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ABSTRACT
There has been substantial progress on finding game-theoretic equi-
libria. Most of that work has focused on games with finite, discrete
action spaces. However, many games involving space, time, money,
and other fine-grained quantities have continuous action spaces
(or are best modeled as having such). We study the problem of find-
ing an approximate Nash equilibrium of games with continuous
action sets. The standard measure of closeness to Nash equilibrium
is exploitability, which measures how much players can benefit
from unilaterally changing their strategy. We propose two new
methods that minimize an approximation of exploitability with
respect to the strategy profile. The first method uses a learned best-
response function, which takes the current strategy profile as input
and outputs candidate best responses for each player. The strat-
egy profile and best-response functions are trained simultaneously,
with the former trying to minimize exploitability while the latter
tries to maximize it. The second method maintains an ensemble
of candidate best responses for each player. In each iteration, the
best-performing elements of each ensemble are used to update the
current strategy profile. The strategy profile and ensembles are
simultaneously trained to minimize and maximize the approximate
exploitability, respectively. We evaluate our methods on various
continuous games and GAN training, showing that they outperform
prior methods.
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1 INTRODUCTION
Most work concerning equilibrium computation has focused on
games with finite, discrete action spaces. However, many games
involving space, time, money, etc. have continuous action spaces.
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Examples include continuous resource allocation games [25], se-
curity games in continuous spaces [46–48], network games [28],
military simulations and wargames [64], and video games [5, 85].
Moreover, even if the action space is discrete, it can be fine-grained
enough to treat as continuous for the purpose of computational
efficiency [7, 11, 26]. Although continuous action spaces can be
discretized1, this entails a loss in solution quality. Discretization
is especially problematic in high-dimensional spaces. For example,
in GANs [32], the strategy space is a probability distribution over
images generated by a neural network.

As the goal, we use the standard solution concept of a Nash equi-
librium (NE), that is, a strategy profile for which each strategy is a
best response to the other players’ strategies. The main measure of
closeness to NE is exploitability, which measures how much players
can benefit from unilaterally changing their strategy. Typically,
we seek an NE, that is, a strategy profile for which exploitability
is zero. We can try to search for NE by performing gradient de-
scent on exploitability, since it is non-negative and zero precisely
at NE. However, computing exploitability requires computing best
responses to the current strategy profile, which is itself a nontrivial
problem in many games. We present two new methods that min-
imize an approximation of the exploitability with respect to the
strategy profile. Our experiments on various continuous games
show that our techniques outperform prior approaches.

2 PROBLEM FORMULATION
Weuse the following notation. Hereafter,△X is the set of probability
distributions on a space X, [𝑛] = {0, . . . , 𝑛 − 1} is the set of natural
numbers less than a natural number 𝑛 ∈ N, |X| is the cardinality of
a set X, and S𝑛 is the unit 𝑛-sphere. For any logical formula 𝜙 , ⟦𝜙⟧
is an Iverson bracket, which is 1 if 𝜙 is true and 0 otherwise.

A game is a tuple (I,X, 𝑢) where I is a set of players, X𝑖 is a
strategy set for player 𝑖 , and 𝑢𝑖 :

∏
𝑖 X𝑖 → R is a utility function for

player 𝑖 . A strategy profile 𝑥 ∈ ∏
𝑖 X𝑖 is an assignment of a strategy

to each player. A game is zero-sum if
∑
𝑖∈I 𝑢𝑖 = 0. Given a strategy

profile 𝑥 , Player 𝑖’s regret is 𝑅𝑖 (𝑥) = sup𝑦𝑖 ∈X𝑖
𝑢𝑖 (𝑦𝑖 , 𝑥−𝑖 ) − 𝑢𝑖 (𝑥),

where 𝑥−𝑖 denotes the other players’ strategies. It is the highest
utility Player 𝑖 could gain from unilaterally changing its strategy.
A strategy profile 𝑥 is an 𝜀-equilibrium if sup𝑖∈I 𝑅𝑖 (𝑥) ≤ 𝜀. A
0-equilibrium is called a Nash equilibrium (NE). In an NE, each
player’s strategy is a best response to the other players’ strategies,
that is, 𝑢𝑖 (𝑥) ≥ 𝑢𝑖 (𝑦𝑖 , 𝑥−𝑖 ) for all 𝑖 ∈ I and 𝑦𝑖 ∈ X𝑖 .
1Kroer and Sandholm [54] provide bounds on solution quality for discretization of
continuous action spaces in extensive-form games.
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Table 1: ODE corresponding to each method.

Method ¤𝑥
SG 𝑣

EG 𝑣 |𝑥+𝛾𝑣
OP (𝐼 + 𝛾 d

d𝑡 )𝑣 = 𝑣 + 𝛾 ¤𝑣
CO (𝐼 − 𝛾 𝐽⊤)𝑣 = 𝑣 − 𝛾∇ 1

2 ∥𝑣 ∥
2

SGA (𝐼 − 𝛾 𝐽⊤𝑎 )𝑣
SLA (𝐼 + 𝛾 𝐽 )𝑣
LA (𝐼 + 𝛾 𝐽𝑜 )𝑣
LOLA (𝐼 + 𝛾 𝐽𝑜 )𝑣 − 𝛾 diag 𝐽⊤𝑜 ∇𝑢
LSS (𝐼 + 𝐽⊤ 𝐽 −1)𝑣
PCGD (𝐼 − 𝛾 𝐽𝑜 )−1𝑣
ED −∇𝑥 sup𝑦 𝜙 (𝑥,𝑦) = −∇𝑥Φ(𝑥)
GNI −∇𝑥𝜙 (𝑥, 𝑥 + 𝛾𝑣)

The standard measure of closeness to NE is exploitability, also
known as NashConv [56, 60, 82, 87]. It is defined as Φ =

∑
𝑖∈I 𝑅𝑖 .

(In a two-player zero-sum game, Φ reduces to the so-called duality
gap [33].) It is non-negative everywhere and zero precisely at NE.
Thus finding an NE is equivalent to minimizing exploitability [60].
Let 𝜙 (𝑥,𝑦) = ∑

𝑖∈I (𝑢𝑖 (𝑦𝑖 , 𝑥−𝑖 ) − 𝑢𝑖 (𝑥)) be the Nikaido-Isoda (NI)
function [22, 23, 42, 69]. Since Φ(𝑥) = sup𝑦 𝜙 (𝑥,𝑦), finding an NE is
equivalent to solving the min-max problem inf𝑥 sup𝑦 𝜙 (𝑥,𝑦). Some
prior work has used this function to search for NE [6, 23, 34, 38, 39,
42, 52, 53, 72, 73, 83, 84].

3 RELATED RESEARCH
In this section we review the prior methods for solving continuous
games, which we use as baselines in our experiments. They can be
characterized by the ordinary differential equations (ODEs) shown
in Table 1. Here, 𝑣 = diag∇𝑢 is the simultaneous gradient. Each
component 𝑣𝑖 = ∇𝑖𝑢𝑖 is the gradient of a player’s utility with respect
to their strategy. Additionally, 𝐽 = ∇𝑣 is the Jacobian of the vector
field 𝑣 , 𝐽⊤ is its transpose, 𝐽𝑎 = 1

2 (𝐽 − 𝐽⊤) is its antisymmetric
part, and 𝐽𝑜 is its off-diagonal part (replacing its diagonal with
zeroes). Dots indicate derivatives with respect to time, 𝛾 > 0 is a
hyperparameter, and 𝑣 |𝑦 denotes 𝑣 evaluated at 𝑦 rather than 𝑥 .

The simultnaeous gradient yields a vector field on the space
of strategy profiles. The fact that this vector field may not be
conservative (that is, the gradient of some potential), like it is in
gradient descent, is the main source of difficulties for standard
gradient-based optimization methods, since trajectories can cycle
around fixed points rather than converging to them. The actual
optimization is done by discretizing each ODE in time. For exam-
ple, SG is discretized as 𝑥𝑖+1 = 𝑥𝑖 + 𝜂𝑣𝑖 and OP is discretized as
𝑥𝑖+1 = 𝑥𝑖+𝜂𝑣𝑖+𝛾 (𝑣𝑖−𝑣𝑖−1), where𝜂 > 0 is a stepsize and 𝑣 𝑗 = 𝑣 (𝑥 𝑗 ).

Simultaneous gradients (SG) maximizes each player’s utility inde-
pendently, as if the other players are fixed. Extragradient (EG) [50]
takes a step in the direction of the simultaneous gradient and uses
the simultaneous gradient at that new point to take a step from
the original point. Golowich et al. [31] proved a tight last-iterate
convergence guarantee for EG. Optimistic gradient (OP) [15, 43, 71]
uses past gradients to predict future gradients and update according
to the latter.

Consensus optimization (CO) [66] penalizes the magnitude of the
simultaneous gradient, encouraging “consensus” between players
that attracts them to fixed points. Symplectic gradient adjustment
(SGA) [2] (also known as Crossing-the-Curl [27]) reduces the rota-
tional component of game dynamics by using the antisymmetric
part of the Jacobian. Lookahead (LA) [89] excludes the diagonal
components of the Jacobian. Each player predicts the behaviour of
other players after a step of naive learning, but assumes this step
will occur independently of the current optimisation. In symmet-
ric lookahead (SLA) [59], instead of best-responding to opponents’
learning, each player responds to all players learning, including
themselves. It is a linearized version of EG [19, Lemma 1.35].

In learning with opponent-learning awareness (LOLA) [24], a
learner optimises its utility under one step look-ahead of opponent
learning. Instead of optimizing utility under the current parameters,
it optimises utility after the opponent updates its policy with one
naive learning step.

Mazumdar et al. [65] proposed local symplectic surgery (LSS) to
find local NE in two-player zero-sum games. It solves a linear sys-
tem on each timestep, which is prohibitive for high-dimensional
parameter spaces. Hence, its authors propose a two-timescale ap-
proximation that updates the strategy profile while simultaneously
improving an approximate solution to the linear system.

Competitive gradient descent (CGD) [76] naturally generalizes
gradient descent to the two-player setting. On each iteration, it
jumps to the NE of a quadratically-regularized bilinear local ap-
proximation of the game. Its convergence and stability properties
are robust to strong interactions between the players without adapt-
ing the stepsize. Polymatrix competitive gradient descent (PCGD) [62]
generalizes CGD to more than two players. It jumps to the NE of
a quadratically-regularized local polymatrix approximation of the
game. CGD and PGCD require solving a linear system of equa-
tions on each iteration, which is prohibitive for high-dimensional
parameter spaces [62, p. 10].

Exploitability descent (ED) [60] directly minimizes exploitability,
and converges to approximate equilibria in two-player zero-sum
extensive-form games. However, it requires computing best re-
sponses 𝑦 on each iteration, which is inefficient and/or intractable
in general games. Gradient-based Nikaido-Isoda (GNI) [73] mini-
mizes a local approximation of exploitability that uses local best
responses 𝑦 = 𝑥 + 𝛾𝑣 .

Goktas andGreenwald [30] recast the exploitability-minimization
problem as a min-max optimization problem and obtain polynomial-
time first-order methods for computing variational equilibria in
convex-concave cumulative regret pseudo-games with jointly con-
vex constraints. They present two algorithms called extragradient
descent ascent (EDA) and augmented descent ascent (ADA). We bench-
mark against EDA but not ADA because, unlike the other baselines,
it requires multiple substeps of gradient ascent per timestep to ap-
proximate a best response. (As the authors note, “ADA’s accuracy
depends on the accuracy of the best-response found”.)

Fiez et al. [21] study learning in Stackelberg games, establishing
connections between Nash and Stackelberg equilibria along with
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the limit points of simultaneous gradient descent. They gradient-
based learning dynamics emulating the natural structure of a Stack-
elberg game using the implicit function theorem, and provide con-
vergence analysis for deterministic and stochastic updates for zero-
sum and general-sum games. However, in this paper, we are inter-
ested in finding Nash equilibria, not Stackelberg equilibria.

Wellman et al. [88] survey empirical game-theoretic analysis
(EGTA), which uses simulation to generate data from which one
can induce a game model, called the empirical game. As described
in §3.2.2, the machine learning approach to empirical game mod-
eling is a form of regression where the input is a set of (profile,
payoff-vector) pairs, and the output is the vector of empirical util-
ity functions. These techniques can be used to infer a complete
empirical game model from an incomplete one.

4 PROPOSED METHODS
We are given a utility function𝑢2 and our goal is to find an NE. Since
the exploitability Φ(𝑥) = sup𝑦 𝜙 (𝑥,𝑦) is non-negative everywhere,
and zero exactly at NE, we reformulate the problem of finding an NE
as finding a global minimum of the exploitability function. That is, we
wish to solve the min-max optimization problem inf𝑥 sup𝑦 𝜙 (𝑥,𝑦).
This is equivalent to finding a minimally-exploitable strategy for a
two-player zero-sum meta-game with utility function 𝜙 . To find a
minimum, we could try performing gradient descent on Φ, like ED
does. However, ED requires best-response oracles. In general games,
exact best responses can be difficult or intractable to compute. Thus
we need alternative solutions.

To solve this problem, we can try to perform gradient descent on
𝑥 and ascent on 𝑦 simultaneously: ¤𝑥 = −∇𝑥𝜙 (𝑥,𝑦), ¤𝑦 = ∇𝑦𝜙 (𝑥,𝑦).
Unfortunately, this approach can fail even in simple games. For
example, consider the simple bilinear game with 𝑢 (𝑥,𝑦) = 𝑥𝑦. The
unique Nash equilibrium is at the origin. However, simultaneous
gradient descent fails to converge to it, and instead cycles around it
indefinitely. The essence of this cycling problem is that Player 2 has
to “relearn” a good response to Player 1 every time the Player 1’s
strategy switches sign. This is a general problem for games. “Small”
changes in other players’ strategies can cause “large” (discontinu-
ous) changes in a player’s best response. When such changes occur,
players have to “relearn” how to respond to the other players’ strate-
gies. We propose two methods to tackle this problem. These are
described in the next two subsections, respectively.

4.1 Best-response functions
For this method, we conceptually reformulate the problem as

argmin
𝑥∈X

sup
𝑦∈Y

𝜙 (𝑥,𝑦) = argmin
𝑥∈X

𝜙 (𝑥, 𝑏 (𝑥))

where𝑏 : X → Y is a function that satisfies𝑏 (𝑥) ∈ argmax𝑦∈Y 𝜙 (𝑥,𝑦).
Since 𝑏 is a function, it can map different strategies for Player 1 to
different strategies for Player 2. Thus it can, at least in principle,
immediately adapt to Player 1’s strategy 𝑥 , without forgetting prior
solutions, and thus avoid the cycling problem.

More precisely, suppose Y is compact and 𝜙 : X × Y → R is
continuous in its second argument. Let 𝑥 ∈ X. By the extreme

2For exposition, we assume utility functions are differentiable. If they are not, we can
replace gradients with pseudogradients [3, 18, 67, 68, 75, 78].
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player 2’s
strategy
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player 2
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a BR for
player 3

...

...

Figure 1: Structure of the BRF, in the case of 3 players.

value theorem, a continuous real-valued function on a non-empty
compact set attains its extrema. Therefore, there exists 𝑦 ∈ Y such
that 𝜙 (𝑥,𝑦) = sup𝑦∈Y 𝜙 (𝑥,𝑦). Since this is true for every 𝑥 ∈ X,
there exists a function 𝑏 : X → Y such that, for every 𝑥 ∈ X,
𝜙 (𝑥, 𝑏 (𝑥)) = sup𝑦∈Y 𝜙 (𝑥,𝑦). In other words, 𝑏 is a best-response
function. Even when Y is not compact and 𝜙 does not attain its
extrema, one can define a best-response value for any 𝑥 ∈ X as
sup𝑦∈X 𝜙 (𝑥,𝑦), provided the latter exists. In that case, we have
the following. Let 𝜀 > 0 and 𝑥 ∈ X. Any function gets arbitrarily
close to its supremum (continuity is not required). Therefore, there
exists a 𝑦 ∈ Y such that 𝜙 (𝑥,𝑦) + 𝜀 ≥ sup𝑦∈Y 𝜙 (𝑥,𝑦). Therefore,
there exists a function 𝑏𝜀 : X → Y such that, for every 𝑥 ∈ X,
𝜙 (𝑥, 𝑏𝜀 (𝑥)) + 𝜀 ≥ sup𝑦∈Y 𝜙 (𝑥,𝑦). That is 𝑏𝜀 is an 𝜀-approximate
best-response function.

To find 𝑥 and 𝑏 simultaneously, we can perform simultaneous
gradient ascent: ¤𝑥 = −∇𝑥𝜙 (𝑥, 𝑏 (𝑥)), ¤𝑏 = +∇𝑏𝜙 (𝑥, 𝑏 (𝑥)), where
∇𝑥𝜙 (𝑥, 𝑏 (𝑥)) is a total (not partial) derivative. That is, the best
response function tries to increase the exploitability while the strat-
egy profile tries to decrease it. Since 𝑏 is a function, Player 1’s
changing behavior poses no fundamental hindrance to it learning
good responses and “saving” them for later use if Player 1’s behav-
ior changes. It could even learn a good approximation to the true
best-response function, leaving Player 1 to face a simple standard
optimization problem.

If X is infinite and Y is nontrivial, X → Y has infinite di-
mension. To represent and optimize 𝑏 in practice, we need a finite-
dimensional parameterization of (a subset of) this function space. In
particular, if 𝑏 is parameterized by𝑤 and is (approximately) surjec-
tive ontoY, then Φ(𝑥) = sup𝑦∈Y 𝜙 (𝑥,𝑦) ≈ sup𝑤∈W 𝜙 (𝑥, 𝑏 (𝑤, 𝑥)).
Inspired by this idea, we propose jointly optimizing 𝑥 and 𝑤 ac-
cording to the following ODE system.

¤𝑥 = −∇𝑥𝜙 (𝑥, 𝑏 (𝑤, 𝑥)) ¤𝑤 = +∇𝑤𝜙 (𝑥, 𝑏 (𝑤, 𝑥)) (1)

We call our method approximate exploitability descent with learned
best-response functions (ApproxED-BRF). Its structure is depicted
in Figure 1. As the figure illustrates, it maps a strategy profile to a
profile of best responses for each player to the other players. It is an
all-to-all function. We emphasize that this cross-player propagation
of information occurs only for the purpose of finding approximate
best responses in order to train the strategy parameters, and does not
mean, for example, that players now get to observe each other’s
actions within the real game itself.

The best-response function can take on many possible forms.
One possibility is to use a neural network. Neural networks are
universal function approximators and have a powerful ability to
generalize well across inputs [14, 40, 41, 57, 70]. Neural networks
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are also, by far, the most popular function approximators used in
game solving. Therefore, we use this approach in our experiments.

On the other hand, we also experiment with settings where each
player’s strategy is itself is represented by a neural network. In
this case, the best-response functions take those networks’ param-
eters as input. In other words, we adapt the concept of hypernet-
works [1, 35, 61, 63, 77] to the game-theoretic context. We note
that, to obtain good performance, the learned best response func-
tion does not need to represent the true best response function
(which may be discontinuous) exactly, but only approximately. Our
experimental results indicate that the approximation yielded by the
neural network performs well across a wide class of games.

4.2 Best-response ensembles
For this method, we conceptually reformulate the problem as

argmin
𝑥∈X

sup
𝑦∈Y

𝜙 (𝑥,𝑦) ≈ argmin
𝑥∈X

max
𝑗∈J

𝜙 (𝑥,𝑦 𝑗 )

where J is a finite set of indices, and 𝑥 ∈ X and 𝑦 : J → Y are
trainable parameters. In other words, we use an ensemble of |J |
responses to 𝑥 , where the best response is selected automatically
by evaluating 𝑥 against each 𝑦 𝑗 and taking the one that attains
the best value. Each individual 𝑦 𝑗 is a strategy for the original
game. Since there are multiple responses in the ensemble, each
one can “focus on” tackling a particular “type” of behavior from 𝑥

without having to change drastically when the latter changes. We
can then train 𝑥 and 𝑦 simultaneously: ¤𝑥 = −∇𝑥 max𝑗∈J 𝜙 (𝑥,𝑦 𝑗 ),
¤𝑦 = ∇𝑦 max𝑗∈J 𝜙 (𝑥,𝑦 𝑗 ). That is, 𝑥 improves against the best 𝑦 𝑗 ,
while the best 𝑦 𝑗 improves against 𝑥 . Ties are broken in indexical
lower (lower indices first). This allows for symmetry breaking if the
ensemble elements are initially equal and the game is deterministic.

There is an issue with the aforementioned scheme, however. If
one of the ensemble elements 𝑦 𝑗 strictly dominates the others for
all encountered 𝑥 , then the other elements will never be selected
under the maximum operator. Thus they will never have a chance
to change, improve performance, and thus contribute. In that case,
the scheme degenerates to ordinary simultaneous gradient ascent.
We observed this degeneracy in some games.

To solve this issue, we introduced the following approach. To
give all 𝑦 𝑗 some chance to improve, while incentivizing them
to “focus” on particular types of 𝑥 rather than cover all cases,
we use a rank-based weighting approach. Specifically, we let ¤𝑦 =

∇𝑦 mix𝑗∈J 𝜙 (𝑥,𝑦 𝑗 ) where mix𝑗∈J 𝑎 𝑗 =
1

| J |
∑

𝑗∈J 𝑟 𝑗𝑎 𝑗 and 𝑟 𝑗 ∈
{1, . . . , |J |} is the ordinal rank of element 𝑗 . This makes better
elements receive a higher weight. Thus the best 𝑦 𝑗 has the most
incentive to adapt against the current 𝑥 , while others have less
incentive, but still some nonetheless.3

Our method is defined by the following ODE system.

¤𝑥 = −∇𝑥

∑︁
𝑖∈I

(
max
𝑗∈J

𝑢𝑖 (𝑦𝑖 𝑗 , 𝑥−𝑖 ) − 𝑢𝑖 (𝑥)
)

(2)

¤𝑦 = +∇𝑦

∑︁
𝑖∈I

(
mix
𝑗∈J

𝑢𝑖 (𝑦𝑖 𝑗 , 𝑥−𝑖 ) − 𝑢𝑖 (𝑥)
)

(3)

3Furthermore, since the weight of each ensemble element depends only on the rank or
order of values, it is invariant under monotone transformations of the utility function.
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Figure 2: Structure of the BRE, in the case of 3 players.

Here, 𝑦 = {𝑦𝑖 𝑗 }𝑖∈I, 𝑗∈J is an ensemble of |J | responses for each
individual player 𝑖 ∈ I. We call our method approximate exploitabil-
ity descent with learned best-response ensembles (ApproxED-BRE). Its
structure is depicted in Figure 2.

One can compute the 𝑢𝑖 (𝑦𝑖 𝑗 , 𝑥−𝑖 ) and their gradients in parallel
for 𝑖 ∈ I, 𝑗 ∈ J . Hence, with access to𝑂 ( |I| |J |) cores, the method
can run approximately as fast as standard simultaneous gradient
ascent. The ensemble size can be as big as the amount of memory
and number of cores or workers available allows. If a practitioner
has access to parallel computing infrastructure, they can scale up
the ensemble size as much as possible, until all of the available
parallelism is used up, thus reaping the benefits of more coverage of
the response space while incurring little to no penalty in wall time.
An interesting direction for future research would be to analyze
the effect of the ensemble size.4

5 EXPERIMENTS
In this section, we present our experiments. We use a learning rate
of 𝜂 = 10−3 and 𝛾 = 10−1. For BRF’s best-response function, we use
a fully-connected network with a hidden layer of size 32, the tanh
activation function, and He weight initialization [36]. We do not try
to find the best neural architecture, because this problem comprises
an entire field, may be task-specific, and is not the focus of our
paper. Thus our experiments are conservative, in the sense that our
technique could perform even better compared to the baselines if
engineering effort were spent tuning the neural network. For BRE,
we use ensembles of size 10 for each player. For each experiment,
we ran 64 trials. In our plots, solid lines show the mean across trials,
and bands show its standard error. For games with stochastic utility
functions, we used a batch size of 64. Each trial was run on one
NVIDIA A100 SXM4 40GB GPU. Our code uses Python 3.12.2, jax
0.4.28 [8], flax 0.8.3 [37], optax 0.2.2 [16], and matplotlib 3.8.4 [44].

Some of the benchmarks are based on normal-form or extensive-
form games with finite action sets, and thus finite-dimensional
continuous mixed strategies. While there are algorithms for such
games that might have better performance (such as counterfactual
regret minimization [90] and its fastest new variants [10, 20]), these
do not readily generalize to general continuous-action games. Thus
we are interested in comparing only to those algorithms which,
like ours, do generalize to continuous-action games, namely those
described in §3.

4For clarity, we emphasize that each individual strategy (including each individual
element of an ensemble) can, in general, represent a mixed strategy of the original
game. Thus the support size of the NE (in terms of pure strategies of the original game)
is not necessarily directly related to the ensemble size.
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Figure 3: Saddle-point game distances.

We parameterize mixed strategies on finite action sets (e.g., for
normal-form games, or at a particular information set inside an
extensive-form game) using logits. The action probabilities are
obtained by applying the softmax function, which ensures they are
non-negative and sum to 1. The utilities are the expected utilities
under the resulting mixed strategies. Therefore, our games games
are continuous in the nonlinear and high-dimensional space of
mixed behavioral strategies parameterized by logits, which is the
strategy space we optimize over.

In gameswhere a playermust randomize over a continuous action
set, we use an implicit density model, also called a deep generative
model [74]. It samples noise from some base distribution, such
as a multivariate standard normal distribution, and feeds it to a
neural network, inducing a transformed probability distribution
on the output space. Unlike an explicit parametric distribution on
the output space, it can flexibly model a wide class of distributions.
A generative adversarial network (GAN) [32] is one example of an
implicit density model.

We emphasize that it is not our goal to match or exceed the state
of the art on a particular game. Rather, our goal is to present a
method that can tackle in full generality the problem described in
§2. We now describe each game and our results for it.

Saddle-point game. For illustration, we start with a simple game.
This is a two-player zero-sum game with actions that are real num-
bers and utility function 𝑢1 (𝑥,𝑦) = −𝑢2 (𝑥,𝑦) = 𝑥𝑦. It has a unique
NE at the origin. Results are shown in Figure 3. Our methods con-
verge fastest. Strategy trajectories are shown in Figure 4. Our meth-
ods take a more direct path to the equilibrium.

GAN training. A generative adversarial network (GAN) [32] is a
generative model that consists of two neural networks: a genera-
tor and discriminator. The generator maps latent noise to a data
sample. The discriminator maps a data sample to a probability. The
generator learns to generate fake data, while the discriminator
learns to distinguish it from real data. GAN training is a very high-
dimensional problem with a highly nonlinear utility function, since
the strategies are parameters for the generator and discriminator.

We test the equilibrium-findingmethods on the following datasets.
The ring dataset consists of a mixture of 8 Gaussians with a standard
deviation of 0.1 whose means are equally spaced around a circle of

Figure 4: Saddle-point game trajectories.

Figure 5: GAN on ring dataset.

radius 1. The grid dataset consists of a mixture of 9 Gaussians with
a standard deviation of 0.1 whose means are laid out in a regular
square grid spanning from −1 to +1 in each coordinate. The spiral
dataset consists of a noisy Archimedean spiral, where 𝑡 ∼ U(0, 1),
𝑟 =

√
𝑡 , 𝜃 = 2𝜋𝑟𝑛, 𝑥 = N(𝑟 cos𝜃, 𝜎), and 𝑦 = N(𝑟 sin𝜃, 𝜎). Here, 𝑛

is the number of turns (we use 2) and 𝜎 is the standard deviation of
the noise (we use 0.05). Finally, the cube dataset consists of points
sampled uniformly from the edges of a cube and perturbed with
Gaussian noise of scale 0.05.

In all cases, the generator’s latent noise distribution is a standard
Gaussian matching the dimension of the dataset. The generator
and discriminator have hidden layers of size 32. We evaluate our
method using Wasserstein distance (WD) between the real data
distribution and the generator’s fake data distribution. It is the
minimum transportation cost needed to turn one distribution into
another. We estimate the WD between the real distribution and
generator distribution by taking 1000 samples of each, computing
the Euclidean distance matrix, and solving the resulting linear as-
signment problem.5 Results are shown in Figures 5, 6, 7, and 8. Our
methods outperform the rest. In all cases, SLA diverged to infinity.

5For the linear assignment problem, we use the implementation found in the Python
scientific computing library SciPy [86], which uses a modified Jonker-Volgenant algo-
rithm with no initialization [13].
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Figure 6: GAN on grid dataset.

Figure 7: GAN on spiral dataset.

Figure 8: GAN on cube dataset.

We also test on MNIST [17], a dataset of 70,000 28× 28 grayscale
images of handwritten digits from 0 to 9. The generator and discrim-
inator networks are the same as before, and fully connected, but
with the hidden layer size increased to 256 and the noise dimension
increased to 32. Due to the larger network size, we use a smaller
learning rate of 10−4. Samples are shown in Figure 9.

Figure 9: GAN (MNIST dataset). Left to right, top to bottom:
Ground truth, SG, OP, EG, CO, SGA, GNI, LA, LOLA, EDA,
BRF, BRE. SLA is excluded due to divergence.

Continuous security game. Security games are used to model
defender-adversary interactions in many domains, such as the pro-
tection of infrastructure like airports, ports, and flights [47], as
well as wildlife, fisheries, and forests [49, 80]. Security games are
often modeled with Stackelberg equilibrium as the solution concept,
which coincides with NE in zero-sum security games and certain
structured general-sum games [51]. Many security games have con-
tinuous action spaces. These have been studied by Kamra et al. [46],
Kamra et al. [47], and Kamra et al. [48]. Consider the following game.
LetS = [0, 1]2. The attacker chooses a point 𝑥 ∈ S. Simultaneously,
the defender chooses 𝑛 points 𝑦𝑖 ∈ S. Let 𝑑 = inf𝑖∈[𝑛] ∥𝑥 − 𝑦𝑖 ∥
be the distance between the attacker’s point and the defender’s
closest point. The defender receives a utility of exp(−𝑑2), and the
attacker receives − exp(−𝑑2). Thus the defender seeks to be close
to the attacker, while the opposite is true for the attacker. Results
are shown in Figures 10 and 11. Our methods perform best.

Glicksberg–Gross game. This is a two-player zero-sum normal-
form game with continuous action sets A𝑖 = [0, 1] and utility
function 𝑢1 (𝑥,𝑦) = −𝑢2 (𝑥,𝑦) = (1+𝑥 ) (1+𝑦) (1−𝑥𝑦)

(1+𝑥𝑦)2 . Glicksberg and
Gross [29] analyzed this game and proved that it has a unique
mixed-strategy NE where each player’s strategy has a cumulative
distribution function of 𝐹 (𝑡) = 4

𝜋 arctan
√
𝑡 . To model mixed strate-

gies, we use the following implicit density model. We feed a sample
from a 1-dimensional standard normal distribution into a fully-
connected network with one hidden layer of size 32 and output
layer of size 1. The output is squeezed to the unit interval using
the logistic sigmoid function. Results are shown in figure 12. Our
methods converge the fastest.

Shapley game. This is a two-player normal-form game with 3
actions per player. It was introduced by Shapley [79, p. 26], and is
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Figure 10: Security game with 1 points.

Figure 11: Security game with 2 points.

Figure 12: Glicksberg–Gross game.

a classic example of a game for which fictitious play [4, 9] diverges.
Results are shown in Figure 13. Our methods converge, while the
rest diverge and perform, almost identically to each other.

Poker games. Kuhn poker is a variant of poker introduced by
Kuhn [55]. It is a two-player zero-sum imperfect-information game.
A 3-player variant was introduced by Szafron et al. [81], andwas one

Figure 13: Shapley game.

Figure 14: Kuhn poker with 2 players.

of the largest three-player games to be solved analytically to date.
2-player Kuhn poker has a 12-dimensional strategy space per player
(24 in total). 3-player Kuhn poker has a 32-dimensional strategy
space per player (96 in total). Thus the utility function for these
games is high-dimensional and nonlinear, making them a good
benchmark. We use the poker implementation of OpenSpiel [87].
Results are shown in Figures 14 and 15. Our methods converge
fastest. The rest perform almost identically to each other.

Generalized rock paper scissors. Rock paper scissors (RPS) is a
classic two-player zero-sum normal-form game with 3 actions per
player. It has a unique mixed-strategy NE where each player mixes
uniformly over its actions. Cloud et al. [12, p. 7] generalize RPS
to 𝑛 actions by letting 𝑢1 (𝑎) = −𝑢2 (𝑎) = ⟦𝑎2 − 𝑎1 = 1 mod 𝑛⟧ −
⟦𝑎1 − 𝑎2 = 1 mod 𝑛⟧. Results are shown in Figures 16 and 17. Our
methods converge the fastest.

Generalized matching pennies. Matching pennies (MP) is a classic
two-player zero-sum normal-form game with 2 actions per player.
It can be generalized to 𝑛 players [45, 58] by letting 𝑢𝑖 : [2]𝑛 → R
where 𝑢𝑖 (𝑎) = ⟦𝑎𝑖 = 𝑎𝑖+1 mod 𝑛 ⊕ 𝑖 = 𝑛 − 1⟧ . That is, each player
seeks to match the next, but the last player seeks to unmatch the
first. This game has a unique mixed-strategy NE where each player
mixes uniformly over its actions. Results are shown in Figures 18
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Figure 15: Kuhn poker with 3 players.

Figure 16: Rock paper scissors with 3 actions.

Figure 17: Rock paper scissors with 4 actions.

and 19. In the 2-player game, our methods converge fastest. In the
3-player game, our methods converge, while the rest diverge.

6 CONCLUSION
In this paper, we studied the problem of finding an approximate
NE of continuous games. The main measure of closeness to NE is

Figure 18: Matching pennies with 2 players.

Figure 19: Matching pennies with 3 players.

exploitability, which measures how much players can benefit from
unilaterally changing their strategy. We proposed two newmethods
that minimize an approximation of the exploitability with respect
to the strategy profile. We evaluated these methods in various
continuous games, showing that they outperform prior methods.

Prior equilibrium-finding techniques usually suffer from cycling
or divergent behavior. By considering the equilibrium-finding prob-
lem from first principles, and formulating a novel solution to it, our
paper opens up new possibilities for tackling games where such
problematic behavior appears, reducing the amount of time and
resources needed to obtain good approximate equilibria.

Supplementary material—including additional related research,
theoretical analysis, code, additional tables and figures, and sugges-
tions for future research—can be found in the pre-print version of
this paper at https://arxiv.org/abs/2301.08830.
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