
Minimizing Makespan with Conflict-Based Search for
Optimal Multi-Agent Path Finding

AAAI Track

Amir Maliah
Ben-Gurion University
Be’er Sheva, Israel

amirmal@post.bgu.ac.il

Dor Atzmon
Bar-Ilan University
Ramat Gan, Israel

dor.atzmon@biu.ac.il

Ariel Felner
Ben-Gurion University
Be’er Sheva, Israel
felner@bgu.ac.il

ABSTRACT

Conflict-based search (CBS) is a prominent algorithm that optimally
solves theMulti-Agent Path Finding problem (MAPF). There are two
common objective functions for MAPF: Makespan (MKS), the time
elapsed until the task ends, and Sum-Of-Costs (SOC), the sum of
costs of all paths. Most existing MAPF algorithms, including CBS,
were not designed particularly for minimizing MKS. In this paper,
we show that CBS can be redefined as a framework that can be fine-
tuned to different objectives. We introduce an instantiation of this
framework for minimizing MKS. Its low-level solves a new search
setting which we call Extended Bounded-Cost Search. Our experi-
ments show that our new algorithm can significantly outperform
previous algorithms for MKS. Moreover, we discuss two extensions
of MKS which are also members of our general framework.

KEYWORDS

Makespan, Conflict-Based Search, Multi-Agent Path Finding
ACM Reference Format:

Amir Maliah, Dor Atzmon, and Ariel Felner. 2025. Minimizing Makespan
with Conflict-Based Search for Optimal Multi-Agent Path Finding: AAAI
Track. In Proc. of the 24th International Conference on Autonomous Agents

and Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23,

2025, IFAAMAS, 9 pages.

1 INTRODUCTION

The task in the Multi-Agent Path Finding problem (MAPF) is to find
conflict-free paths for multiple agents [36]. MAPF is derived from
real-world applications of navigating multiple physical entities,
such as drones, robots, vehicles, etc. There are two common objec-
tive functions that quantify the cost of MAPF solutions: Makespan

(MKS) and Sum-of-Costs (SOC). MKS is the highest-cost (longest)
path among all agents’ paths and can be seen as the time it takes
the agents to complete the task. SOC is the sum of costs of all paths
and can be seen as the energy waste by all agents. It is NP-hard
to optimally solve MAPF for both MKS [37] and SOC [46]. Still,
since MAPF has wide applicability, efficient optimal algorithms
were proposed for MAPF [9, 13, 31].

Conflict-Based Search (CBS) [31] is a prominent two-level algo-
rithm. On its high level, each node contains paths for all agents
under a set of constraints. Each such path is individually planned

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,

USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

by CBS’s low-level search, which usually finds the lowest-cost path
(denoted LC hereafter) that satisfy the imposed constraints.

CBS was originally designed for SOC. Nevertheless, minimizing
MKS is important for different applications. For example, consider
packing several items for delivery by robots in an automated ware-
house. The package can only be shipped when containing all items.
Notably, CBS can optimally solve MAPF for minimizing either SOC
or MKS (or other objectives). This is done by modifying the pri-
oritization of nodes in the high level according to the required
objective. Thus, the common way to run CBS for MKS is to modify
the priority function in the high level to prefer nodes with lowMKS.
Nevertheless, the low level remains untouched and searches for the
lowest-cost (LC) path for the given agent [11, 31, 39]. We label the
CBS variants with this low level of LC by CBSs(LC) for a high level
designed to minimize SOC (this is the common version), and by
CBSm(LC) for a high-level designed for MKS.

In this paper, we redefine CBS as a general framework for dif-
ferent objectives, which better treats the selected objective by sep-
arately adjusting the low and high levels for any given objective.
CBSs(LC) and CBSm(LC) are two members of this framework. We
propose other members that are better suited for MKS.

Additionally, we introduce a new search setting that extends
the Bounded-Cost Search setting (BCS) [35]. In BCS, we are given a
bound 𝐵 and the task is to find a path with cost ≤ 𝐵 or to declare that
such a path does not exist. Our extended setting is called Extended

Bounded-Cost Search (EBC). If a path with cost ≤ 𝐵 does not exist
then, in EBC, we seek a path with minimal cost (which is > 𝐵). We
present a general algorithm for solving EBC and provide several
instantiations for this algorithm. We then show that using LC as
the low level, as done by CBSm(LC), is not efficient. For MKS, the
task in the low level is, in fact, solving EBC. Thus, we introduce a
novel CBS for MKS, called CBSm(EBC), that solves EBC in its low
level (instead of LC) and discuss several instantiations of it.

Our experiments show that CBSm(EBC) significantly outper-
forms CBSm(LC), as well as a SAT-based MAPF solver designed
for MKS. We also compared CBSm(EBC) to LaCAM* [27], a recent
MAPF solver that converges to finding optimal solutions and show
the relative advantages of each of these algorithms. In many cases,
especially in dense maps, CBSm(EBC) significantly outperforms La-
CAM* and was able to solve problem instances with the maximum
number of agents possible in some maps.

Finally, we discuss two MKS extensions. The first extension
minimizes SOC as a secondary objective. The second extension
recursively minimizes MKS for subsets of agents. We introduce
variants of CBS for these settings and study their performance.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1418

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Cost = 4
Constraints =
𝚷 = 𝟎 𝟏 𝟐 𝟑

𝝅𝟏: 𝑠1 𝑔1 𝒈𝟏 𝑔1

𝝅𝟐: 𝑠2 𝐴 𝒈𝟏 𝑔2

Cost = 6
Constraints = 𝑎1, 𝑔1, 2
𝚷 =

Cost = 5
Constraints = 𝑎2, 𝑔1, 2
𝚷 = 𝟎 𝟏 𝟐 𝟑 𝟒

𝝅𝟏: 𝑠1 𝑔1 𝑔1 𝑔1 𝑔1

𝝅𝟐: 𝑠2 𝐵 𝐶 𝐷 𝑔2

𝟎 𝟏 𝟐 𝟑

𝝅𝟏: 𝑠1 𝑠1 𝑠1 𝑔1

𝝅𝟐: 𝑠2 𝐴 𝑔1 𝑔2

Cost = 3
Constraints =
𝚷 = 𝟎 𝟏 𝟐 𝟑

𝝅𝟏: 𝑠1 𝑔1 𝒈𝟏 𝑔1

𝝅𝟐: 𝑠2 𝐴 𝒈𝟏 𝑔2

Cost = 3
Constraints = 𝑎1, 𝑔1, 2
𝚷 =

Cost = 4
Constraints = 𝑎2, 𝑔1, 2
𝚷 = 𝟎 𝟏 𝟐 𝟑 𝟒

𝝅𝟏: 𝑠1 𝑔1 𝑔1 𝑔1 𝑔1

𝝅𝟐: 𝑠2 𝐵 𝐶 𝐷 𝑔2

𝟎 𝟏 𝟐 𝟑

𝝅𝟏: 𝑠1 𝑠1 𝑠1 𝑔1

𝝅𝟐: 𝑠2 𝐴 𝑔1 𝑔2

𝑠1

𝑔1 𝑔2

𝐴

𝑠2

𝐵

𝐷

𝐶

(a) (b) (c)

𝑅𝑜𝑜𝑡 𝑅𝑜𝑜𝑡

𝑁1 𝑁1 𝑁2𝑁2

Figure 1: (a) MAPF problem instance. (b) CT for SOC. (c) CT for MKS.

2 BACKGROUND AND PROBLEM DEFINITION

The Multi-Agent Path Finding problem (MAPF) [36] is defined by
the tuple ⟨G, 𝐴, 𝑆,𝐺⟩, where G = (V, E) is an undirected graph,
𝐴 = (𝑎1, . . . , 𝑎𝑘) is a set of 𝑘 agents and 𝑆 = (𝑠1, . . . , 𝑠𝑘) and 𝐺 =

(𝑔1, . . . , 𝑔𝑘) are lists of start and goal vertices for the 𝑘 agents,
respectively. In graph G, two vertices 𝑣1 and 𝑣2 are neighbors if
there is an edge between them: (𝑣1, 𝑣2) ∈ E. Time is discretized into
timesteps, and a path 𝜋𝑖 for agent 𝑎𝑖 is a list of neighboring vertices
from start vertex 𝑠𝑖 to goal vertex 𝑔𝑖 . Let 𝜋𝑖 (𝑡) denote the vertex of
agent 𝑎𝑖 at timestep 𝑡 according to path 𝜋𝑖 . Therefore, 𝜋𝑖 (0) = 𝑠𝑖 ,
𝜋𝑖 (|𝜋𝑖 | − 1) = 𝑔𝑖 , and ∀𝑡 ∈ (0, . . . , |𝜋𝑖 | − 2) : (𝜋𝑖 (𝑡), 𝜋𝑖 (𝑡 + 1)) ∈ E.
A path represents the movement actions of the agent between each
consecutive timesteps 𝑡 and 𝑡 +1, and it is composed ofmove actions
(where 𝜋𝑖 (𝑡) ≠ 𝜋𝑖 (𝑡 + 1)) and wait actions (where 𝜋𝑖 (𝑡) = 𝜋𝑖 (𝑡 + 1)).
The cost 𝑐 (𝜋𝑖) of path 𝜋𝑖 is the number of edge traversals it contains
(= |𝜋𝑖 | − 1). We thus assume that all edges have a uniform cost of 1.

A plan Π = (𝜋1, . . . , 𝜋𝑛) is a list of paths for the agents. A solution

to MAPF is a conflict-free plan Π; that is, any two paths in Π do
not conflict. For any two paths 𝜋𝑖 and 𝜋 𝑗 of agents 𝑎𝑖 and 𝑎 𝑗 , we
consider the following two common types of conflicts. (1) A vertex

conflict

〈
𝑎𝑖 , 𝑎 𝑗 , 𝑣, 𝑡

〉
exists when the agents are simultaneously at

vertex 𝑣 at timestep 𝑡 (∃𝑡 : 𝜋𝑖 (𝑡) = 𝜋 𝑗 (𝑡) = 𝑣). (2) A swapping

conflict

〈
𝑎𝑖 , 𝑎 𝑗 , 𝑒, 𝑡

〉
exists when the agents simultaneously traverse

edge 𝑒 in opposite directions between timesteps 𝑡 and 𝑡 + 1 (∃𝑡 :
𝜋𝑖 (𝑡) = 𝜋 𝑗 (𝑡 + 1) ∧ 𝜋 𝑗 (𝑡) = 𝜋𝑖 (𝑡 + 1) ∧ (𝜋𝑖 (𝑡), 𝜋𝑖 (𝑡 + 1)) = 𝑒). The
objective functions for MAPF are defined as follows. The Sum-of-

Costs (SOC) of plan Π is 𝐶𝑆𝑂𝐶 (Π) =
∑
𝜋𝑖 ∈Π 𝑐 (𝜋𝑖). The Makespan

(MKS) of plan Π is 𝐶𝑀𝐾𝑆 (Π) = max𝜋𝑖 ∈Π 𝑐 (𝜋𝑖).
Figure 1(a) depicts a problem instance containing two agents

𝑎1 and 𝑎2 with start vertices 𝑠1 and 𝑠2, and goal vertices 𝑔1 and 𝑔2.
Here, the optimal SOC solution Π = (𝜋1, 𝜋2) is 𝜋1 = (𝑠1, 𝑔1) and
𝜋2 = (𝑠2, 𝐵,𝐶, 𝐷,𝑔2) with 𝐶𝑆𝑂𝐶 (Π) = 5 and 𝐶𝑀𝐾𝑆 (Π) = 4. Note
that agent 𝑎2 had to take the detour via 𝐵 in order to not conflict
with agent 𝑎1 at vertex 𝑔1. The optimal MKS solution Π = (𝜋1, 𝜋2)
is 𝜋1 = (𝑠1, 𝑠1, 𝑠1, 𝑔1) and 𝜋2 = (𝑠2, 𝐴, 𝑔1, 𝑔2) with𝐶𝑆𝑂𝐶 (Π) = 6 and
𝐶𝑀𝐾𝑆 (Π) = 3. Here, agent 𝑎1 waits at its start vertex 𝑠1 to allow
agent 𝑎2 pass through vertex 𝑔1 and achieve MKS of 3.

2.1 Conflict-Based Search (CBS)

Conflict-Based Search (CBS) [31] is an optimal MAPF algorithm for
either SOC or MKS. In CBS, a constraint ⟨𝑎𝑖 , 𝑥, 𝑡⟩ (𝑥 is either a vertex

or an edge) prohibits agent 𝑎𝑖 from occupying vertex 𝑥 at timestep
𝑡 or from traversing edge 𝑥 between timesteps 𝑡 and 𝑡 + 1. CBS is a
two-level algorithm. On its high level, CBS contracts a Constraint
Tree (CT). Each CT node 𝑁 contains: (1) a set of constraints, de-
noted 𝑁 .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠; (2) a plan 𝑁 .Π that satisfies 𝑁 .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠;
and (3) the cost 𝑁 .𝑐𝑜𝑠𝑡 of plan 𝑁 .Π. 𝑁 .𝑐𝑜𝑠𝑡 can be either 𝐶𝑆𝑂𝐶 (Π)
or 𝐶𝑀𝐾𝑆 (Π) depending on whether the aim is to minimize SOC
or MKS. The path of each agent 𝑎𝑖 in plan 𝑁 .Π (denoted 𝑁 .Π.𝜋𝑖)
satisfying 𝑁 .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 is planned by CBS’s low-level search.

The high level (presented in Algorithm 1) performs a best-first
search over the CT nodes by prioritizing CT nodes according to
their costs. It starts from initializing a Root CT node containing an
empty set of constraints and inserting it into Open (lines 2-6). Then,
repeatedly, CBS extracts the lowest-cost CT node 𝑁 from Open
(lines 7-8). If 𝑁 .Π is conflict-free, it is returned as a solution (lines 9-
10). Otherwise, a conflict

〈
𝑎𝑖 , 𝑎 𝑗 , 𝑥, 𝑡

〉
is chosen (line 11). To resolve

the conflict, two new child CT nodes 𝑁𝑖 and 𝑁 𝑗 are created for node
𝑁 with the constraints𝑁 .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 and the additional constraints
⟨𝑎𝑖 , 𝑥, 𝑡⟩ and

〈
𝑎 𝑗 , 𝑥, 𝑡

〉
are added to 𝑁𝑖 and 𝑁 𝑗 , respectively (lines

12-13 and 17-22). The new CT nodes 𝑁𝑖 and 𝑁 𝑗 are inserted into
Open (line 14). The only difference between minimizing SOC and
MKS is the way the cost of each CT node is determined (line 21): if
the cost 𝑁 .𝑐𝑜𝑠𝑡 of each CT node 𝑁 is 𝐶SOC (𝑁 .Π) then the optimal
SOC solution is returned, and if the cost is 𝐶MKS (𝑁 .Π) then the
optimal MKS solution is returned.

When a new constraint is added to agent 𝑎𝑖 in a new CT node 𝑁𝑖
(to resolve a conflict), the low level is called (line 20) to replan the
lowest-cost path for agent 𝑎𝑖 that satisfies the new set of constraints
in 𝑁𝑖 . We denote a lowest-cost low-level search by LC. LC can be
implemented by (Temporal-)A* [34], which executes A* but must
satisfy the constraints. It prioritizes nodes 𝑛 by 𝑓 (𝑛) = 𝑔(𝑛) +
ℎ(𝑛), where 𝑔(𝑛) is the cost of reaching 𝑛 and ℎ(𝑛) is a heuristic
estimation for reaching the goal from 𝑛.

We denote CBS for minimizing SOC and MKS, with low level of
LC, by CBSs(LC) and CBSm(LC), respectively.

Example: Figure 1(b) presents the CT created by CBSs(LC) for
the problem instance in Figure 1(a). At the Root, the cost (SOC)
is 4. We identify the vertex conflict ⟨𝑎1, 𝑎2, 𝑔1, 2⟩ and, thus, the
Root is not a goal. To resolve the conflict, two child CT nodes 𝑁1
and 𝑁2 are created with the additional constraints ⟨𝑎1, 𝑔1, 2⟩ and
⟨𝑎2, 𝑔1, 2⟩, respectively. The low-level search, then, replans for each

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1419

Algorithm 1: High Level of CBS
1 HighLevel(G, 𝐴, 𝑆,𝐺)
2 Init Open, 𝑅𝑜𝑜𝑡 ; 𝑅𝑜𝑜𝑡 .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 = {}
3 foreach 𝑎𝑖 ∈ 𝐴 do

4 Plan path 𝑅𝑜𝑜𝑡 .Π.𝜋𝑖 // Low Level

5 𝑅𝑜𝑜𝑡 .𝑐𝑜𝑠𝑡 = 𝐶 (𝑁 .Π)
6 Insert 𝑅𝑜𝑜𝑡 into Open
7 while Open is not empty do

8 Extract 𝑁 from Open // High-Level’s Priority
9 if 𝑁 .Π is conflict-free then

10 return 𝑁 .Π

11

〈
𝑎𝑖 , 𝑎 𝑗 , 𝑥, 𝑡

〉
= GetConflict(𝑁)

12 𝑁𝑖 = GenerateChild(𝑁 , ⟨𝑎𝑖 , 𝑥, 𝑡⟩)
13 𝑁 𝑗 = GenerateChild(𝑁 ,

〈
𝑎 𝑗 , 𝑥, 𝑡

〉
)

14 Insert 𝑁𝑖 and 𝑁 𝑗 into Open
15 return No Solution

16 GenerateChild(𝑁 , ⟨𝑎𝑖 , 𝑥, 𝑡⟩)
17 Init 𝑁 ′

18 𝑁 ′ .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 = 𝑁 .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 ∪ {⟨𝑎𝑖 , 𝑥, 𝑡⟩}
19 𝑁 ′ .Π = 𝑁 .Π

20 Replan path Π.𝜋𝑖 under 𝑁 ′ .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 // Low Level

21 𝑁 ′ .𝑐𝑜𝑠𝑡 = 𝐶 (𝑁 ′ .Π)
22 return 𝑁 ′

conflicting agent in each of the two new CT nodes. At 𝑁1, the path
of agent 𝑎1 becomes two timesteps longer (𝑎1 waits two timesteps
at its start vertex 𝑠1) and the cost increases to 6. At 𝑁2, the path of
agent 𝑎2 is one timestep longer (from vertices 𝐵, 𝐶 , and 𝐷) and the
cost increases to 5. As both CT nodes contain conflict-free plans
(solutions), these CT nodes are goals and the optimal SOC solution
is found at 𝑁2 with a cost of 5. Similarly, Figure 1(c) presents the
CT created by CBSm(LC). At the Root, the cost (MKS) is 3. Here, at
𝑁1, while the path of agent 𝑎1 becomes two timesteps longer, the
cost remains 3. As at 𝑁2 the cost increases to 4, the optimal MKS
solution is found at 𝑁1 with a cost of 3.

2.2 CBS’s Improvements

Over the years, many improvements were proposed to enhance
CBS. We summarize the main ones next.

(1) Prioritizing Conflicts (PC) [5] categorizes conflicts into three
types: cardinal conflicts, where resolving the conflict results in an
increase in the cost in the two child CT nodes; semi-cardinal conflict,
where the cost increases in only one child CT node; and non-cardinal
conflicts, where the cost remains the same. Solving cardinal conflicts
first, then semi-cardinal conflicts, and finally non-cardinal conflicts
often reduces the size of the CT.

(2)CBSwith heuristics (CBSH) [7, 16] adds an admissible heuristic
value to the costs of CT nodes, estimating the remaining cost that
will be added below a CT node. Adding heuristics increases the
costs of CT nodes and reduces the search effort.

(3) Disjoint Splitting (DS) [18] resolves conflicts by imposing
negative and positive constraints on one conflicting agent, instead

of two negative constraints on both conflicting agents. A positive
constraint forces the agent to obey the constraint and prohibits
all other agents from violating it and, thus, many conflicts may be
resolved altogether, which also often reduces the size of the CT.

(4) Instead of setting a single constraint on each agent to resolve
conflicts, reasoning techniques impose a larger set of constraints.
Pairwise Reasoning (PR) [17] detects pairs of agents in a grid that
have multiple paths conflict in a rectangle (GR), in a corridor (GC),
or at a goal vertex (T). Mutex Propagation (MP) [47] generalizes PR
and automatically locates pairs of agents in a graph that have mul-
tiple conflicting paths and generates constraints. Cluster Reasoning
(CR) [33] extends the reasoning from pairs of agents to clusters.

3 BOUNDED-COST SEARCH AND

EXTENSIONS

Typical search algorithms are designed to minimize the cost of the
solution path. An important search setting is Bounded-Cost Search
(BCS) [35]. In BCS, a bound 𝐵 is given and the task is to find a
solution with cost ≤ 𝐵 as quickly as possible. The returned path
is not necessarily the optimal solution whose cost is denoted by
𝐶∗. According to the common definition [35], algorithms that solve
BCS must either return such a path or return failure which means
that such a path does not exist (when 𝐶∗ > 𝐵). Below, we intro-
duce the Extended Bounded-Cost Search setting and a corresponding
algorithm, which are used for the low level of CBS for MKS.

3.1 Bounded-Cost Search Algorithms

A general framework for solving BCS runs a (best-first) search
from the start vertex. But, whenever a node 𝑛 is generated with
𝑓 (𝑛) > 𝐵, it is pruned. Such a general framework was mentioned
by Gilon et al. (2017) and was referred to as reasonable because
it is reasonable to perform a best-first search and to prune nodes
with cost above the bound. The algorithm halts in the following
two possible scenarios. (1) Success: a goal node with cost ≤ 𝐵 is
reached and returned. (2) Failure: no such path exists.

Variants of this framework differ in how nodes are prioritized
in the best-first process. While any priority function will work,
prominent variants are the following:

(i) A* [12] within the BCS framework returns the lowest cost (LC)
path if it is smaller than 𝐵, otherwise it returns failure. While A* is
a member of this framework, it might not be efficient, as it strives
to return the optimal path even if another (not optimal) solution
within the bound can be found faster.

(ii) GreedyBest-first Search (GBFS) (sometimes called pure heuris-
tic search) is a simple, yet efficient, heuristic search algorithm which
prioritizes nodes 𝑛 based only on ℎ(𝑛). GBFS aims to reach the goal
fast and is usually faster thanA* as it returns a path without proving
its optimality.

(iii) Potential Search (PS) [35] prioritizes nodes 𝑛 according to
their potential (𝑝𝑡) for quickly leading to a bounded-cost solution.
𝑝𝑡 is defined by 𝑝𝑡 (𝑛) = ℎ(𝑛)/(𝐵 − 𝑔(𝑛)), where a lower value
indicates a better potential. For various bounds 𝐵, it was shown
that PS is able to find a bounded-cost path faster than A*.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1420

3.2 Extended BCS - When BCS Fails

We now introduce a new search setting that further extends BCS
to, arguably, a more realistic scenario. As defined above, if there is
no solution within the bound then BCS algorithms return failure. A
realistic question that arises is: “OK, now what?” This depends on
the user. Of course, if the user gives up because there is no solution
within his/her budget then that is fine. However, in many realistic
scenarios, the user might be willing to increase the budget.

In our new setting, which we call Extended BCS (EBC), when a
BCS algorithm returns failure (no solution with cost ≤ 𝐵), then we
want a solution with the minimal cost (which is above 𝐵). Indeed,
anyone can think of real-world cases where EBC is relevant and
the user is willing to exceed his/her initial budget. In fact, we will
see below that CBS’s low level for MKS needs to solve exactly EBC.

The EBC* Algorithm. We now present an algorithm (EBC*) that
solves EBC and uses the BCS framework as an internal component.
EBC* receives a bound 𝐵 and solves EBC in two steps. Step 1: EBC*
aims to find a path with cost ≤ 𝐵 as quickly as possible. If such a
path is found, EBC* halts. Step 2: After proving that such a path
does not exist, it falls back to A* and seeks the lowest-cost path
(with cost > 𝐵). EBC* is a member of the general Focal Search family,
as presented by Gilon et al. (2017). EBC* maintains two lists: Open
and Focal. Every generated node is added to Open. Focal is a
subset of Open, where Focal = {𝑛 ∈ Open|𝑓 (𝑛) ≤ 𝐵}. In step 1,
EBC* searches only in Focal. In that step it actually activates the
BCS framework with any possible internal priority function such
as the ones listed above. When Focal becomes empty, it is a proof
that no solution with cost ≤ 𝐵 exists and EBC* moves to step 2. In
step 2, EBC* changes its policy and continues to search in Open
but in a best-first search order according to 𝑓 = 𝑔 + ℎ in order to
find the shortest path as fast as possible. So, in step 1, any possible
priority function for searching in Focal is acceptable. But, in step
2, only LC polices (e.g., 𝑓 = 𝑔 + ℎ) are valid.

There are many possible implementations of EBC* including
many possible data structures to maintain Open and Focal. The
straightforward implementation is that Open is a priority queue
sorted according to 𝑓 = 𝑔 + ℎ but Focal is another priority queue
sorted according to any of the BCS framework priority functions.
In our implementation, we also broke ties in Open according to
the priority function of Focal. Below, we propose to use EBC* for
CBS’s low-level for MKS (denoted CBSm(EBC)).

Other BCS Extensions. Besides EBC, other realistic BCS exten-
sions exist. For example, when there is no solution within 𝐵, the
user may increase the budget to 𝐵′. The same BCS algorithm can be
called but now with 𝐵′. This can be further extended and the user
can give a sequence of bounds {𝐵1, 𝐵2, . . . , 𝐵𝑚 }. Then, in iteration 𝑖 ,
the aim is to find a solution whose cost is ≤ 𝐵𝑖 . Other extensions
are also possible.

4 GENERALIZING CBS FOR OTHER

OBJECTIVES

In this section, we generalize CBS to better suit optimal MAPF
solving for different objective functions. We begin by discussing
existing CBS’s improvements.

𝑘
SOC MKS

CBSs(LC) CBSs(LC)+ CBSm(LC) CBSm(LC)+

5 100% 100% 100% 100%
10 100% 100% 100% 100%
20 100% 100% 100% 100%
50 0% 88% 100% 100%
100 0% 0% 100% 100%
150 0% 0% 100% 88%
200 0% 0% 36% 12%
250 0% 0% 0% 0%

Cost

5 118 38
10 225 40
20 449 43
50 1,136 47
Table 1: Success rate and average cost on 32 × 32 grids.

4.1 Comparing Improvements for SOC and MKS

Standard CBS [31] was originally designed for SOC. Likewise, its
improvements (Section 2) were originally developed for (and tested
on) MAPF for SOC. Some of them do not even directly apply to CBS
for other objectives, such as MKS. For instance, CBSH uses admis-
sible heuristic values representing an increase in SOC. Designing
heuristics for other objectives requires further research.

We evaluated the impact of these improvements on CBS for both
SOC and MKS. We compared the baseline CBS variants (CBSs(LC)
and CBSm(LC)) with variants that also added these enhancements
(PC+GR+GC+T+DS, defined above) which are denoted CBSs(LC)+
and CBSm(LC)+. Again, they all use a low level that searches for
the lowest-cost path (LC). Table 1 presents the success rate of these
algorithms for 25 random problem instances with a time limit of
60 seconds on 32 × 32 4-connected grids with 20% obstacles. As
can be seen, for SOC, these improvements significantly improved
the algorithm, and CBSs(LC)+ solved 88% of the problem instances
with 50 agents while CBSs(LC) was not able to solve any of them.
However, these improvements did not help CBS for minimizing
MKS and, in fact, CBSm(LC)+ performed worse than CBSm(LC).
For example, for 200 agents CBSm(LC)+ only solved a third of the
instances solved by CBSm(LC).1

The explanation for this phenomenon is as follows. The tested
improvements attempt to provide higher costs for CT nodes, which,
in turn, prunes parts of the CT and results in lower runtime. The
cost of a CT node can be increased only when a cost of a path
becomes higher. When minimizing SOC, any path whose cost be-
comes higher increases the cost of the CT node. However, when
minimizing MKS, the cost is determined only by the highest-cost
path. Thus, these improvements do not influence the cost of the CT
node when the cost of another (not the highest-cost) path becomes
higher. By contrast, these improvements always consume runtime
to compute them. Therefore, they were not effective for MKS and

1We observed similar trends on other maps, when we examined subsets of improve-
ments, and when PC categorized conflicts by their increase in MKS instead of SOC.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1421

even worsened the performance in many cases, e.g., for 150 and
200 agents.

In general, Table 1 shows that solving MAPF for MKS is easier
than for SOC, and CBS can solve instances with many more agents
for MKS than for SOC. This is inline with a similar observation
made by Surynek et al. [41] when investigating SAT solvers for
MAPF. The main reason is that, there are often many more optimal
solutions when MKS is minimized than when SOC is minimized.
This is due to the fact that MKS is only influenced by the highest-
cost path while SOC is influenced by all paths. The bottom part
of Table 1 compares the cost of the optimal paths for SOC and
MKS. When more agents exist, the optimal SOC increases more
significantly than the optimal MKS. When more agents are added to
a problem instance, the SOC immediately increases. By contrast, the
MKS only increases if the cost of the highest-cost path increases.

4.2 The Optimality of CBS

A main property that makes CBS optimal for SOC, MKS, and other
objective functions is the following.

Property 1. The cost 𝑁 .𝑐𝑜𝑠𝑡 of any CT node 𝑁 equals the lowest

cost plan that satisfies 𝑁 .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 .

This property ensures that when CBS (that runs a best-first
search) finds a solution, it is guaranteed to be the optimal solution
as all other solutions must have higher costs.

Let 𝑁 be a CT node and let 𝑁 ′ be its child CT node. The child
𝑁 ′ first inherits the plan 𝑁 .Π plus the constraints 𝑁 .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

(lines 18-19 in Algorithm 1). To resolve a conflict in CT node 𝑁 , a
constraint is added on a single agent 𝑎𝑖 in the child CT node 𝑁 ′.
Therefore, to satisfy 𝑁 ′ .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 , we only need to replan for 𝑎𝑖
(the paths of all other agents already satisfy the constraints).

For minimizing SOC, CBSs(LC) obtains Property 1 by a low level
that replans the lowest-cost path that satisfies the constraints (LC).
If the low level were to replan a path that does not have the lowest
cost, Property 1 would have been violated, and the algorithm might
have found a suboptimal solution. Therefore, for minimizing SOC,
the low level must return the lowest-cost path. For many other
objectives, Property 1 is also obtained with a similar low-level
search (which replans the lowest-cost path). For MKS, for instance,
the plan, where each agent has the lowest-cost path, certainly has
theminimalMKS. However, Property 1 can also be obtainedwithout
a low-level search returning the lowest-cost path. Consider a plan
Π = (𝜋1, 𝜋2) of two agents, where 𝑐 (𝜋1) = 10 and 𝑐 (𝜋2) = 5, and
these paths are of lowest-cost. Here, 𝐶MKS (Π) = 10. However, for
MKS, the cost remains 10 if agent 𝑎2 had any path with cost ≤ 10.

The original paper on CBS [31] designed it for SOC and suggested
a low level that finds the lowest-cost path. That paper mentions
that, for MKS, it is sufficient to modify the high level to prioritize
CT nodes by their MKS. While this is true, it may not be efficient.

Based on this, for optimally and efficiently solving MAPF for
other objectives, we propose to adjust not only the high but also
the low level. For a given objective, the low level should be able to
return any path as long as Property 1 is obtained. By doing this, the
low level may expand fewer nodes or find a path that conflicts less
with other agents and, thus, results in fewer high-level expansions.
Next, we demonstrate a more suitable low level for MKS.

4.3 Adjusting CBS for MKS

When MKS is minimized, the cost of each CT node 𝑁 is determined
solely according to the cost of the highest-cost path, rather than the
sum of costs of all paths (as in SOC). Therefore, the traditional low
level of CBSm(LC), which searches for the lowest-cost path, is more
restrictive. Instead, we suggest to run a low-level that aims to satisfy
the new constraint for the conflicting agent 𝑎𝑖 but with the objective
of not increasing 𝑁 .𝑐𝑜𝑠𝑡 which is the cost of the longest path. Thus,
the low level of our new CBS variant, denoted CBSm(EBC), solves
a BCS problem for agent 𝑎𝑖 where the bound 𝐵 is the cost of the
current plan (its MKS). Of course, since that cost is not yet known
(as the path of 𝑎𝑖 is now being calculated), we inherit the cost from
𝑁 ’s parent for the bound 𝐵. If there is no such path for 𝑎𝑖 with cost
≤ 𝐵 then 𝐵 (=MKS) must increase. But, to minimize MKS, the new
path for 𝑎𝑖 (which now becomes the agent with the highest-cost
path) should be minimized (albeit larger than the previous MKS).
This is exactly the EBC problem as defined above. We thus run EBC*
for the low level of CBS for MKS and denote it by CBSm(EBC).

The Root CT node 𝑅 should be treated slightly differently. At
𝑅, when calling the low level to plan a path for each agent, 𝑅.𝑐𝑜𝑠𝑡
is yet to be determined and no bound exists. Therefore, for 𝑅, we
execute LC.2

Theorem 1. CBSm(EBC) obtains Property 1.

Proof. To prove that CBSm(EBC) obtains Property 1, we need
to show that for every CT node 𝑁 ′, the cost 𝑁 ′ .𝑐𝑜𝑠𝑡 when using
CBSm(EBC) is identical to the one when using CBSm(LC). Let 𝜋𝑖 be
the replanned path returned by either LC or EBC in CT node 𝑁 ′. If
there exists a path with cost ≤ the MKS of the parent CT node 𝑁 ,
then both LC and EBC* return such a path. If there is no such path,
both LC and EBC* return the lowest-cost path. In both cases, the
cost of 𝑁 ′ is the same for CBSm(EBC) and CBSm(LC). □

4.4 Prioritizing Focal

For the low level of CBSm(EBC), implementations of EBC* differ in
how they prioritize nodes in Focal in step 1 of the algorithm (in
step 2, they all execute variants of A*). We consider the following
prioritizations for step 1.

(1+2) GBFS andPS.Using these two BCS algorithms to prioritize
nodes in step 1 of the low level can quickly find a bounded-cost path,
faster than using LC (e.g., A*). They are expected to reduce the num-
ber of expansions of each low-level search. We denote CBSm(EBC)
with a low level of EBC that prioritizes Focal according to GBFS
and PS by CBSm(EBC,GBFS) and CBSm(EBC,PS), respectively.

(3) Minimal Number of Conflicts (MC). While the above pri-
oritizations might expand fewer low-level nodes, they may still find
a path that has numerous conflicts with other agents. Thus, while
the number of low-level nodes may decrease, the number of high-
level CT nodes (the size of the CT) may still be large. Therefore, we
also propose to prioritize nodes in Focal by the number of conflicts
with other agents, which we callMinimal Number of Conflicts (MC).
That is, in step 1, MC prioritises nodes with the lowest number
of conflicts and aims to decrease the number of high-level nodes.
For implementing MC, the paths of all agents are also passed to
the low level and each low-level node maintains the accumulated
2Other low-level searches at the Root were not effective in our trials.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1422

𝑘

High-Level Expansions Low-Level Expansions per High-Level Call

Empty Random City Empty Random City

CBSm

(LC)

CBSm(EBC) CBSm

(LC)

CBSm(EBC) CBSm

(LC)

CBSm(EBC) CBSm

(LC)

CBSm(EBC) CBSm

(LC)

CBSm(EBC) CBSm

(LC)

CBSm(EBC)

GBFS PS MC GBFS PS MC GBFS PS MC GBFS PS MC GBFS PS MC GBFS PS MC

5 0 0 0 0 0 1 0 0 0 0 0 0 21 21 21 22 27 26 37 26 198 179 188 186
10 0 1 1 0 2 9 6 1 0 0 0 0 23 23 23 23 30 26 37 29 207 187 193 191
20 3 4 4 2 5 20 14 3 2 1 1 0 29 24 31 27 34 28 38 36 268 187 202 200
50 38 30 25 8 38 126 135 15 7 22 17 3 40 26 40 34 49 35 50 64 348 200 235 241
100 153 134 12K 27 269 22K 34K 45 27 61 47 9 68 28 47 46 89 45 163 152 452 216 278 313
150 437 441 24K 53 3K 52K 80K 86 87 140 96 18 82 31 64 61 141 73 140 372 543 208 286 349
Table 2: Average number of high-level expansions (left) and low-level expansions per high-level call (right), on Empty, Random, and City.

Algorithm

High level Low level

Priority Type Priority

CBSs(LC) SOC LC 𝑓

CBSm(LC) MKS LC 𝑓

CBSm(EBC,GBFS) MKS EBC ℎ

CBSm(EBC,PS) MKS EBC ℎ/(𝐵 − 𝑔)
CBSm(EBC,MC) MKS EBC #conflicts

CBSms(LC) MKS,SOC LC 𝑓

CBSrm(LC) RMKS LC 𝑓

Table 3: CBS’s high and low levels.

number of conflicts along the search tree. We denote this variant
by CBSm(EBC,MC).

We note that the idea of favoring nodes with minimal MC was
used before, but in other contexts. These include: the SIPPS algo-
rithm [15] in lifelong MAPF, where new tasks arrive over time; the
bCOA* algorithm [21] in bounded-suboptimal MAPF, where the
demand for optimality is relaxed; and the CBS-M algorithm [19] in
the problem of moving agents in formation. All these algorithms
also prioritize nodes according to the minimum number of conflicts,
but they do it to solve different problems from the plain MAPF that
we focus on in this paper.

Table 3 summarizes our new understandings on CBS. CBS is,
in fact, a general framework which any instantiation of it needs
to specify the prioritization function in the high-level as well as
the problem the low level solves (the type column), and finally the
exact algorithm used for the low level (the priority column). All
the algorithms mentioned in this paper are listed in the table. The
variants in the two last rows are described later in the paper. In our
experiments below, all CBS-based algorithms had the additional
high-level tie-breaking strategy of minimal conflicts.

5 EMPIRICAL EVALUATION

In this section, we empirically compare the various MKS solvers.
We experimented on eight grid maps (also used by Li et al. [17]),
from the MovingAI repository [36]: empty-32-32 (denoted Empty),
random-32-32-20 (Random), room-64-64-8 (Room), maze-128-128-

1 (Maze), warehouse-10-20-10-2-1 (Warehouse), den520d (Game1),
brc202d (Game2), and Paris_1_256 (City). For each map and for each
𝑘 agents, we experimented on the 25 problem instances that exist
in the repository, where a problem instance was created using the

first 𝑘 lines in each scenario file. Our machine was Intel® Core I7-
1065G7 with 16GB of RAM. Our implementation is available at
https://github.com/maliahamir/CBS-Makespan-Versions.

We start by comparing our four CBS-based algorithmsCBSm(LC),
CBSm(EBC,GBFS), CBSm(EBC,PS), and CBSm(EBC,MC). Table 2
shows the average number of high-level expansions (left) and low-
level expansions per high-level call (right) on three representative
maps Empty, Random, and City, and up to 150 agents. As expected,
in most cases, CBSm(EBC,GBFS) and CBSm(EBC,PS) expanded the
lowest number of low-level nodes (their low-level search was the
fastest). This is because both aim to quickly find a solution without
minimizing either the path’s cost or the number of conflicts. How-
ever, as a result, the paths are longer and, thus, conflict more with
other agents, and both algorithms expanded more high-level nodes.
CBSm(EBC,MC) solved problem instances with many agents while
only expanding several dozen high-level nodes. This is because MC
finds a path that has the lowest number of conflicts which prevents
future CT nodes. Overall, while CBSm(EBC,MC), to a small extent,
expanded more nodes on each of its low level executions, it ex-
panded significantly less high-level nodes which, as we show next,
resulted in a superb performance.

Next, we include in our experimental evaluation existing MAPF
algorithms. Many existing MAPF algorithms specifically designed
for minimizing MKS are compilation-based. They optimally solve
MAPF by compiling it into a known NP-hard problem that has
mature and effective off-the-shelf solvers. This includes compiling
MAPF into SAT [38, 40]; Integer-Linear Program (ILP) [45]; Answer
Set Programming (ASP) [6, 26]; and CSP [29]. For our experiments,
we used a reduction to SAT implemented in Picat [48], which is
commonly used in MAPF [4].3 We denote it by SAT. In addition,
LaCAM* [27] is a recent anytime solver, which extends the subop-
timal algorithm LaCAM [28] and converges to the optimal MKS
solution. Both LaCAM and LaCAM* search in a configuration space
where each node represents vertices for the entire set of agents and,
therefore, the start node contains 𝑆 and the goal node contains 𝐺 .

We experimented with the following six algorithms CBSm(LC),
CBSm(EBC,GBFS), CBSm(EBC,PS), CBSm(EBC,MC), SAT, and La-
CAM* on all eight grid maps. Figure 2 shows the success rate, for
timeout of 60s, and average planning runtime (in secs). The run-
time for unsolved instances was set to 60s. Clearly, CBSm(EBC,MC)
significantly outperforms SAT as well as any other CBS variant and,
3We note that other compilation-based approaches, e.g., by Surynek et al. [42], consider
a slightly different MAPF variant where agents cannot move to a currently occupied
vertex, even if the former agent moves away in another direction.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1423

https://github.com/maliahamir/CBS-Makespan-Versions

Empty (1,024) Random (819) Room (3,232) Maze (8,191)

Warehouse (5,699) Game1 (28,178) Game2 (43,151) City (47,240)

S
u
cc

es
s

ra
te 100%

75%

50%

25%

0%

S
u
cc

es
s

ra
te 100%

75%

50%

25%

0%

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
#Agents #Agents #Agents

0 100 200 300 400 0 100 200 300 400 0 40 80 120 160
#Agents #Agents #Agents

0 100 200 300 400 500

0 150 300 450

#Agents

#Agents

#Agents #Agents #Agents#Agents
0 100 200 300 400 500 0 100 200 300 400 0 100 200 300 400 0 40 80 120 160

R
u
n

ti
m

e 60

45

30

15

0

#Agents #Agents #Agents#Agents
0 150 300 450 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

R
u
n
ti

m
e 60

45

30

15

0

Figure 2: Results for CBSm(LC), CBSm(EBC,GBFS), CBSm(EBC,PS), CBSm(EBC,MC), SAT, LaCAM*.

𝑘 Em Rn Rm Mz Wh G1 G2 Ct

5 34 38 96 978 155 283 769 291
10 41 40 104 980 160 309 857 330
20 45 43 114 - 172 342 923 368
50 49 47 125 - 177 361 967 437
100 51 49 133 - 187 375 1,014 474
150 52 52 135 - 189 385 1,024 488
200 53 53 137 - 193 389 1,031 494
250 53 54 - - 198 394 1,034 494
300 53 54 - - 199 395 1,036 497
350 54 54 - - 199 398 1,050 501
400 54 - - - - 399 1,054 503
450 54 - - - - 402 1,055 507
500 55 - - - - 403 1,057 508
600 - - - - - 405 1,060 514
700 - - - - - - 1,061 517
800 - - - - - 407 1,069 518
900 - - - - - - 1,074 518
1,000 - - - - - - 1,080 521

Table 4: Average cost (MKS) on eight benchmark maps.

in particular, it outperforms the common CBSm(LC). For example,
in Random, while CBSm(EBC,MC) solved all 25 problem instances
with 300 agents, all other algorithms did not solve any problem in-
stance with 250 agents. We note that LaCAM* was also best in many
cases. CBSm(EBC,MC) performed best in Empty, Random, Room,
and Warehouse, and LaCAM* performed best in Maze, Game1,

Game2, and City but was much worse than CBSm(EBC,MC) in the
other maps. A general trend is that CBSm(EBC,MC) outperformed
LaCAM* in dense maps with fewer empty cells while LaCAM* out-
performed CBSm(EBC,MC) in sparse maps (the number of empty
cells in each map is presented in parentheses in the figure). Thus,
LaCAM* excels in some domains but is relatively poor in others.
CBSm(EBC,MC) is thus more robust across all domains tested.

Table 4 presents the average MKS for the experiment. Here, we
only present averages for cases where all 25 problem instances were
solved by the tested algorithms. This shows that CBSm(EBC,MC) al-
lows solving many problem instances with hundreds agents across
the different maps. For example, in Empty, CBSm(EBC,MC) solved
96% of the problem instances with 500 agents, which is the maxi-
mum number of agents possible for this map; many of which were
optimally solved for the first time (!) forMKS due toCBSm(EBC,MC).

6 BEYOND MKS AS A PRIMARY OBJECTIVE

When optimizing MKS, the cost is determined only based on the
highest-cost path. Consequently, all other paths may have a high
cost for no particular reason. While the main aim of this paper is
to find the optimal MKS solution, it may be desired to have other
additional objectives. In this section, we discuss two such cases.

6.1 SOC as a Secondary Objective

Often, one may prefer a solution that minimizes the SOC as a sec-
ondary objective, among all optimal MKS solutions. Such objective,
denoted MS, was considered, for example, by Liu et al. [22] for the
Multi-Agent Pickup-and-Delivery problem, where each agent has to

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1424

𝑘 CBSm(LC)

CBSm(EBC)

CBSms(LC)

GBFS PS MC

5 118 119 118 121 118

10 228 229 229 241 226

20 460 467 465 508 449

50 1,193 1,251 1,230 1,445 1,136

Table 5: Average SOC on Random.

visit two ordered locations (pickup location and delivery location),
and by Lam et al. [14] for the Multi-Agent Collective Construction

problem, where multiple agents are required to construct a given
three-dimensional structure by repositioning blocks.

All CBS algorithms in this paper that prioritize high-level nodes
with lower MKS return the optimal MKS solution. However, as
CBSm(LC) uses a low level that plans the lowest-cost paths for the
agents, its plan has a relatively low SOC. Yet, it does not guarantee
the minimal SOC (as a second objective). Therefore, we also propose
a simple CBS-based algorithm, called CBSms(LC), which returns
the minimal SOC solution among all minimal MKS solutions. To
do so, CBSms(LC) prioritizes high-level nodes with low MKS and
breaks ties by prioritizing low SOC. Notably, CBSms(LC) must use
LC as a low level, and not EBC, to obtain the new objective. This is
because, while returning a bounded-cost path may minimize the
first objective, MKS, it may not minimize the second objective, SOC.

Table 5 shows the average SOC of the returned plan byCBSm(LC),
CBSm(EBC,GBFS), CBSm(EBC,PS), CBSm(EBC,MC), and CBSms(LC)
on Random. Interestingly, often, the optimal solution for this ob-
jective (which was found by CBSms(LC) in Table 5) has the same
SOC as the optimal SOC solution (Table 1), and the averages in our
experiments were identical. CBSm(LC) finds solutions with close
to optimal SOC. On the other hand, CBSm(EBC,MC) exploits the
leeway between lowest-cost paths and bounded-cost paths, and
finds solutions with higher SOC. As CBSms(LC) could not benefit
from using EBC (as opposed to CBSm(EBC,MC)), it did not solve
many problem instances with more than 50 agents (100 and more).
Therefore, it requires further research to improve CBSms(LC).

6.2 Recursive MKS

While, in MKS, the highest-cost path is minimized, in cases where
time is crucial, one may prefer to also recursively minimize the next
highest-cost path. That is, for two solutions Π1 and Π2, we prefer
the one with the lower MKS. If their MKS is equal, the highest-cost
path is excluded from each solution, and their MKS is compared
again. This process recursively continues until a preferable solution
is chosen. If the costs of all of their paths are equal, then there is
no preferable solution among them. We call this objective function
RecursiveMKS (or RMKS in short). For example, consider an instance
with three agents with solutions Π1 with costs 6,4,3 and Π2 with
costs 6,5,1. When MKS is solely minimized, we treat both plans
equally, as 𝐶𝑀𝐾𝑆 (Π1) = 𝐶𝑀𝐾𝑆 (Π2) = 6. If we consider SOC as
a secondary objective (MS), as defined in Section 6.1, then Π2 is
preferred, as 𝐶𝑆𝑂𝐶 (Π1) = 13 and 𝐶𝑆𝑂𝐶 (Π2) = 12. However, if
MKS is minimized recursively, then Π1 is preferred, as two agents
already reach their goals at timestep 4 in Π1 while they reach their
goals only at timestep 5 in Π2. Similar to CBSms(LC) (Section 6.1),

-1.5

-1.0

-0.5

0.0

0.5

1.0

A
g
en

t
1

A
g
en

t
3
0

Figure 3: Minimizing SOC, MS, RMKS.

a CBS-based algorithm for RMKS (denoted CBSrm(LC)) uses LC
as its low level. CBSrm(LC) must use such a low level because the
RMKS objective function is influenced by the paths of all agents
and, if one of the paths is not of lowest cost, the solution may be
suboptimal. The difference between CBSms(LC) and CBSrm(LC) is
that CBSrm(LC) prioritizes high-level nodes according to RMKS.

To evaluate the different cost functions, we compared three CBS
variants: minimizing SOC (with CBSs(LC)), MS (CBSms(LC)), and
RMKS (CBSrm(LC)) on Random with 30 agents. We ordered the
costs in each solution from the highest-cost path (denoted Agent

1) to the lowest-cost path (Agent 30) and calculated the average
for each path’s cost. Figure 3 shows the results where the 𝑥-axis
is the different agents and the 𝑦-axis is the cost of the given agent.
Costs are provided with their constant deviations (plus or minus)
from RMKS (normalized to 𝑦 = 0). Both RMKS and MS have the
same cost at Agent 1 as both minimize MKS. However, for the
following agents, RMKS achieves lower costs. As expected, SOC
has the smallest area under the curve.

7 CONCLUSION AND FUTUREWORK

We showed that Conflict-Based Search (CBS) [31] is more general
than originally defined and can be seen as a framework where both
its high and low levels can be adjusted for a selected objective. We
demonstrate this idea for Makespan (MKS) and propose an Extended
Bounded-Cost Search (EBC) for its low level. Our experiments show
that prioritizing nodes in EBC by the minimal number of conflicts
(CBSm(EBC,MC)) significantly outperforms all other CBS-based
algorithms for MKS. Many instances were first solved only due to
CBSm(EBC,MC). The only competitor is the recently introduced
LaCAM* where, in some cases, CBSm(EBC,MC) outperforms La-
CAM* and, in others, LaCAM* outperforms CBSm(EBC,MC). We
also presented two extensions for MKS and CBS variants for them.

Future work will: (1) adjust other MAPF algorithms for MKS, e.g.,
BCP [13] and ICTS [32]; (2) create CBS’s admissible heuristics [7,
16] for MKS; (3) adapt CBS for other objective functions, e.g., the
total traveled distance (fuel) [8, 36]; (4) examine CBSm(EBC,MC) in
lifelong/online scenarios [20, 23, 25, 43, 44], where new tasks/agents
arrive over time; (5) extend this study to consider agent delays [1–
3, 24, 30]; (6) provide more comparison with LaCAM* to further
determine the pros and cons of each.

ACKNOWLEDGEMENTS

The research was supported by the Binational Science Foundation
(BSF) under grant #2021643, by the Israel Science Foundation (ISF)
under grant #909/23, and by Israel’s Ministry of Innovation, Science
and Technology (MOST) under grant #6908.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1425

REFERENCES

[1] Dor Atzmon, Sara Bernardini, Fabio Fagnani, and David Fairbairn. 2023. Exploit-
ing Geometric Constraints in Multi-Agent Pathfinding. In ICAPS. 17–25.

[2] Dor Atzmon, Roni Stern, Ariel Felner, Nathan R. Sturtevant, and Sven Koenig.
2020. Probabilistic Robust Multi-Agent Path Finding. In ICAPS. 29–37.

[3] Dor Atzmon, Roni Stern, Ariel Felner, Glenn Wagner, Roman Barták, and Neng-
Fa Zhou. 2020. Robust multi-agent path finding and executing. JAIR 67 (2020),
549–579.

[4] Roman Barták and Jirí Svancara. 2019. On SAT-Based Approaches forMulti-Agent
Path Finding with the Sum-of-Costs Objective. In SoCS. 10–17.

[5] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin, Oded Betza-
lel, and Solomon Eyal Shimony. 2015. ICBS: Improved Conflict-Based Search
Algorithm for Multi-Agent Pathfinding. In IJCAI. 740–746.

[6] Esra Erdem, Doga G. Kisa, Umut Oztok, and Peter Schueller. 2013. A general
formal framework for pathfinding problems with multiple agents. In AAAI. 290–
296.

[7] Ariel Felner, Jiaoyang Li, Eli Boyarski, Hang Ma, Liron Cohen, T. K. Satish Kumar,
and Sven Koenig. 2018. Adding Heuristics to Conflict-Based Search for Multi-
Agent Path Finding. In ICAPS.

[8] Gilad Fine, Dor Atzmon, and Noa Agmon. 2023. Anonymous Multi-Agent Path
Finding with Individual Deadlines. In AAMAS. 869–877.

[9] Graeme Gange, Daniel Harabor, and Peter J. Stuckey. 2019. Lazy CBS: implicit
Conflict-based Search using Lazy Clause Generation. In ICAPS. 155–162.

[10] Daniel Gilon, Ariel Felner, and Roni Stern. 2017. Dynamic Potential Search on
Weighted Graphs. In SoCS. 119–123.

[11] Ofir Gordon, Yuval Filmus, and Oren Salzman. 2021. Revisiting the Complexity
Analysis of Conflict-Based Search: New Computational Techniques and Improved
Bounds. In SoCS. 64–72.

[12] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968. A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems

Science and Cybernetics 4(2) (1968), 100–107.
[13] Edward Lam, Pierre Le Bodic, Daniel Harabor, and Peter J. Stuckey. 2022. Branch-

and-cut-and-price for multi-agent path finding. Computers & Operations Research

144 (2022), 105809.
[14] Edward Lam, Peter J. Stuckey, Sven Koenig, and T. K. Satish Kumar. 2020. Exact

Approaches to the Multi-agent Collective Construction Problem. In CP. 743–758.
[15] Jiaoyang Li, Zhe Chen, Daniel Harabor, Peter J. Stuckey, and Sven Koenig. 2022.

MAPF-LNS2: Fast Repairing for Multi-Agent Path Finding via Large Neighbor-
hood Search. In AAAI. 10256–10265.

[16] Jiaoyang Li, Ariel Felner, Eli Boyarski, HangMa, and Sven Koenig. 2019. Improved
Heuristics for Multi-Agent Path Finding with Conflict-Based Search. In IJCAI.
442–449.

[17] Jiaoyang Li, Daniel Harabor, Peter J. Stuckey, Hang Ma, Graeme Gange, and Sven
Koenig. 2021. Pairwise symmetry reasoning for multi-agent path finding search.
AIJ 301 (2021), 103574.

[18] Jiaoyang Li, Daniel Harabor, Peter J. Stuckey, Hang Ma, and Sven Koenig. 2019.
Disjoint Splitting for Multi-Agent Path Finding with Conflict-Based Search. In
ICAPS. 279–283.

[19] Jiaoyang Li, Kexuan Sun, Hang Ma, Ariel Felner, T. K. Satish Kumar, and Sven
Koenig. 2020. Moving Agents in Formation in Congested Environments. In
AAMAS. 726–734.

[20] Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W. Durham, T. K. Satish Ku-
mar, and Sven Koenig. 2020. Lifelong Multi-Agent Path Finding in Large-Scale
Warehouses. In AAAI. 11272–11281.

[21] Jae Kyu Lim and Panagiotis Tsiotras. 2022. CBS-Budget (CBSB): A Complete and
Bounded Suboptimal Search for Multi-Agent Path Finding. ArXiv (2022).

[22] Minghua Liu, Hang Ma, Jiaoyang Li, and Sven Koenig. 2019. Task and Path
Planning for Multi-Agent Pickup and Delivery. In AAMAS. 1152–1160.

[23] Hang Ma. 2021. A Competitive Analysis of Online Multi-Agent Path Finding. In
ICAPS. 234–242.

[24] Hang Ma, T. K. Satish Kumar, and Sven Koenig. 2017. Multi-Agent Path Finding
with Delay Probabilities. In AAAI. 3605–3612.

[25] Jonathan Morag, Ariel Felner, Roni Stern, Dor Atzmon, and Eli Boyarski. 2022.
Online Multi-Agent Path Finding: New Results. In SoCS. 229–233.

[26] Van Nguyen, Philipp Obermeier, Tran Cao Son, Torsten Schaub, and William
Yeoh. 2017. Generalized Target Assignment and Path Finding Using Answer Set
Programming. In IJCAI. 1216–1223.

[27] Keisuke Okumura. 2023. Improving LaCAM for scalable eventually optimal
multi-agent pathfinding. In IJCAI. 243–251.

[28] Keisuke Okumura. 2023. LaCAM: search-based algorithm for quick multi-agent
pathfinding. In AAAI. 11655–11662.

[29] Malcolm Ryan. 2010. Constraint-based multi-robot path planning. In ICRA.
922–928.

[30] Tomer Shahar, Shashank Shekhar, Dor Atzmon, Abdallah Saffidine, Brendan Juba,
and Roni Stern. 2021. Safe Multi-Agent Pathfinding with Time Uncertainty. JAIR
70 (2021), 923–954.

[31] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. 2015. Conflict-
based search for optimal multi-agent pathfinding. AIJ 219 (2015), 40–66.

[32] Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. 2013. The increasing
cost tree search for optimal multi-agent pathfinding. AIJ 195 (2013), 470–495.

[33] Bojie Shen, Zhe Che, Jiaoyang Li, Muhammad Aamir Cheema, Daniel Damir
Harabor, and Peter J. Stuckey. 2023. Beyond Pairwise Reasoning in Multi-Agent
Path Finding. In ICAPS. 384–392.

[34] David Silver. 2005. Cooperative Pathfinding. In AIIDE. 117–122.
[35] Roni Stern, Rami Puzis, and Ariel Felner. 2011. Potential Search: A Bounded-Cost

Search Algorithm. In ICAPS. 234–241.
[36] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T.

Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Roman
Barták, and Eli Boyarski. 2019. Multi-Agent Pathfinding: Definitions, Variants,
and Benchmarks. In SoCS. 151–159.

[37] Pavel Surynek. 2010. An Optimization Variant of Multi-Robot Path Planning Is
Intractable. In AAAI. 1261–1263.

[38] Pavel Surynek. 2012. Towards optimal cooperative path planning in hard setups
through satisfiability solving. In PRICAI. 564–576.

[39] Pavel Surynek. 2017. Time-expanded graph-based propositional encodings for
makespan-optimal solving of cooperative path finding problems. Ann. Math.

Artif. Intell. 81, 3-4 (2017), 329–375.
[40] P. Surynek, A. Felner, R. Stern, and E. Boyarski. 2016. Efficient SAT Approach to

Multi-Agent Path Finding Under the Sum of Costs Objective. In ECAI. 810––818.
[41] Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski. 2016. An Empirical

Comparison of the Hardness of Multi-Agent Path Finding under the Makespan
and the Sum of Costs Objectives. In SoCS. 145–146.

[42] Pavel Surynek, Roni Stern, Eli Boyarski, and Ariel Felner. 2022. Migrating Tech-
niques from Search-based Multi-Agent Path Finding Solvers to SAT-based Ap-
proach. JAIR 73 (2022), 553–618.

[43] Jiří Švancara, Marek Vlk, Roni Stern, Dor Atzmon, and Roman Barták. 2019.
Online multi-agent pathfinding. In AAAI. 7732–7739.

[44] Qian Wan, Chonglin Gu, Sankui Sun, Mengxia Chen, Hejiao Huang, and Xiaohua
Jia. 2018. Lifelong Multi-Agent Path Finding in A Dynamic Environment. In
ICARCV. 875–882.

[45] Jingjin Yu and Steven M. LaValle. 2013. Planning optimal paths for multiple
robots on graphs. In ICRA. 3612–3617.

[46] Jingjin Yu and Steven M. LaValle. 2013. Structure and Intractability of Optimal
Multi-Robot Path Planning on Graphs. In AAAI. 1444–149.

[47] Han Zhang, Jiaoyang Li, Pavel Surynek, Sven Koenig, and T. K. Satish Kumar.
2020. Multi-Agent Path Finding with Mutex Propagation. In ICAPS. 323–332.

[48] Neng-Fa Zhou, Håkan Kjellerstrand, and Jonathan Fruhman. 2015. Constraint
solving and planning with Picat. Springer.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1426

	Abstract
	1 Introduction
	2 Background and Problem Definition
	2.1 Conflict-Based Search (CBS)
	2.2 CBS's Improvements

	3 Bounded-Cost Search and Extensions
	3.1 Bounded-Cost Search Algorithms
	3.2 Extended BCS - When BCS Fails

	4 Generalizing CBS for Other Objectives
	4.1 Comparing Improvements for SOC and MKS
	4.2 The Optimality of CBS
	4.3 Adjusting CBS for MKS
	4.4 Prioritizing Focal

	5 Empirical Evaluation
	6 Beyond MKS as a Primary Objective
	6.1 SOC as a Secondary Objective
	6.2 Recursive MKS

	7 Conclusion and Future Work
	References

