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ABSTRACT
We present 𝐿-retrain, an exploration strategy encouraging a behav-
ioral preference while optimizing policies with monotonic improve-
ment guarantees. To this end, we introduce an iterative procedure
for collecting retrain areas—parts of the state space where an agent
did not satisfy the behavioral preference. Our method switches be-
tween the typical uniform restart state distribution and the retrain
areas using a decaying factor 𝐿, allowing agents to retrain on situa-
tions where they violated the preference. We also employ formal
veri!cation of neural networks to provably quantify the degree to
which agents adhere to these behavioral preferences. Experiments
over hundreds of seeds across locomotion, power network, and
navigation tasks show that our method yields agents that exhibit
signi!cant performance and sample e"ciency improvements.
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1 INTRODUCTION
By balancing the trade-o# between exploration and exploitation, a
reinforcement learning (RL) agent typically relies on a scalar reward
function to learn behaviors capable of solving a task [33]. However,
these functions often lead to unforeseen behaviors, making it dif-
!cult to enforce particular behaviors that we desire the system to
exhibit [2]—a behavioral preference.

For example, consider applying a policy optimization RL method
to a robot learning to reach random targets. Commonly, the agent
gets a positive reward based on its distance from the goal, a penalty
for collisions [35, 38], and we use a uniform restart distribution
throughout the state space to randomly initialize the environment
at each episode. In this setup, learning good navigation behaviors
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Figure 1: Explanatory overview of 𝐿-retrain.

while satisfying a behavioral preference (or desiderata, interchange-
ably) related to safety such as “avoid collisions” requires many
collisions around the same state. However, the uniform restart dis-
tribution naturally makes it harder for agents to experience these
similar collisions over time despite being pivotal for guaranteeing
monotonic policy improvement [14]. This potentially translates
into a higher variance in the local estimate of the objective [31],
making it hard to e#ectively enforce the desired behavior [6, 12].

Previous policy-based approaches investigate the impact of restor-
ing the environment to speci!c states to improve performance
while maintaining theoretical guarantees on monotonic improve-
ment [7, 15, 17]. A leading example is the vine Trust Region Policy
Optimization (TRPO) algorithm [31], designed to enhance explo-
ration and reduce the variance of gradient updates. TRPO vine
restarts the agent in states visited by the current policy to generate
additional rollouts from that state and reduce the policy update
variance. The authors demonstrate how the theoretically justi!ed
procedure retains monotonic policy improvement guarantees. How-
ever, this method and, more generally, designing a poor restart state
distribution has three critical downsides we address in our work.

• To the best of our knowledge, policy optimizationworks have
not considered restarting distribution mechanisms geared
towards improving speci!c behavioral preferences.

• Sub-optimal distributions can cause approximate methods to
get stuck in local optima, potentially resulting in poor agent
performance [14, 15].

• vine signi!cantly hinders sample e"ciency, requiring many
additional rollouts for each policy update.

This paper presents 𝐿-retrain, a novel exploration strategy de-
signed to optimize policies, maintaining monotonic improvement
guarantees while encouraging a behavioral preference. Our method
is inspired by human learning, where consistently repeating tasks
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enhances the learning of a particular behavior. As detailed in Figure
1, we exploit an 𝐿 decay strategy to combine the uniform restart
state distribution over the state space (blue), typical of RL algo-
rithms, with a restart strategy over retrain areas (green). The latter
uses an iterative procedure that collects and re!nes (i.e., creates
and merges) portions of the state space where the agent violates
the behavioral preference at training time. The proposed approach
“retrains" the agent from these areas, improving the advantage es-
timation of actions violating the desired behavior, according to a
probability 𝐿 (purple). A decaying schedule for 𝐿 also allows us to
maintain the asymptotic convergence properties of the underlying
RL algorithm and the design of retraining areas avoids sub-optimal
distributions as demonstrated by our experiments. Our method also
does not require additional rollouts and we prove that using mixed
uniform restart distributions leads, in the worst case, to the same
monotonic improvement guarantees as in Schulman et al. [31].

We! rst show the bene!ts of employing 𝐿-retrain in adhering
to behavioral preferences in an unconstrained setup (where we
penalize the reward upon violating the preference). To this end, we
evaluate 𝐿-retrain on top of policy optimization methods (i.e., TRPO
[31] and Proximal Policy Optimization (PPO) [32]) over hundreds
of seeds and di#erent behavioral preferences related to safety—
velocity limits in locomotion tasks, preventing overloads in power
grids, and collision avoidance in mobile navigation. Following our
interest in safe behaviors, we also combine 𝐿-retrain with the La-
grangian implementations of TRPO and PPO since they have been
recently employed to enforce similar behaviors [10, 30, 34]. These
Lagrangian algorithms are widely used in safe RL literature, and
we use them as additional baselines for a more comprehensive
evaluation. Our experiments consider diversi!ed tasks ranging
from simulated locomotion to optimizing power networks and
robotic navigation, which is a commonly employed task in the RL
literature [3, 19, 35, 38]. The results show that enhancing policy
optimization methods with 𝐿-retrain leads to signi!cantly higher
sample e"ciency and better enforce the desiderata while solving
the tasks. Additionally, we note that system designers typically
evaluate agents empirically and can not provably quantify the de-
gree to which they adhere to the behavioral preferences. Since
our theory refers to the improvement over the main reward objec-
tive, we employ a formal veri!cation (FV) of neural networks tool
to provably quantify the rate at which the agent trained for the
navigation task avoids collisions in the retrain areas.1 Finally, the
realistic environment employed in the navigation task enables the
transfer of policies trained in simulation on ROS-enabled platforms.
Hence, we show the e#ectiveness of 𝐿-retrain in a realistic unsafe
navigation scenario.

2 PRELIMINARIES AND RELATEDWORK
We consider problems de!ned asMarkov decision processes (MDPs),
modeled as a tuple (S,A,P, 𝑀,𝑁, 𝑂); S and A are the! nite sets
of states and actions, respectively, P : S →A → S ↑ [0, 1] is the
state transition probability distribution, 𝑀 : S ↑ [0, 1] is the initial
uniform state distribution, 𝑁 : S→A↑ R is a reward function, and
𝑂 ↓ [0, 1) is the discount factor. In policy optimization algorithms,

1We use navigation as an explanatory task for clarity since it allows us to visualize
retrain areas.

agents learn a parameterized stochastic policy 𝑃 : S →A ↑ [0, 1],
modeling the probability to take an action 𝑄𝑀 ↓ A in a state 𝑅𝑀 ↓ S
at a certain step 𝑆 . The goal is to! nd the parameters that maximize
the expected discounted reward 𝑇 (𝑃) = E𝑁↔𝑂 [

∑↗
𝑀=0 𝑂

𝑀𝑁(𝑅𝑀 ,𝑄𝑀 )],
where 𝑈 := (𝑅0,𝑄0, 𝑅1,𝑄1, . . . ) is a trajectory with 𝑅0 ↔ 𝑀 (𝑅0), 𝑄𝑀 ↔
𝑃 (𝑄𝑀 |𝑅𝑀 ), 𝑅𝑀+1 ↔ P(𝑅𝑀+1 |𝑅𝑀 ,𝑄𝑀 ). We also de!ne state and action value
functions𝑉𝑂 and𝑊𝑂 modeling the expected discount return starting
from the state 𝑅𝑀 (and action 𝑄𝑀 for 𝑊𝑂 ) and following the policy
𝑃 thereafter as: 𝑉𝑂 (𝑅𝑀 ) = E𝑃𝐿 ,𝑄𝐿+1,𝑃𝐿+1,... [

∑↗
𝑅=0 𝑂

𝑅𝑁(𝑅𝑀+𝑅 ,𝑄𝑀+𝑅 )] and
𝑊𝑂 (𝑅𝑀 ,𝑄𝑀 ) = E𝑄𝐿+1,𝑃𝐿+1,... [

∑↗
𝑅=0 𝑂

𝑅𝑁(𝑅𝑀+𝑅 ,𝑄𝑀+𝑅 )]. Given the current
state and action, we can also measure how much better or worse
the agent performs compared to its expected performance—the
advantage function 𝑋𝑂 (𝑅,𝑄 ) = 𝑊𝑂 (𝑅,𝑄 ) ↘𝑉𝑂 (𝑅).

To derive a bound on the policy improvement, Schulman et al.
[31] also de!ne the expected advantage of a new policy 𝑃 ≃ over the
old 𝑃 , and relate the expected discounted return of 𝑃 ≃ to 𝑃 : �̃�(𝑅) =
E𝑃↔𝑂 ≃ ( · |𝑄 ) [𝑋𝑂 (𝑅,𝑄 )], and𝑇 (𝑃 ≃) = 𝑇 (𝑃)+E𝑁↔𝑂 ≃ [∑↗

𝑀=0 𝑂
𝑀𝑋𝑂 (𝑅𝑀 ,𝑄𝑀 )].

In practice, the dependency on trajectories induced by 𝑃 ≃ makes
the above equation hard to optimize. To address this, the authors
introduce a surrogate local approximation 𝑌𝑂 (𝑃 ≃) to𝑇 (𝑃 ≃), using
the state distribution over the current policy 𝑃 rather than 𝑃 ≃:

𝑌𝑂 (𝑃 ≃) = 𝑇 (𝑃) +
∑
𝑄

𝑀𝑂 (𝑅)
∑
𝑃

𝑃 ≃ (𝑄 |𝑅)𝑋𝑂 (𝑅,𝑄 )

= 𝑇 (𝑃) + E𝑁↔𝑂

[ ↗∑
𝑀=0

𝑂𝑀 �̃�(𝑅𝑀 )
]
.

(1)

With the above intuitions, they derive an upper bound on the abso-
lute di#erence between the objectives:

|𝑇 (𝑃 ≃) ↘ 𝑌𝑂 (𝑃 ≃) |⇐
4𝑍2𝑂𝑎
(1 ↘ 𝑂)2 with 𝑎 = max

𝑄,𝑃
|𝑋𝑂 (𝑅,𝑄 ) |,

𝑍 = 𝑏max
𝑆𝑇 (𝑃,𝑃 ≃) = max

𝑄
𝑏𝑆𝑇 (𝑃 (·|𝑅) | | 𝑃 ≃ (·|𝑅)).

(2)

Finally, by employing the relationship between the total varia-
tion (TV) divergence and the Kullback–Leibler (KL) divergence
𝑏𝑈𝑉 (𝑐 | |𝑑)2 ⇐ 𝑏𝑆𝑇 (𝑐 | |𝑑) [28], Schulman et al. [31] prove the fol-
lowing lower bound on the policy improvement:

𝑇 (𝑃 ≃) ⇒ 𝑌𝑂 (𝑃 ≃) ↘𝑒𝑏max
𝑆𝑇 (𝑃,𝑃 ≃), with 𝑒 =

4𝑎𝑂
1 ↘ 𝑂2

. (3)

Exploration in RL. In addition to the vine TRPOmethod discussed
in the previous section, a range of works investigate the idea of
changing the initial state distribution [5, 24, 27]. However, these
works focus on improving exploration towards achieving higher re-
turns rather than enforcing speci!c desired behaviors. For example,
Messikommer et al. [24] uses states from past experiences to guide
the agent toward states with higher payo#s. Similarly, Eco#et et al.
[5] stores and revisits promising states to explore the environment
more e"ciently. In contrast, 𝐿-retrain: (i) focuses on re!ning agent
behavior by repeatedly training on states where it failed to adhere
to speci!c preferences, which makes it more applicable in tasks
where behavior consistency and safety are required; and (ii) pro-
vides a lower bound on the policy improvement for mixed restart
state distributions. For this reason, we believe our method is more
closely related to CMDP-related literature (over which we compare
in Section 6) that is discussed in the following section.
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2.1 Constrained MDP
Constrained RL encourages a behavioral preference, or a safety spec-
i!cation such as the ones we consider in our work [29, 30, 34]. To
this end, the classical MDP extends to a constrained MDP (CMDP)
considering an additional set of C := {𝑒𝑅 }𝑅↓𝑊 indicator cost func-
tions and l ↓ R𝑊 hard-coded thresholds for the constraints [1]. The
goal of constrained RL algorithms is to maximize the expected re-
ward while limiting the accumulation of costs under the thresholds.
To this end, policy optimization algorithms typically employ the
Lagrangian to transform the problem into an unconstrained one
that is easy to implement over existing algorithms [26].

Consider the case of a single constraint characterized by a cost
function 𝑒 : S → A ↑ {0, 1}—de!ne the expected cost function
𝑇𝑋 (𝑃) := E𝑁↔𝑂

[∑↗
𝑀=0 𝑂

𝑀𝑒 (𝑅𝑀 ,𝑄𝑀 )
]
, and a cost threshold 𝑓 . The La-

grangian applies a di#erentiable penalty LC(𝑔) = ↘𝑔 (𝑇𝑋 (𝑃) ↘ 𝑓)
to the policy optimization objective, where 𝑔 is the so-called La-
grangian multiplier. These algorithms thus take an additional gradi-
ent descent step in 𝑔:⇑𝑌LC(𝑔) = 𝑓↘𝑇𝑋 (𝑃). The multiplier is forced
to be ⇒ 0 as it acts as a penalty when the constraint is not satis!ed
(i.e., 𝑔 increases) while decreasing to 0 and removing any penalty
when the constraint holds. However, choosing arbitrarily small
values for the threshold potentially causes a detrimental trade-o#
between the main task and cost objectives, ultimately leading to
policies that fail to solve the problem for which they are trained.
Moreover, the cost metric employed in the safety evaluation is
purely empirical and does not provide any provable guarantees on
the actual adherence to behavioral preferences. To address these
issues, we leverage formal veri!cation of neural networks.

2.2 Formal Veri!cation of Neural Networks
FV is relevant to our work since it allows us to formalize a behav-
ioral preference and provide provable guarantees on the adherence
to these preferences. A reachability-based FV for neural networks
tool takes as input a tuple T = ⇓F ,X,Y⇔, where F is the trained
policy (i.e., the neural network), and ⇓X,Y⇔ encodes a behavioral
preference in terms of input-output relationships [16]. Speci!cally,
X is a precondition de!ned on the portion of the state space we
are interested in, and Y models the postcondition specifying the
desiderata. An FV tool propagates intervals X through F and per-
forms a layer-by-layer reachability analysis to compute the output
reachable setR(X, F ). The tool then checks ifR(X, F ) ↖Y , mean-
ing that the agent satis!es the preference for all the states in X.
Figure 2 shows a simpli!ed overview of the veri!cation process,
which checks if (at least) one violation of the behavioral preference

Figure 2: Overview of FV for neural networks.

exists in X. Due to over-approximation errors introduced by the
propagations, FV tools iteratively split X into sub-domains X𝑅 (the
!rst two blocks in the! gure) [36]. When the output reachable set
R(X𝑅 , F ) is not included in Y (the second to last block), the iter-
ative procedure ends—the behavioral preference is violated if at
least one portion of the domain X falls within this scenario. As
a natural extension of the FV problem, recent works [21, 22, 37]
propose to enumerate all the portions of X violating the desiderata,
thus provably quantifying the rate at which agents satisfy the input-
output relationships. In this work, we rely on the tool proposed by
[21] to quantify the degree to which agents adhere to behavioral
preferences in the explanatory robotic navigation task.

3 POLICY OPTIMIZATION VIA 𝐿-RETRAIN
We introduce 𝐿-retrain to restart an agent from regions of the state
space where it previously violated a behavioral preference. Our
goal is to encourage a policy to exhibit behaviors aligned with the
preference while improving performance and sample e"ciency. To
this end, 𝐿-retrain collects retrain areas—subsets of the state space
S ↖ S de!ned using an iterative procedure that merges parts of
S where the agent violated the preference during training. We
then introduce a mixed restart distribution, combining the typical
uniform restart distribution 𝑀 over the entire state space S, with
another uniform restart distribution 𝑀 : S ↑ [0, 1] that considers
retraining areas. Crucially, such a procedure is simple to implement
and can potentially be applied to any RL algorithm.

Algorithm 1 presents the pseudocode for 𝐿-retrain. We start by
initializing the memory bu#er of the retrain areas S as an empty
set, and we select the starting state 𝑅0 using the initial uniform
state distribution 𝑀 over the entire state space S (line 2). In the
training loop, the iterative procedure for collecting and merging
retrain areas begins upon each unsafe interaction which returns a
positive cost signal to the agent. We use this indicator cost signal as

Algorithm 1 Template for 𝐿-retrain methods
Require: bubble size 𝑍 for initial retrain area, similarity value 𝑎 to merge

similar areas, decay, initial, and minimum values for the 𝐿 scaling.
1: 𝐿_𝑏𝑐𝑑𝑃𝑒 ↙ (𝑓𝑅𝑊_𝐿 ↘ 1.0)/(𝑏𝑐𝑑𝑃𝑒 · (𝑐𝑔𝑑𝑖𝑄 · 𝑄𝑀𝑐𝑔𝑄_𝑔𝑐𝑗_𝑐𝑔𝑑𝑖) )
2: S ↙ ∝; 𝑄0 ↙ 𝑘 (S) 𝐿 Initialize areas bu#er and environment
3: for each episode do
4: while episode is not done do
5: Execute the training loop of the RL algorithm for each step 𝑀 .
6: if 𝑄𝐿 is unsafe (i.e., cost > 0) then
7: 𝑗 ↙ generate_retrain_area(𝑄𝐿↘1,𝑍 )
8: if ′ 𝑗 ≃ ↓ S that is 𝑎-similar to 𝑗 then
9: 𝑗 ↙ area_refinement(𝑗 ,𝑗 ≃ )
10: end if
11: S ↙ S ∞ 𝑗
12: end if
13: end while
14: if 𝑗𝑃𝑊𝑏𝑓 (0, 1) < 𝐿 ∈ S ω ∝ then
15: 𝑄0 ↙ 𝑘 (sample_retrain_area(S) )
16: 𝐿 ↙ max(𝐿_𝑏𝑐𝑑𝑃𝑒 · (𝑐𝑔𝑑𝑖)∋𝑄𝑀𝑐𝑔𝑄_𝑔𝑐𝑗_𝑐𝑔𝑑𝑖+1.0, 𝑓𝑅𝑊_𝐿 )
17: else
18: 𝑄0 ↙ 𝑘 (S)
19: end if
20: end for
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Figure 3: (left) The agent collides with an obstacle, receiving a
positive cost. (right) A retrain area is created from that state.

in the safe RL literature to detect the interactions where the agent
violates the desiderata [8]. Speci!cally, we generate a retrain area
calling the generate_retrain_area method, which requires the
previous state 𝑅𝑀↘1 and generate an-bubble (line 3-7) [23]. Broadly
speaking, such an area is a portion of the space surrounding the
state that led to a violation, created by encoding each feature of
the agent’s state as an interval with! xed size  (i.e., a “bubble”
around the state). Figure 3 shows an explanatory example of an
area for navigation, where collision avoidance is our desiderata. In
this example, by leveraging commonly available information (e.g.,
the sensors’ precision), we encode a bubble of size  around the
state that led to the collision. The idea is that retraining an agent
from these similar collision-prone situations improve performance.

This bubble thus becomes a retrain area 𝑖 , and our approach
automatically checks for the existence of another similar retrain
area 𝑖 ≃ to merge with, using the similarity threshold 𝑗 provided as
a parameter. If such an 𝑖 ≃ exists, the area_refinement method is
called (line 9). If no similar retrain area is found, 𝑖 is stored in the
bu#er S that is initially empty (line 11). The re!nement o#ers two
advantages: (i) it allows us to maintain a reasonable size for S, and
(ii) it clusters similar behavioral violations within the same retrain
area, guaranteeing a uniform sampling over di#erent violations.
The new or re!ned area is then inserted into S and can be used
to retrain the agent. We refer to the next section for a complete
overview of the generation and re!nement methods. If there is at
least one retrain area in S, the new initial state of the environment
is either randomly sampled from the entire state space S with
probability 1 ↘ 𝐿, or randomly sampled from a retrain area with
probability 𝐿 (lines 14-15). 𝐿-retrain employs a linear decay for the
mixed restarting distribution, avoiding the problem of getting stuck
in suboptimal restart distributions (lines 16-20). If the sample is from
a retrain area, the environment resets to a con!guration (similar
to) where the agent previously violated the behavioral preference.

3.1 Generation and Re!nement Processes
This section introduces the generation and re!nement methods
through a practical example. We! rst show the retrain area gen-
eration in the robotic navigation context and then the re!nement
process in the HalfCheetah locomotion task.

3.1.1 Retrain Area Generation. Suppose an agent in a navigation
scenario receives a positive cost signal from the environment. This
indicates a collision with an obstacle, as depicted in Figure 4(a).

(a) (b) (c)

Figure 4: Retrain area generation. (a) Collision with an ob-
stacle. (b) A previous unsafe state led to the collision. (c)
-bubble size to initialize the retrain area. Note that the -
bubble is the same for all the input features and is depicted
in di"erent sizes just for clarity representation purposes.

The generation procedure selects the previous state 𝑅𝑀↘1 that led to
the collision as reported in Figure 4(b) and considers an -bubble
around this state to generate a retrain area as in Figure 4(c). Taking
 = 0.05, i.e., a small value that encodes the surroundings of an
unsafe situation, we obtain one interval for each input feature as:

𝑘 : {𝑙0 = [0.95, 1], 𝑙1 = [0.03, 0.08], 𝑙2 = (0, 0.05],
𝑙3 = [0.03, 0.08], 𝑙4, 𝑙5, 𝑙6 = [0.95, 1]}.

We assume the states sampled from 𝑘 are undesirable—potentially
risky. Therefore, when the initial state 𝑅0 is sampled from this region
𝑘 using 𝐿-retrain, the agent can improve the policy by learning how
to better satisfy the desired safe behavior.

3.1.2 Refinement Procedure. Once a retrain area has been created,
𝐿-retrain checks whether it is possible to perform a re!nement
with an existing retrain area. To this end, we check if the dis-
tance between each corresponding interval in two di#erent se-
lected retrain areas, 𝑘 and 𝑘 ≃, is less than or equal to 𝑗—a simi-
larity threshold parameter. Formally, let 𝑘 = {𝑙0, 𝑙1, . . . , 𝑙𝑊} and
𝑘 ≃ = {𝑙 ≃0, 𝑙 ≃1, . . . , 𝑙≃𝑊}, where each 𝑙𝑅 and 𝑙 ≃𝑅 are intervals that en-
code possible value for each feature 𝑙𝑅 (△𝑚 ↓ {0, . . . , 𝑛}). We use
Moore’s interval algebra [25] and de!ne the distance between two
intervals as [𝑙𝑅 , 𝑙𝑅 ] and [𝑙 ≃𝑅 , 𝑙 ≃𝑅 ] as:

𝑜 ( [𝑙𝑅 , 𝑙𝑅 ], [𝑙 ≃𝑅 , 𝑙 ≃𝑅 ]) = max( |𝑙𝑅 ↘ 𝑙 ≃𝑅 |, |𝑙𝑅 ↘ 𝑙 ≃𝑅 |).

Hence, two sets of intervals 𝑘 and 𝑘 ≃, i.e., two retrain areas, are
similar if and only if:2

△𝑚 ↓ {0, . . . , 𝑛}, 𝑜 (𝑙𝑅 , 𝑙 ≃𝑅 ) ⇐ 𝑗 .

Figure 5 shows an example in a locomotion task, depicting a
similar and not similar unsafe situation. This task has a desired
velocity threshold for the Cheetah along the 𝑙 axis, and the red ball
in the center of the image indicates a violation of such a threshold.
For clarity, each! gure uses two unsafe states (one with the original
color and the other with a! xed red or green color) instead of
intervals. If two sets of intervals 𝑘 and 𝑘 ≃ are similar (left! gure),
𝐿-retrain combines these areas into a new area with intervals 𝑘 ≃≃.
For each pair of corresponding intervals 𝑙𝑅 ↓ 𝑘 and 𝑙 ≃𝑅 ↓ 𝑘 ≃ for all
𝑚 ↓ {0, . . . , 𝑛}, the new interval 𝑙 ≃≃ ↓ 𝑘 ≃≃ is computed as:

2Without loss of generality, we assume the l2-norm in the features space is a
meaningful distance metric. Using di#erent metrics in di#erent scenarios (e.g., robotic
manipulation) does not impact our re!nement procedure.
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Figure 5: Left: Explanatory similar unsafe states for a subset
of the input features—the two states are within distance 𝑗.
Right: Explanatory di"erent unsafe situations—at least a
couple of input features have a distance greater than 𝑗 .

𝑙 ≃≃𝑅 = [min(𝑙𝑅 , 𝑙 ≃𝑅 ),max(𝑙𝑅 , 𝑙 ≃𝑅 )],

meaning we take the minimum of the lower bounds and the
maximum of the upper bounds of the corresponding intervals. Oth-
erwise (right image), we keep the two areas separate.

4 POLICY IMPROVEMENT
In this section, we derive a bound on the monotonic policy improve-
ment for 𝐿-retrain’s mixture of uniform restart distributions. We
show that the original bound on monotonic policy improvement
presented by Schulman et al. [31] still holds and can be tighter.
Notably, this result motivates both the design of our method as well
as its superior performance (Section 6). For the sake of clarity, we
!rst recall the de!nition of 𝑍-coupled policies and the related lemma
introduced to derive the bound in case of a single uniform restart
distribution over S. First, De!nition 1 couples two policies that be-
have in the same way (i.e., given a state, they pick the same action)
with probability ⇒ 1 ↘ 𝑍 , and Lemma 1 bounds the gap between
policy advantages satisfying such policies.

D!"#$#%#&$ 1 (𝑍’(&)*+!, *&+#(#!-S (.)+/0$ !% 0+. [31]). We
say that 𝑃 and 𝑃 ≃ are two 𝑍-coupled policies if △𝑅 ↓ S, we can de!ne
a joint distribution (𝑄,𝑄 ≃) |𝑅 such that 𝑝 (𝑄 ω 𝑄≃ |𝑅) ⇐ 𝑍 .

L!//0 1 (S(.)+/0$ !% 0+. [31]). Given two 𝑍-coupled policies,
𝑃 and 𝑃 ≃, we have that:

''E𝑄𝐿↔𝑂 ≃ [�̃�(𝑅𝑀 )]↘ E𝑄𝐿↔𝑂 [�̃�(𝑅𝑀 )]
'' ⇐ 4𝑍 (1 ↘

(1↘𝑍)𝑀 )max𝑄,𝑃 |𝑋𝑂 (𝑅,𝑄 ) |. It follows that: |𝑇 (𝑃 ≃)↘𝑌𝑂 (𝑃 ≃) |⇐ 4𝑙2𝑚𝑛
(1↘𝑚 )2

with 𝑎 = max
𝑄,𝑃

|𝑋𝑂 (𝑅,𝑄 ) |.

We extend Lemma 1 to the mixture of restarting distributions
used by 𝐿-retrain (right side of Equation 4, where 𝑅0 ↔ 𝑀). To this
end, we de!ne the expected discounted return of a new policy 𝑃 ≃

over the current 𝑃 under the 𝐿 mixture of restart policies as:

𝑇 (𝑃 ≃) = (1 ↘ 𝐿)
[
𝑇 (𝑃) + E𝑁↔𝑂 ≃

𝑄0↔𝑘

[ ↗∑
𝑀=0

𝑂𝑀 �̃�(𝑅𝑀 )
] ]

+ (𝐿)
[
𝑇 (𝑃) + E𝑁↔𝑂 ≃

𝑄0↔𝑘

[ ↗∑
𝑀=0

𝑂𝑀 �̃�(𝑅𝑀 )
] ]
.

(4)

Hence, for the surrogate loss (see Equation 1), we compute the
following local approximation:

𝑌𝑂 (𝑃 ≃) = (1 ↘ 𝐿)
[
𝑇 (𝑃) + E𝑁↔𝑂

𝑄0↔𝑘

[ ↗∑
𝑀=0

𝑂𝑀 �̃�(𝑅𝑀 )
] ]

+ (𝐿)
[
𝑇 (𝑃) + E𝑁↔𝑂

𝑄0↔𝑘

[ ↗∑
𝑀=0

𝑂𝑀 �̃�(𝑅𝑀 )
] ]
.

(5)

We then extend Lemma 1 to provide an upper bound on the
distance between𝑇 (𝑃 ≃) and 𝑌𝑂 (𝑃 ≃) under 𝐿-retrain.

L!//02. Considering a mixed restart distribution over 𝑀 and 𝑀
using 𝐿-retrain, it holds that

|𝑇 (𝑃 ≃) ↘ 𝑌𝑂 (𝑃 ≃) |⇐
4𝑍2𝑂

(1 ↘ 𝑂)2
[
𝑎 (1 ↘ 𝐿) + 𝑎≃𝐿

]
⇐ 4𝑍2𝑂𝑎

(1 ↘ 𝑂)2 ,

with 𝑎≃ = max
𝑄0↔𝑘
𝑁↔𝑂 ≃

|𝑋𝑂 ≃ (𝑅,𝑄 ) |⇐ 𝑎 = max
𝑄0↔𝑘
𝑁↔𝑂 ≃

|𝑋𝑂 ≃ (𝑅,𝑄 ) |, 𝐿 ↓ [0, 1].

Proof. Full proof of Lemma 2 is presented in Appendix 8.3 ⊋
Finally, by exploiting the relationship between the total variation
divergence and the KL divergence [28], we derive the following
corollary on the monotonic improvement guarantee under 𝐿-retrain-
based methods.

C&1&++0121. Let 𝑀 and 𝑀 be two di"erent restart distributions.
Combining 𝑀 and 𝑀 during the training as in 𝐿-retrain, and by setting
𝑍 = 𝑏𝑓𝑃𝑜

𝑆𝑇 (𝑃,𝑃 ≃), the bound on the monotonic improvement for the

policy update 𝑇 (𝑃 ≃) ⇒ 𝑌𝑂 (𝑃 ≃) ↘ 𝑒𝑏𝑓𝑃𝑜
𝑆𝑇 (𝑃,𝑃 ≃) with 𝑒 = 4𝑛𝑚

1↘𝑚2 is
still guaranteed.

The result naturally follows from Lemma 2 and the original
derivation of Schulman et al. [31].4

5 LIMITATIONS
We identify the three following limitations in our work:

• Our algorithm requires a simulator to train the agent and
the possibility of resetting the system to speci!c states. We
believe this requirement is reasonable in the RL literature.

• In 𝐿-retrain , we assume having access to an additional in-
dicator cost signal from the environment. Such a signal is
widely adopted in the safe RL literature, where system de-
signers assume having access to a cost function that deems
a state-action pair as safe or unsafe [1, 11, 29].

• We assume the area surrounding a collision state is also prone
to violations of the desiderata. When such an assumption
does not hold (e.g., in highly non-linear systems such as
power grids), we use the exact feature values to determine a
retrain area instead of intervals of size  .

6 EXPERIMENTS
We present a comprehensive evaluation of 𝐿-retrain applied to TRPO
[31] that approximates the policy optimization theory of Section 3,
and PPO [32] which relaxes the computational demands of TRPO.5

3All the appendices are available at this link.
4We note the theoretically justi!ed procedure motivating the policy improvement

bound [31] does not hold for most practical deep RL policy optimization algorithms.
5We also tested vine TRPO, which achieved comparable results with lower sample

e"ciency than TRPO. For this reason, our evaluation considers the TRPO algorithm.
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We refer to these methods as 𝐿-TRPO and 𝐿-PPO. Additionally, we
investigate the impact of the proposed approach on top and against
safe RL baselines, using the Lagrangian method with TRPO and PPO
and modeling behavioral preferences as constraints. The resulting
algorithms are named TRPOLagr, PPOLagr, 𝐿-TRPOLagr, and 𝐿-
PPOLagr. Our experiments address the following questions:

• Does 𝐿-retrain allow agents to better adhere to behavioral
preferences while solving the task in both an unconstrained
(where we penalize the reward upon violating the preference)
and constrained formalization?

• How does 𝐿-retrain impact existing CMDP-based methods
aimed at satisfying these preferences?

• How often do agents satisfy the behaviors provably and
empirically?

To answer these questions, we begin our experiments using two
known safety-oriented tasks, “SafetyHopperVelocity-v1, and
“SafetyHalfCheetahVelocity-v1", from the Safety-Gymnasium bench-
mark [10]. To evaluate our method in a variety of setups and di#er-
ent behavioral desiderata, we also employ two practical scenarios
based on an active network management task for a power system
[9], and navigation for a mobile robot [4, 18]. Figure 6 shows these
tasks. For simplicity, we will refer to them as Hopper, HalfCheetah
(Cheetah), Active Network Management (ANM), and Navigation, re-
spectively. In the following, we brie$y describe the tasks, referring
to Appendix 9 for a more exhaustive description.

• Hopper, Cheetah: The robots have to learn how to run for-
ward by exerting torques on the joints and observing the
body parts’ angles and velocities (for a total of 12 and 18
input features). The actions control the torques applied to
the (3 and 6) joints of the robot.

• ANM: The agent has to reschedule the power generation
of di#erent renewable and fossil generators, to satisfy the
energy demand of three loads connected to the power grid.
The agent observes the state of the power network through
18 features (i.e., active and reactive power injections, charge
levels, and maximum productions) and controls power injec-
tions and curtailments using 6 continuous actions.

• Navigation: Amobile robot has to control its motor velocities
to reach goals that randomly spawn in an obstacle-occluded
environment without having a map. The agent observes the
relative position of the goal and sparse lidar values sampled
at a! xed angle (for a total of 22 features) and controls linear
and angular velocity using 2 continuous actions.

6.1 Implementation Details
Data collection is performed onXeon E5-2650 CPUnodeswith 64GB
of RAM, using existing implementations for PPO, TRPO, and their
Lagrangian version, based on the omnisafe library [11]. Complete
hyperparameters are in Appendix 12. We report the average return,
cost, and standard error as shaded regions over 50 independent
runs per method. Figures 7 and 12 (the latter reported in the supple-
mentary) show the average return in the! rst row and the average
cost in the second row, where each column represents a di#erent
task. Notably, we are seeking agents that achieve a lower cost, which
indicates they better adhere to the desired behavioral preferences while
also solving the task. Our claims on the performance improvement

of 𝐿-retrain are supported by 1600 training runs, which signi!cantly
surpasses the typical 3-10 runs per method used in previous policy
optimization works [31, 32]. We note that due to employing a small
penalty in the reward function to encourage speci!c behavioral
preference, our results are not directly comparable to the published
baselines [31, 32]. For a fair comparison, we! rst collect the baseline
with this new setting and then compare the performance with our
approach. Considering the computational resources used for our
extensive evaluation, Appendix 11 addresses the environmental
impact of our experiments.

6.2 Empirical Evaluation
Performance of 𝐿-TRPO and 𝐿-PPO. Figure 7 shows that TRPO
and PPO enhanced with our 𝐿-retrain improve sample e"ciency
and allow agents to better adhere to the behavioral preferences.

In Hopper and HalfCheetah, TRPO and PPO achieve substan-
tially higher returns than their 𝐿-retrain version; a result that could
be easily misunderstood. In fact, this is related to the nature of
the task, where the reward is directly proportional to the agents’
velocities. For this reason, an agent that violates the behavioral pref-
erence “limit velocity under a threshold”, achieves higher returns.
This is clearly shown in the! rst two columns of Figure 7, where
𝐿-TRPO and 𝐿-PPO resulted in notably lower cost compared to the
baselines, indicating they lead the agents towards adhering to the
velocity limit signi!cantly more often than TRPO and PPO. Similar
results are achieved in the ANM task where 𝐿-TRPO and 𝐿-PPO are
notably safer and more sample e"cient (see Pareto frontiers for
convergence results in Figure 11 in the supplementary) than the
baseline counterparts. The bene!ts of 𝐿-retrain are also con!rmed
in the navigation task, where violating the safety desiderata “avoid
collisions” leads to more collisions. Ultimately, achieving a higher
cost (i.e., more collisions) hinders the navigation performance of
the agent and leads to lower returns. Speci!cally, TRPO and 𝐿-TRPO
converge to the same average cost. However, the higher sample
e"ciency of the latter through the training, in terms of learning
collision avoidance behaviors more quickly, allows 𝐿-TRPO to learn

(a) Hopper (b) HalfCheetah

(c) Active Network Management (d) Navigation

Figure 6: Environments employed in our experiments.
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Figure 7: Comparison of 𝐿-PPO, 𝐿-TRPO, PPO and TRPO.

Table 1: Average fraction of the training steps where agents
violate the constraints (lower is better).

Hopper Cheetah ANM Navigation

PPOLagr 0.57 0.33 0.44 0.46
𝐿-PPOLagr 0.04 0 0.59 0.44

TRPOLagr 0.51 0.17 0.58 0.64
𝐿-TRPOLagr 0.25 0 0.79 0.56

better navigation behaviors, outperforming TRPO in terms of aver-
age return. Moreover, 𝐿-PPO signi!cantly outperforms PPO both
in terms of average cost and return.

Performance of 𝐿-TRPOLagr and 𝐿-PPOLagr. During training
for the Lagrangian algorithms, both 𝐿-TRPOLagr and 𝐿-PPOLagr
drastically reduce the amount of constraint violations in the Hopper
and HalfCheetah velocity environments (complete learning curves
are reported in Appendix 10). We specify the fraction of training
steps where agents violate their constraint in Table 1. However,
at convergence, all the approaches satisfy the imposed thresholds.
Figure 8 shows the Pareto frontier reporting on the y-axis the
average reward and on the x-axis the average cost at convergence.
These results lead to some interesting considerations based on the
setup of interest. In safety-critical contexts where it is crucial to
satisfy constraints at training time, 𝐿-retrain showed signi!cant
empirical bene!ts. On the other hand, in non-critical contexts
where performance at convergence is the main evaluation metric,
the naive Lagrangian methods have superior return performance.
Intuitively, this relates to the fact that Lagrangian methods often
violate the constraints at training time, allowing agents to explore
more and thus learn higher-performing behaviors. In the more
complex, realistic scenarios, our empirical analysis leads to di#erent
considerations. Speci!cally, in navigation, 𝐿-retrain-based methods
and the Lagrangian baselines achieve comparable results in terms
of cost (i.e., constraint satisfaction). However, retraining agents in
areas that are collision-prone allowed them to learn policies with

better navigation skills and higher performance. In the ANM task,
retraining an agent during grid instability increases the frequency
of constraint violations compared to the baseline. Nonetheless, our
approach helps agents learn to manage the grid e#ectively over
time in contrast to Lagrangian baselines, which in the end, fail to
solve the problem e"ciently.

6.3 Provably Verifying Navigation Behaviors
To further assess the bene!t that 𝐿-retrain has over the behavioral
preferences, we formally verify the policies trained for the navi-
gation task. We consider this problem as an explanatory task for

Figure 8: Pareto frontier of reward versus cost for 𝐿-PPOLagr,
𝐿-TRPOLagr, PPOLagr and TRPOLagr at convergence.
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clarity since it allows us to easily visualize the retrain areas gener-
ated for “collision avoidance” on top of the environment.

Figure 9, shows a kernel density estimation map of the retrain
areas distribution at the beginning (left) and! nal stages (right) of
the training for the 𝐿-TRPO agent. Here we can notice how the
agent successfully learns to navigate the environment over time
since the retrain areas are more equally distributed through the
entire scenario. Using a recent veri!cation tool [21], we aim to quan-
tify the probability that a navigation policy violates the collision
avoidance preference. To this end, we consider three representative
retrain areas collected while training the di#erent 𝐿-retrain-based
algorithms (depicted as red dots in Figure 9). For each area, we
encode the input-output relationship required by the tool (see Sec-
tion 2.2), considering the retrain area as the precondition, and the
minimum linear and angular velocities that would cause a colli-
sion as the postcondition. Broadly speaking, the FV tool checks
where the trained policies do not exceed such minimum velocities
(i.e., they do not collide), and returns the portion of each retrain
area for which the given policy violates the postcondition (i.e., the
probability of colliding in that area). Table 2 reports the probability
that policies at convergence collide in the chosen retrain areas,
averaged over all the runs. This additional FV-based analysis shows
that 𝐿-retrain algorithms better adhere to the behavioral preference,
further con!rming our intuitions and the merits of our approach.

Figure 9: Density map of the retrain areas collected in the
!rst and last training epochs; yellow indicates higher density.

Table 2: Average behavioral violations percentage for policies
trained with TRPO, PPO, PPOLagr, TRPOLagr, and their 𝐿-
retrain version (ours).

Retrain areas (1, 2, 3)

𝐿-PPO 0.007% 0.011% 0.22%
PPO 0.012% 0.017% 0.59%

𝐿-TRPO 0.014% 0.67% 1%
TRPO 0.015% 0.69% 0.8%

𝐿-PPOLagr 0.006% 0% 0.012%
PPOLagr 0.013% 0.05% 0.1%

𝐿-TRPOLagr 0.0004% 0.007% 0.46%
TRPOLagr 0.00005% 0.012% 0.58%

TRPO

TRPO

Collision

Figure 10: Real-world experiments comparing 𝐿-TRPO and
TRPO in corner-case scenarios.

6.4 Real experiments
To conclude our comprehensive evaluation, we perform an addi-
tional evaluation in realistic unsafe mapless navigation settings.
Due to the similar performance at convergence for TRPO and 𝐿-
TRPO, we report the evaluation for these two approaches. Speci!-
cally, we compare 𝐿-TRPO and TRPO in scenarios where the agent
has either all or only partially occluded LiDAR information. We
hypothesize that if the agent is not exposed to multiple unsafe
situations during the training, i.e., without an 𝐿-retrain strategy, it
is less likely to select a longer but safer trajectory, and eventually,
the agent will prefer a straight trajectory leading to a collision. To
this end, the Unity framework [13] we used to create the naviga-
tion task allows us to transfer the policies trained in simulation
on ROS-enabled platforms such as our Turtlebot3 (Fig. 10). Hence,
we test several corner-case situations, comparing the safer (from
the formal veri!cation results) trained agent at convergence for
both 𝐿-TRPO and TRPO. Realistic experimental results con!rm our
hypothesis, showing the bene!t of retraining the agent in speci!c
regions of the state space deemed unsafe.

7 DISCUSSION
This paper presented 𝐿-retrain, a novel exploration strategy with
monotonic improvement guarantees that optimizes policies while
encouraging speci!c behavioral preferences. Our approach aims
at retraining an RL agent from retrain areas where it violated
a desired behavioral preference at training time. Our empirical
and formal evaluation over hundreds of seeds considering various
tasks and behavioral preferences, demonstrated the e#ectiveness
in terms of higher sample e"ciency and superior performance of
𝐿-retrain when integrated with existing policy optimization meth-
ods. Real-world experiments con!rmed the bene!t of the proposed
approach in realistic setups.
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