-GCNII 0.89±0.05 0.0128±0.0011 0.86±0.01 0.0081±0.0002
DOT-FAGCN 0.84±0.06 0.0154±0.001 0.81±0.07 0.0070±0.0001
DOT-GPRGNN 0.89±0.06 0.0162±0.0096 0.90±0.02 0.0078±0.0001
CONCAT-GCN [2] 0.32±0.08 0.0400±0.0139 0.40±0.08 0.0085±0.0006
CONCAT-GCNII 0.31±0.09 0.0519±0.0371 0.40±0.06 0.0088±0.0006
CONCAT-FAGCN 0.32±0.09 0.0333±0.0163 0.38±0.09 0.0086±0.0009
CONCAT-GPRGNN 0.33±0.12 0.0348±0.0091 0.36±0.07 0.0090±0.0012
GLAN [39] 0.45±0.12 0.0398±0.0627 0.72±0.06 0.0351±0.0404
MAGNET-GCN 0.74±0.10 0.0662±0.0301 0.87±0.03 0.0161±0.0022
MAGNET-GCNII 0.29±0.08 0.0431±0.0155 0.31±0.06 0.0134±0.0006
MAGNET-FAGCN 0.20±0.07 0.0409±0.0105 0.27±0.06 0.0171±0.0027
MAGNET-GPRGNN 0.19±0.07 0.0445±0.0174 0.18±0.08 0.0137±0.0007

we generate synthetic data based on Equation (1). We begin by gen-
erating 100 probabilistic assignment problems with continuous costs
and capacities. For each training instance includes 10 agents and
10 tasks, with capacities sampled from 𝑈 (1.0,3.0), rewards from
𝑈 (1.0,10.0), probabilities from𝑈 (0.1,0.9), and costs from𝑈 (0.5,1.0),
where𝑈 (𝑎,𝑏) is the uniformdistribution between𝑎 and𝑏. Capacities
and costs are set to allow no more than 6 assignments per agent.
All instances of Equation (1) for our experiments were set up us-
ing the CVXPYmodeling language [15], and solved usingMOSEK.
The true assignments are generated byMOSEK, a state-of-the-art
commercial integer programming solver [3]. We use a 60\20\20
split for train\validation\test, respectively. To better understand
the impact of continuous costs, we generate additional instances for
probabilistic assignment problems with discrete costs and capacities,
setting the costs to 1 and sampling the capacities from {1,2,3}, while
maintaining the other parameters from the continuous case.
Models.We start by usingMOSEK, one of the few solvers capable of
exactly solving the exponential cone optimization defined by (1).We
then design a set of baselines to understand howMAGNET’s edge-
centric learning paradigm improves scoring. We adapt MAGNET’s
first and third components for each of the baselines; thus, the core
difference between MAGNET and the baselines is the scoring mech-
anism.We compareMAGNETwith two node-centric methods: DOT,
which uses a dot product of agent-task embeddings, and CONCAT,
which employs anMLP transformation of concatenated embeddings.
These methods, akin to recommendation/link prediction systems,
combine node embeddings to evaluate potential links [52]. We also
consider GLAN, a GNN specifically designed for assignment that
utilizes an alternating learning style. First, GLAN applies an MLP
to edge features and updated edge representation by an edge-based
convolution operator, scaled by attention weights. Second, GLAN
performs node updates by concatenating the edge representation to
the node representation during aggregation. Since GLAN is trained

using balanced BCE loss with soft constraints, it is unable to ensure
feasibility. Since GLAN lacks an open-source implementation, we
implemented it in PyTorch Geometric.

While GLAN specifies an architecture, MAGNET, and the node-
embedding methods, are all model-agnostic. To understand their
trade-offs, and to additionally study the impact of the GNN learning
mechanism on edge scoring, we leverage four different GNN back-
bones: GCN [27], GCNII [12], FAGCN [7], and GPRGNN [13]. GCNII,
FAGCN, and GPRGNN all build on the base GCN architecture, lever-
aging additional weighting strategies to improve performance and
circumvent standard GCN issues, such as oversmoothing. Finally,
we implement a greedy algorithm similar to that used for the Quiz
Selection problem [28]. The original heuristic in [29] is based off of a
strategy for maximum return on classical quiz problems, but focuses
on problemswith strictly integral costs and upper bounds in the con-
straints. Our heuristic uses the same value array described in [29]. To
handle non-integer cost matricesC and capacities 𝛼𝑖 we iterate over
the rows of the value array, sort each row in descending order, and
iteratively add the maximum number of assignments possible per
task (in descending order) without violating the capacity constraints.

All models are implemented in PyTorch Geometric and tuned
using the validation set to minimize the optimality gap. Hyperpa-
rameter tuning for all models included searching over the hidden
dimensions ({16,32}), depth ({2,3}) and dropout ({0.3,0.5}). Addi-
tionally, we tune 𝛼 ({0.1,0.5,0.9}) for GPRGNN, and set𝐾 =10. For
FAGNN, we tune 𝜖 ({0.1,0.5,0.9}). Models are trained with the Adam
optimizer, tuning both the learning rates (0.001,0.0001,0.00001) and
L1 regularization strength 𝜆 ({0.0,0.5}). For the experiments in this
section, we do not use pruning, but employ it later to assess speedup
capabilities. Training is conducted on an NVIDIA Volta V100 GPU.
Metrics. We assess all models based on performance and execu-
tion time. For performance, we calculate the optimality gap, which

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1403

measures the difference between the objective value of the opti-
mal solution from MOSEK, 𝑂𝑚𝑜𝑠𝑒𝑘 , and the objective value asso-
ciated with the solution from the GNN architecture,𝑂𝑔𝑛𝑛 , defined
as |𝑂𝑚𝑜𝑠𝑒𝑘−𝑂𝑔𝑛𝑛 |/𝑂𝑚𝑜𝑠𝑒𝑘 . A smaller gap indicates that the GNN’s
solution is closer to optimal. The optimality gap for MOSEK is zero,
serving as the benchmark. This metric accommodates non-unique
solutions by focusing on objective values rather than specific edge
choices. For execution time, we measure the inference duration for
various GNN designs and compare it to MOSEK, including the time
for line graph transformation and feasibility checks. We report both
the average and standard deviation across test sets for each metric.
Results. In Table 1, we provide the optimality gaps and execution
times. MAGNET outperforms the other GNN baselines, attaining a
12% optimality increase on the continuous cost dataset, and 18% on
the discrete cost dataset with the GPRGNN backbone, relative to the
next best GNN baseline (CONCAT-GCNII and CONCAT-GPRGNN,
respectively). The greedy heuristic is competitive for the probabilis-
tic and continuous cost datasets, however the handcrafted decision
rules fail to generalize to both settings, as seen in the 8% and 17%
drop in optimality gap relative toMAGNET over the continuous and
discrete cases, respectively. Focusing on learning methods, these
results indicate that the edge-centric paradigmofMAGNETprovides
a significant benefit in scoring edges, particularly in the continu-
ous setting. MAGNET-GCN is a notable outliers compared to the
rest of the MAGNET results, which we attribute to GCN’s suscep-
tibility to oversmoothing as the line graph transformation creates
higher degree nodes. While the best performing variant of MAG-
NET attains a 19% optimality gap relative to MOSEK, we highlight
that MAGNET is two orders of magnitude faster, offering a strong
trade-off between execution time and performance. Compared to
the node-centric baselines, MAGNET retains comparable execution
times despite the added computation. This efficiency is attributed
to node-centric baselines needing extra edge scoring operators and
modules, increasing execution time.

Table 2: Ablation study for agent pre-processing step of
MAGNET. The decrease in optimality gaps highlights the
benefits ofMAGNET’s pre-processing component.

MAGNETModel
w/o Comp. 1

Probabilistic and
Continuous Cost
Data

Probabilistic and
Discrete Cost
Data

Opt. Gap Change (↓) Opt. Gap Change (↓)
MAGNET-GCN 0.03±0.02 −0.09±0.03
MAGNET-GCNII 0.02±0.01 −0.03±0.01
MAGNET-FAGCN −0.06±0.01 −0.05±0.02
MAGNET-GPRGNN −0.08±0.01 −0.10±0.01

Whilewe indirectly evaluateMAGNET’s edge scoring component
across different GNNbaselines, we also conduct an ablation study on
MAGNET’s preprocessing component. Specifically, we bypass the
expansion transformation and instead perform greedy assignment
using logit scores from a single agent. We allow for the possibility
of multiple assignments to a specific task by allowing high scoring
candidates to be assigned multiple times, assuming that they do not

Figure 2: Optimality gap for MAGNET and intermediate
solutions fromMOSEK, where lower optimality gap is better.
The gray region denotes the standard deviation in optimality
gap across the test set. Dashed lines are used as a visual aid
to demonstrate where MOSEK finds a comparable solution
to eachMAGNET variant.While MOSEK is capable of finding
similar solutions to MAGNET faster than the allotted 2
seconds,MOSEK is still roughly anorder ofmagnitude slower.

exceed an agent’s capacity. In Table 2, we report the change in the op-
timality gapmetric fromTable 1, computed as the original optimality
gap - the optimality gap without preprocessing, for all datasets and
MAGNET backbones. The standard deviation is over the differences.
Negative values indicate a decrease in relative performance, while
positive values indicate an increase in relative performance. The
predominantly negative values indicate that preprocessing signif-
icantly improves MAGNET’s performance, with the relative percent
change approaching 50% for GPRGNN.

As a final performance study, we explore whether MAGNET can
surpass MOSEK’s intermediate solutions. MOSEK uses a branch-
and-bound (B&B) algorithm for integer programming, iteratively
refining lower and upper bounds on the optimal objective value.
The lower bounds arise from relaxing integer constraints. During
optimization, the best current feasible solution is called the "incum-
bent." If the gap between bounds becomes zero, this incumbent is
confirmed as optimal. While MOSEK can ensure optimality, it may
return suboptimal intermediate solutions before the B&B process
concludes. Therefore, we compare MAGNET’s performance against
these intermediate solutions fromMOSEK.

Using the same data as in RQ1, Figure 2 shows the average relative
gap between MOSEK’s objective value and its lower bound over
100 runs, measured across a 2-second time frame. The gray shaded
region indicates the standard deviation of the relative gap. We com-
pare these intermediate solutions with those from variousMAGNET
variants. Notably, while MOSEK achieves low relative gaps in about
one-third of the timeneeded for the guaranteed optimal solution, it is
still significantly slower thanMAGNET in achieving similar solution
quality. This result demonstrates that MOSEK’s carefully designed

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1404

algorithm often still requires a significant search process to acquire a
reasonable solution, rather thanquickly identifying a strong solution
and refining it. Consequently, even if onewere to useMOSEK’s inter-
mediate solutions without optimality guarantees, they would take
considerably longer to compute compared to MAGNET’s solutions.

4.2 (RQ2) How doesMAGNET’s performance
generalize to problems of larger size?

RQ2 aims to understand howMAGNET (without pruning) can gen-
eralize to larger problem sizes. As the computational overhead of
larger graphs can make training infeasible, we seek to demonstrate
that MAGNET can be trained on smaller training instances and gen-
eralize to larger assignment problems with minimal degradation in
performance. The generalization results can be seen in Figure 3.
Data.We follow a similar data generation strategy as in Section 4.1;
however, we now generate optimization problems of different sizes.
Wegenerate test problemswith agent and task set sizes between10 to
15, 20 to 25, and 50 to 55.Notably, these sizes are comparable to recent
realworld applications, suchas the 6 agents and12 tasks in [57], and3
agents and 25 tasks in [24]. As solving assignment problems through
MOSEKwith 15 agents and tasks can already require significant time
to achieve the optimal solution (30+ minutes), we set a time limit of
300 seconds and use the incumbent solution, i.e. the best solution
foundwithin the 300 seconds, to compare against. All themodels are
trained using the same data generated in Section 4.1 (10 agents, 10
tasks). Then, for testing, we generate 40 problem instances for each
of the larger sizes. In these sets, 50% of the instances are used for
validation, and50%areused for testing.Thecapacities, rewards, prob-
abilities, and costs are sampled from the same distributions as RQ1.
Models.We focus onMAGNET’s generalization using the same four
GNN backbones as in Section 4.1. While MAGNET is not directly
compared to MOSEK, the metrics are scaled by the incumbent solu-
tion after 300 seconds of optimization, thus providing comparison.
Metrics.We demonstrate generalization by measuring how the op-
timality gap changes with respect to different problem sizes. For
performance, we compute the same optimality gap metric as in Sec-
tion 4.1, however we now use the the incumbent solution found by
MOSEKwithin 300 seconds.
Results. In Figure 3, we compare the optimality gaps between
MOSEK’s incumbent solutions andMAGNET’s predictions using dif-
ferent GNN backbones. Consistent with Table 1, the GCNII, FAGCN,
and GPRGNN backbones exhibit lower optimality gaps compared to
GCN. Notably, as problem size increases, these MAGNET variants
maintain similar performance, with GPRGNN and GCNII showing
flat performance curves. Despite the vast size difference between
training and test problems, MAGNET’s consistent performance in-
dicates robust, size-agnostic learning capabilities. This suggests that
MAGNET can effectively reduce both inference and training times
by requiring only small training examples.

4.3 (RQ3) How does the execution time of
MAGNET scale across larger problem sizes?

The execution time results are shown in Figure 4, and contextual-
ized with performance in Figure 5, elucidating the trade-off between
speed and solution quality.

Figure 3: Optimality gap for MAGNET across different
problem sizes, lower is better. Each model is trained on
problems with 10 agents and tasks, then applied to the larger
problems. Results demonstrate MAGNET generalizes well
across problem sizes.

Figure 4: Execution time forMAGNET across problem sizes;
lower is better. Each model is trained on problems with 10
agents and tasks, then applied to larger problems. All MAG-
NET variants achieve accelerated execution time, up to 53%.

Data.Weuse the same data as in Section 4.2, to study how execution
time varies across larger problems. Again, the models are trained
on the smaller optimization problems from 4.1 to demonstrate how
MAGNET’s performance scales, when trained on smaller datasets.
Models.We focus MAGNET’s execution time using the same four
GNNbackbones as in Section 4.2. For eachGNNbackbone, we create
four different variants based on different pruning strengths. Ac-
cording to the pruning equation specified in Section 3.2.1, we set
𝜌 ∈ {0.1,0.3,0.5}, where 0.1 denotes strong pruning, and 0.5 denotes
weaker pruning. We additionally include a variant without pruning.
Metrics. To demonstrate the execution time scaling of MAGNET,
we measure the time it takes to perform inference with each GNN

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1405

Figure 5: Optimality gap forMAGNET across problem sizes
with different backbones and pruning rates, lower is better.
Eachmodel is trained on problemswith 10 agents and tasks,
thenapplied to largerproblems.FAGCNandGCNIIbackbones
retain low optimality gaps, especially as problem size grows.

backbone variant. Unlike before where the line graph transforma-
tion and feasibility step were included in the computation, we now
only compute the time for edge scoring to isolate execution time
changes due to pruning and GNN design. For performance, we com-
pute the optimality gap between the incumbent solution computed
byMOSEKwithin 300 seconds of optimization, similar to Section 4.2.
Results. In Figure 4, we provide execution time analysis for MAG-
NETwith the different GNN backbones. For all models, pruning is
able to reduce execution time,with FAGCNachieving a 53% improve-
ment. Generally, the strength of the pruning strategy plays a less sig-
nificant role due to earlierGNN layers retaining similar edge set sizes.
Comparing execution time to performance, we see that the change
in optimality gap does not significantly change as problem sizes in-
crease. Thus, we can expect our pruning strategy to allowMAGNET
tomaintain efficiency as the assignment problems become larger.No-
tably, GNN backbones exhibit different behaviors post-pruning. For
example,GCNIIexperienceshigherexecution times thanFAGCNand
GPRGNN, while GPRGNN suffers more performance degradation
thanGCNII and FAGCN.Wehypothesize that the designs of theGNN
backbones can impact these metrics – GCNII’s identity mapping
operation may dominate the execution time metric and GPRGNN’s
predict-then-propagate paradigmmay cause an inability to recover
whenhigh-quality assignments arepruned.DesigningGNNs that are
amenable to this form of pruning may further increase acceleration.

5 RELATEDWORK
Traditional Assignment Problems.Assignment problems have
been studied for decades [47], with theHungarianmethod being one
of the earliest attempts to solve such problems [31]. The original as-
signment problem studied the single assignment case, including vari-
ants such as the assignment problemwith agent qualification [10],
the balanced assignment problem [41], and the quadratic assign-
ment problem [33]. The generalized assignment problem (GAP) [11]

extends the assignment problem to allow agents to be assigned to
multiple tasks. This formulation was also expanded into several
variations, including the multiple resource GAP [34], and the qua-
dratic generalized assignment problem [21]. Assignment problems
in general are NP-complete or NP-hard combinatorial problems,
motivating a number of sampling-based heuristic methods to solv-
ing this problem inexactly [30]. Auction algorithms have also been
proposed to solve assignment problems by allowing agents to bid
on completing certain tasks; however, this greedy process generally
does not result in optimal assignments [5, 55]. Integer programming
solvers have also been traditionally used to solve various types of
assignment problems [1, 9, 56]. Unlike heuristic methods, integer
programming solvers have guarantees on finding optimal solutions.
However, runtimes scale exponentially with the number of integer
variables due to the NP-hard nature of these problems.
DeepLearningforAssignmentProblems.GiventheNP-complete
or NP-hard nature of assignment problems, machine learning has
been leveraged to predict assignment solutions. Neural network
solvers have proven successful [38, 43, 51] across many scenar-
ios [17, 36, 45]. Recently, GLAN explored GNN-based solutions,
specifically for classic non-probabilistic single-task assignments
with a cost matrix [39]. GLANmodels the problem using a weighted
bipartitegraph,whereedgeweights represent agent-to-target assign-
ment costs. Its learning approach alternates betweennode-based and
edge-based convolution operations, combining edge embeddings
with those of connectednodes, scaled by attentionweights.GLANof-
fers faster performance than previous combinatorial methods while
maintaining accuracy by iteratively updating edge weights during
inference. However, GLAN is limited in handling more complex
assignments. Additionally, [2] examines GNNs for bipartite assign-
ment using a node-centricGCNwith aCONCAT function,while [45]
applies GNNs to the quadratic assignment problem.

6 CONCLUSION
This work introduces MAGNET, an efficient framework for solving
multi-agent, multi-task probabilistic assignment problems. MAG-
NET consists of three key components: (1) a pre-processor that
expands the bipartite graph for multi-task assignments, (2) an edge-
centric GNN that produces high-quality solutions, and (3) a post-
processor that ensures feasibility. Tomitigate the computational cost
of the line graph transformation, we enhance the second component
with an inference-time pruning strategy to improve execution speed.
Our comprehensive experiments show that MAGNET (a) generates
high-quality assignments, (b) generalizes to larger problems, and
(c) reduces inference time by two orders of magnitude compared to
MOSEK. Overall, MAGNET enhances AI capabilities by efficiently
solving a new class of assignment-based optimization problems.

ACKNOWLEDGMENTS
We thank the reviewers for their constructive feedback. This ma-
terial in this work is partially supported by the National Science
Foundation under a Graduate fellowship, IIS 2212143 and CAREER
GrantNo. IIS 1845491.Anyopinions, findings, andconclusionsor rec-
ommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science
Foundation or other funding parties.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1406

REFERENCES
[1] Jeph Abara. 1989. Applying integer linear programming to the fleet assignment

problem. Interfaces 19, 4 (1989), 20–28.
[2] Carlo Aironi, Samuele Cornell, and Stefano Squartini. 2022. Tackling the

Linear SumAssignment Problemwith Graph Neural Networks. In International
Conference on Applied Intelligence and Informatics. Springer, 90–101.

[3] MOSEK ApS. 2023. The MOSEK optimization toolbox for Python. V 10.1.
[4] Sambaran Bandyopadhyay, Anirban Biswas, M Narasimha Murty, and Ramasuri

Narayanam. 2019. Beyond node embedding: A direct unsupervised edge repre-
sentation framework for homogeneous networks. arXiv preprint arXiv:1912.05140
(2019).

[5] Dimitri P. Bertsekas. 1979. The auction algorithm: A distributed relaxation
method for the assignment problem. InAnnuls of Operations Research.

[6] Piotr Bielak and Tomasz Jan Kajdanowicz. 2022. PyTorch-Geometric Edge - a
Library for Learning Representations of Graph Edges. In Learning on Graphs
Conference.

[7] Deyu Bo, XiaoWang, Chuan Shi, and Huawei Shen. 2021. Beyond Low-frequency
Information in Graph Convolutional Networks. InAAAI.

[8] Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge
University Press.

[9] Jon A Breslaw. 1976. A linear programming solution to the faculty assignment
problem. Socio-Economic Planning Sciences 10, 6 (1976).

[10] Gaetan Caron, Pierri Hansen, and Brigitte Jaumard. 1999. The assignment
problem with seniority and job priority constraints. Operations Research 47, 3
(1999), 449–453.

[11] Dirk G Cattrysse and Luk N VanWassenhove. 1992. A survey of algorithms for
the generalized assignment problem. European journal of operational research
60, 3 (1992), 260–272.

[12] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.
Simple and deep graph convolutional networks. In International Conference on
Machine Learning.

[13] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2021. Adaptive Universal
Generalized PageRank Graph Neural Network. In International Conference on
Learning Representations.

[14] George B. Dantzig. 1957. Discrete-Variable Extremum Problems. Operations
Research 5, 2 (1957), 266–277.

[15] Steven Diamond and Stephen Boyd. 2016. CVXPY: A Python-embedded modeling
language for convex optimization. Journal of Machine Learning Research (2016).

[16] Danièle Gibbons, Cheng-Chew Lim, and Peng Shi. 2019. Deep Learning for
Bipartite Assignment Problems*. IEEE International Conference on Systems, Man
and Cybernetics (2019), 2318–2325.

[17] Daniel Gibbons, Cheng-Chew Lim, and Peng Shi. 2019. Deep learning for bipartite
assignment problems. In 2019 IEEE International Conference on Systems, Man and
Cybernetics (SMC). IEEE.

[18] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. 2017. Neural Message Passing for Quantum Chemistry. In International
Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 70), Doina Precup and YeeWhye Teh (Eds.). PMLR, 1263–1272.

[19] Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable Feature Learning for
Networks. In 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. Association for Computing Machinery, New York, NY, USA.

[20] Gurobi Optimization, LLC. 2023. Gurobi Optimizer Reference Manual.
[21] Peter MHahn, Bum-Jin Kim, Monique Guignard, J MacGregor Smith, and Yi-Rong

Zhu. 2008. An algorithm for the generalized quadratic assignment problem.
Computational Optimization and Applications 40 (2008), 351–372.

[22] Yichao Jin, Jiong Jin, Alexander Gluhak, Klaus Moessner, and Marimuthu
Palaniswami. 2011. An intelligent task allocation scheme formultihopwireless net-
works. IEEE Transactions on Parallel and Distributed Systems 23, 3 (2011), 444–451.

[23] Jaehyeong Jo, Jinheon Baek, Seul Lee, Dongki Kim, Minki Kang, and Sung Ju
Hwang. 2021. Edge representation learning with hypergraphs. Advances in
Neural Information Processing Systems 34 (2021), 7534–7546.

[24] Kelin Jose and Dilip Kumar Pratihar. 2016. Task allocation and collision-free path
planning of centralized multi-robots system for industrial plant inspection using
heuristic methods. Robotics and Autonomous Systems 80 (2016), 34–42.

[25] Alla Kammerdiner, Alexander Semenov, and Eduardo L Pasiliao. 2022. Multi-
dimensional Assignment Problem for multipartite entity resolution. Journal of
Global Optimization 84, 2 (2022), 491–523.

[26] Thomas Kipf, Ethan Fetaya, Kuan-ChiehWang, MaxWelling, and Richard Zemel.
2018. Neural Relational Inference for Interacting Systems. In International
Conference on Machine Learning. PMLR, 2688–2697.

[27] Thomas N. Kipf andMaxWelling. 2017. Semi-supervised classification with graph
convolutional networks. International Conference on Learning Representations
(2017).

[28] Alexander Kline, Darryl Ahner, and Raymond Hill. 2019. The Weapon-Target
Assignment Problem. Computers & Operations Research (2019).

[29] Alexander G Kline, Darryl K Ahner, and Brian J Lunday. 2019. Real-time heuristic
algorithms for the static weapon target assignment problem. Journal of Heuristics

25 (2019), 377–397.
[30] Alexander G Kline, Darryl K Ahner, and Brian J Lunday. 2020. A heuristic and

metaheuristic approach to the static weapon target assignment problem. Journal
of Global Optimization 78 (2020), 791–812.

[31] HaroldWKuhn. 1955. The Hungarian method for the assignment problem. Naval
research logistics quarterly 2, 1-2 (1955), 83–97.

[32] Michail G Lagoudakis, Evangelos Markakis, David Kempe, Pinar Keskinocak,
Anton J Kleywegt, Sven Koenig, Craig A Tovey, AdamMeyerson, and Sonal Jain.
2005. Auction-BasedMulti-Robot Routing.. In Robotics: Science and Systems, Vol. 5.
Rome, Italy, 343–350.

[33] Eugene L Lawler. 1963. The quadratic assignment problem. Management science
9, 4 (1963), 586–599.

[34] Larry J LeBlanc, Avraham Shtub, and G Anandalingam. 1999. Formulating and
solving production planning problems. European Journal of Operational Research
112, 1 (1999), 54–80.

[35] Mengyuan Lee, Yuanhao Xiong, Guanding Yu, and Geoffrey Li. 2018. Deep Neural
Networks for Linear SumAssignment Problems. IEEEWireless Communications
Letters PP (06 2018), 1–1. https://doi.org/10.1109/LWC.2018.2843359

[36] Mengyuan Lee, Yuanhao Xiong, Guanding Yu, and Geoffrey Ye Li. 2018. Deep neu-
ral networks for linear sum assignment problems. IEEEWireless Communications
Letters 7, 6 (2018).

[37] Gaotang Li, Marlena Duda, Xiang Zhang, Danai Koutra, and Yujun Yan. 2023.
Interpretable Sparsification of Brain Graphs: Better Practices and Effective
Designs for Graph Neural Networks. arXiv preprint arXiv:2306.14375 (2023).

[38] Tao Li and Luyuan Fang. 1991. Competition based neural networks for assignment
problems. Journal of Computer Science and Technology 6, 4 (1991), 305–315.

[39] He Liu, TaoWang, Congyan Lang, Songhe Feng, Yi Jin, and Yidong Li. 2022. Glan:
A graph-based linear assignment network. arXiv preprint arXiv:2201.02057 (2022).

[40] Donald Loveland and Rajmonda Caceres. 2023. Network Design through
Graph Neural Networks: Identifying Challenges and Improving Performance.
In International Conference on Complex Networks and their Applications.

[41] SilvanoMartello, William R Pulleyblank, Paolo Toth, and Dominique DeWerra.
1984. Balanced optimization problems. Operations Research Letters 3, 5 (1984).

[42] Nguyen Minh-Tuan and Yong-Hwa Kim. 2019. Bidirectional Long Short-Term
Memory Neural Networks for Linear Sum Assignment Problems. Applied Sciences
9, 17 (2019).

[43] MAS Monfared and M Etemadi. 2006. The impact of energy function structure
on solving generalized assignment problem using Hopfield neural network.
European journal of operational research 168, 2 (2006), 645–654.

[44] Federico Monti, Oleksandr Shchur, Aleksandar Bojchevski, Or Litany, Stephan
Günnemann, andMichael M Bronstein. 2018. Dual-primal graph convolutional
networks. arXiv preprint arXiv:1806.00770 (2018).

[45] Alex Nowak, Soledad Villar, Afonso S Bandeira, and Joan Bruna. 2018. Revised
note on learning quadratic assignment with graph neural networks. In 2018 IEEE
Data Science Workshop. IEEE, 1–5.

[46] Hongwu Peng, Deniz Gurevin, Shaoyi Huang, Tong Geng, Weiwen Jiang, Orner
Khan, and Caiwen Ding. 2022. Towards sparsification of graph neural networks.
In 2022 IEEE 40th International Conference on Computer Design. IEEE, 272–279.

[47] David W Pentico. 2007. Assignment problems: A golden anniversary survey.
European Journal of Operational Research 176, 2 (2007).

[48] Feng Qian, Kai Su, Xin Liang, and Kan Zhang. 2023. Task Assignment for UAV
Swarm Saturation Attack: A Deep Reinforcement Learning Approach. Electronics
12, 6 (2023).

[49] Chayan Sarkar, Himadri Sekhar Paul, and Arindam Pal. 2018. A scalable
multi-robot task allocation algorithm. In ICRA. IEEE.

[50] Regis Vincent, Dieter Fox, Jonathan Ko, Kurt Konolige, Benson Limketkai, Benoit
Morisset, Charles Ortiz, Dirk Schulz, and Benjamin Stewart. 2008. Distributed
multirobot exploration, mapping, and task allocation. Annals of Mathematics and
Artificial Intelligence 52 (2008), 229–255.

[51] EitanWacholder. 1989. A neural network-based optimization algorithm for the
static weapon-target assignment problem. ORSA Journal on computing (1989).

[52] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In ACM SIGIR conference on Research and
development in Information Retrieval. 165–174.

[53] Yihong Xu, Aljosa Osep, Yutong Ban, Radu Horaud, Laura Leal-Taixé, and Xavier
Alameda-Pineda. 2020. How to train your deep multi-object tracker. In CVPR.

[54] Chih-Kuan Yeh, Ian E.H. Yen, Hong-You Chen, Chun-Pei Yang, Shou-De Lin, and
Pradeep Ravikumar. 2019. DEEP-TRIM: REVISITING L1 REGULARIZATION FOR
CONNECTION PRUNINGOF DEEP NETWORK.

[55] Michael M. Zavlanos, Leonid Spesivtsev, and George J. Pappas. 2008. A distributed
auction algorithm for the assignment problem. In 2008 47th IEEE Conference on
Decision and Control.

[56] Huizhen Zhang, Cesar Beltran-Royo, and Liang Ma. 2013. Solving the qua-
dratic assignment problem by means of general purpose mixed integer linear
programming solvers. Annals of Operations Research 207 (2013).

[57] WanqingZhao,QinggangMeng, andPaulWHChung. 2015. Aheuristic distributed
task allocation method for multivehicle multitask problems and its application to
search and rescue scenario. IEEE transactions on cybernetics 46, 4 (2015), 902–915.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1407

https://doi.org/10.1109/LWC.2018.2843359

	Abstract
	1 Introduction
	2 Background and Notation
	2.1 Assignment Problem Formulation
	2.2 Representing the Optimization Problem
	2.3 Graph Neural Networks

	3 MAGNET: A framework for complex assignment problems
	3.1 Probabilistic and Multi-Task Learning
	3.2 GNNs for Edge Scoring
	3.3 Ensuring Feasibility

	4 Experiments
	4.1 (RQ1) How effective is MAGNET?
	4.2 (RQ2) How does MAGNET's performance generalize to problems of larger size?
	4.3 (RQ3) How does the execution time of MAGNET scale across larger problem sizes?

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

