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ABSTRACT
Given a swarm of limited-capability robots, we seek to automat-
ically discover the set of possible emergent behaviors. Prior ap-
proaches to behavior discovery rely on human feedback or hand-
crafted behavior metrics to represent and evolve behaviors and
only discover behaviors in simulation, without testing or consider-
ing the deployment of these new behaviors on real robot swarms.
In this work, we present Real2Sim2Real Behavior Discovery via
Self-Supervised Representation Learning, which combines repre-
sentation learning and novelty search to discover possible emergent
behaviors automatically in simulation and enable direct controller
transfer to real robots. First, we evaluate our method in simulation
and show that our proposed self-supervised representation learn-
ing approach outperforms previous hand-crafted metrics by more
accurately representing the space of possible emergent behaviors.
Then, we address the reality gap by incorporating recent work in
sim2real transfer for swarms into our lightweight simulator design,
enabling direct robot deployment of all behaviors discovered in
simulation on an open-source and low-cost robot platform.
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1 INTRODUCTION
Decentralized robot swarms have the potential to provide efficient,
low-cost, and robust solutions to tasks such as precision agricul-
ture [1, 7], aquatic monitoring [6, 13], search and rescue [3], con-
struction [34], and object transportation [2, 10, 17, 45]. However, as
robots become empowered with additional sensing, computation,
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Figure 1: Real2Sim2Real Behavior Discovery via Self-
Supervised Representation Learning discovers new collective
behaviors for robot swarms while addressing the Sim2Real gap. 1)
Real robot measurements are implemented into a physics model in
software. 2) The model is used to generate thousands of randomly
sampled behavior videos, which are used to train a representation
encoder using self-supervised learning. 3) The trained encoder is
used to discover novel emergent behaviors. 4) Interesting behaviors
found in simulation can be deployed on real robots without the
need for controller adjustment.

and actuation capabilities, humans are faced with increasing cogni-
tive complexity as they try to understand how their robots can work
together to accomplish real-world goals. Researchers and practi-
tioners currently lack the ability to fully understand and explore
the design space of possible emergent swarm behaviors. In this
paper, we propose and evaluate a novel pipeline for automatically
discovering the set of emergent behaviors that can be achieved for
swarms of robots with a set of limited capabilities. Importantly, we
leverage real2sim2real techniques [30, 44] so that the behaviors we
discover can be directly deployed in the real world.

Most prior research on swarm robotics focuses on optimizing
swarm behaviors for specific tasks. Extensive work has been per-
formed to optimize swarm controllers to produce target behaviors
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such as aggregation [4, 14–16, 18, 24, 42], circle formation [23, 41,
48], chain formation [37, 40], milling [6, 8], spatial coverage [49],
self-assembly [20], segregation [35, 38] and shepherding [33], many
of which have been successfully deployed on real robots. By con-
trast, rather than seeking a specific pre-imagined behavior, we ex-
plore the more open-ended problem of discovering the set of emer-
gent behaviors that are possible given a particular robot swarm.

Recent work has started to address this problem by proposing
approaches based on novelty search [28] for developing a taxonomy
of possible emergent behaviors [9, 31, 32]. Prior work, however,
is limited to simulation and does not consider the challenges in-
volved in transferring behaviors discovered in simulation to the
real world. As we show in Section 5.3, ignoring the sim2real gap
results in the discovery of behaviors that only reliably work in sim-
ulation. By contrast, we seek to address the challenging sim2real
gap [22, 25] in order to discover emergent swarm behaviors that
are actually deployable on real robots. Furthermore, prior work on
swarm behavior discovery leverages large amounts of human effort
in terms of carefully hand-constructed representations of swarm be-
haviors. Instead, we evaluate an entirely self-supervised approach
to behavior discovery, where low-dimensional representations of
high-dimensional behaviors are learned without the need for hu-
man fine-tuning or physics-based hand-crafted representations.

We introduce Real2Sim2Real Behavior Discovery via Self-
Supervised Representation Learning, a combination of sim2real
transfer, behavior representation learning, and novelty search that
seeks to discover the set of possible emergent swarm behaviors
without the need for expensive human feedback or hand-crafted
representations. As shown in Figure 1, our method starts with
the real-world robots and adopts the recently proposed Reality-to-
Simulation-to-Reality for Swarms (RSRS) process [44] to systemati-
cally approximate and implement measured robot dynamics in a
simulator, and then test that behaviors produced in our adapted
simulation can be accurately reproduced in the real world. Given
an improved simulator, we then perform self-supervised represen-
tation learning to learn latent representations of videos of swarm
behaviors. Finally, we use the learned representations to perform
novelty search [28] to efficiently explore the space of emergent be-
haviors. By augmenting behavior discovery with the RSRS process,
we enable direct deployment of all behaviors discovered in simu-
lation to our open-source real-world HeRo+ Robots, an improved
version of the educational HeRo [36] robot.

The contributions of this work can be summarized as follows:
First, we propose a novel self-supervised representation learning
approach for swarms based on SimCLR [11] and demonstrate that
it enables quantitatively better representation learning for swarm
behaviors when compared to the hand-crafted behavior represen-
tations used in prior work [9].

Second, we improve the open-source HeRo [36] robot hardware
to enable accurate time-of-flight sensing, be more robust to colli-
sions, and reduce encoder error, resulting in improved hardware for
swarm robotics and a reliable way to implement inexpensive line-
of-sight sensing. We make our modified robot, HeRo+, open-source
for other researchers to deploy.

Third, we demonstrate the first deployment and evaluation of
emergent behavior discovery for robot swarms by augmenting be-
havior discovery with real2sim2real calibration [44]. Inspired by

prior work on computation-free swarms [17], we define a simple
line-of-sight capability model and show that our method automati-
cally discovers deployable emergent swarm behaviors for aggrega-
tion, cyclic pursuit, and dispersal. By contrast, behaviors discovered
via unaligned simulations (where sensing and actuation parameters
are not tuned based on real-world observations) have a much lower
chance of working in the real world.

Finally, we highlight the practical considerations for deploying
multi-robot systems while also paving the way for researchers to
more easily discover and explore the space of emergent behaviors
that are possible given a swarm of robots.

2 PROBLEM STATEMENT
Following existing nomenclature [9, 32], we define our robots as
agents with a well-defined capability model, 𝐶 = ⟨𝑆,𝑀,𝐴⟩ com-
posed of sensing (𝑆), memory (𝑀), and actuation (𝐴) capabilities.
In this paper, we seek to answer the following research question:
Given N robots with capabilities C, what is the complete set
of emergent behaviors that can be deployed on these robots?

Wemodel this problem as a search for a set of emergent behaviors
in a behavior space B. The difficulty of this problem stems from
the assumption that we have no direct access to this behavior space.
Instead, we seek to sample and simulate swarm controllers and
infer their behavioral characteristics based on the visual output of
a simulator. We assume that we know the space of possible swarm
controllers, 𝑈 (𝐶), and the swarm’s environment, E. The controller
space and environment form the input parameters for a behavior
map, 𝜙 : 𝑈 (𝐶) × E → B, that returns a behavior representation
in the space B. While prior work has assumed access to a known
function 𝜙 [9], we consider the case where there is no predefined
knowledge of how to represent behavior characteristics in a low-
dimensional space where search can be performed.

3 METHODS
The goal of our work is to leverage machine learning to learn low-
dimensional latent representations of swarm behaviors, then use
that model as the basis for exploration in search of new swarm
behaviors that can be deployed on real robots. Our work differs
from prior work in that it learns a latent representation model in an
entirely self-supervisedmanner and ourwork leverages recent work
in Swarm Real2Sim2Real transfer [44], enabling direct deployment
of discovered emergent behaviors to a real swarm of robots.

In the following subsections, we describe Real2Sim2Real Behav-
ior Discovery via Self-Supervised Representation Learning which
employs in-simulation representation learning (3.1), behavior explo-
ration and discovery via novelty search (3.2), and simulator design
that enables rapid and reliable real-world deployment (3.3).

3.1 Representation Learning
In order to discover new behaviors, we need a way to be able to
characterize and represent different swarm behaviors. In prior work
on behavior discovery, behavioral representations were explicitly
hand-crafted as functions of the robots’ Cartesian position and
velocity [9]. However, recent advancements in representation learn-
ing enable training networks to represent high-dimensional data
(images, video, etc.) as low-dimensional latent vectors that contain
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encoded information about the original data. Rather than manually
crafting behavioral characteristics, we study to what extent we can
leverage unsupervised representation learning to create meaningful
embeddings from videos of swarm behaviors.

3.1.1 Learning Paradigm. To achieve both self-supervised training
and sufficient representation learning, we employ the popular Sim-
ple Framework for Contrastive Learning of Visual Representations
(SimCLR) [11]. SimCLR is based on contrastive learning, where rep-
resentations are learned by comparing and/or contrasting pairwise
or triplet elements of the training data. For example, a network
could learn that two elements of the data that are similar should
be embedded in close proximity within the latent space (and vice
versa for data that are different). In our case, SimCLR samples a
swarm behavior video, x, from our video dataset, uses two data
transformations to alter the visual appearance, denoted x̃i and x̃j,
and then optimizes a network to embed x̃i and x̃j closer together in
the latent space while considering all other elements of a batch as
dissimilar from x̃i and x̃j. This results in the following loss function
for a positive pair of elements in a batch of size 𝑁 ,

L𝑖, 𝑗 = −log
exp(sim(𝑧𝑖 , 𝑧 𝑗 )/𝜏)∑2𝑁

𝑘=1 1[𝑘≠𝑖 ]exp(sim(𝑧𝑖 , 𝑧𝑘 )/𝜏)
, (1)

where 𝑧{𝑖, 𝑗,𝑘 } is the latent embedding of 𝑥{𝑖, 𝑗,𝑘 } , sim is a function
that measures the similarity between two vectors (e.g., cosine sim-
ilarity, L2 distance), 𝜏 is a temperature parameter, and 1[𝑘≠𝑖 ] is
a function that evaluates to 1 if and only if 𝑘 ≠ 𝑖 and evaluates
to 0 otherwise. This loss objective is a cross-entropy formulation
that simply seeks to maximize the likelihood that the 𝑖th and 𝑗th
embeddings have the highest measure of similarity when compared
to all other elements in the batch.

3.1.2 Data Augmentation. Chen et al. [11] conducted a thorough
analysis of which augmentations produced the highest performing
learned representation, and several other studies have thoroughly
explored the benefits of pixel-based data augmentation in machine
learning [5, 26, 46]. In our paper, we implement one of the highest
scoring combinations of transformations studied in prior work:
random crop followed by random rotation [11].

3.1.3 Encoder/Projection Architecture. Following training, we use
our learned SimCLR encoder, 𝜙 , as a means of obtaining low-
dimensional behavior representations of each swarm video. These
representations are then used to determine how similar two behav-
iors are. We highlight the importance of correctly defined notions
of similarity in the following section, where we describe how we
use our encoder to search for novel emergent behaviors.

3.2 Behavior Discovery
We seek to automatically discover new behaviors, which is both a
non-stationary and non-trivial objective. In particular, methods that
are apt for approximating stationary functions using gradient-based
approaches are unlikely to converge to solutions that truly explore
the space of all possible behaviors. Instead, we follow prior work in
behavior discovery [9, 31, 32] by implementing an evolutionary ap-
proach to exploration problems called Novelty Search [28]. Novelty
search serves as a fitness mechanism that rewards representations
that are different from all previously observed representations. To

facilitate this, novelty search aggregates representations to a dy-
namic buffer, denoted 𝐵. For any newly observed representation,
𝑏 ∈ R𝑑 in 𝑑-dimensional latent space, the novelty of 𝑏 is defined as

Novelty(𝑏, 𝐵) = 1
𝑘

𝑘∑︁
𝑖=0

dist(𝑏, 𝐵𝑖 ), (2)

where 𝑘 is the number of nearest neighbors in 𝐵 to consider and 𝐵𝑖
is the 𝑖th nearest neighbor of 𝑏 in 𝐵.

In several studies, novelty search has been used to aid opti-
mization problems by incentivizing exploration in tandem with
an optimization objective [19, 27, 29]. By contrast, our sole objec-
tive is exploration and novelty, which enables us to use it as the
only component of a fitness function for evolutionary search. Evo-
lutionary search is commonly utilized in robotics literature as a
means of gradient-free optimization [12]. Succinctly, evolutionary
search attempts to maximize a fitness function 𝑓 (𝑔) by genetically
evolving populations of genomes, 𝑔, where the highest scoring
genomes are more likely to mutate and survive across multiple
generations. In the context of our approach, our fitness function
is the novelty function (Eq. 2) and the genome is a parameterized
swarm controller that can be represented as a vector 𝑔 ∈ 𝑈 (𝐶).
Let the function S(𝑔) denote the simulation of controller 𝑔 which
returns a behavior video, x. Then, with the representation encoder,
𝜙 , the evolutionary optimization can be written in the form

max
𝑔∈𝑈 (𝐶 )

Novelty(𝜙 (S(𝑔)), 𝐵) . (3)

As previously mentioned, the objective shown above is non-
stationary in the sense that a genome will always return a higher
novelty score in an earlier generation than the same genome would
in a later generation. This means that solutions that have high
fitness early in the search will not be as novel in subsequent gen-
erations, requiring the algorithm to test new genomes to try to
diversify the behavior space. After search, the novelty buffer (𝐵) is
passed through a k-Medoids clustering algorithm and the resulting
behaviors are returned to the user.

3.3 Real2Sim2Real Simulator Design (RSRS)
We augment the problem formation for behavior discovery used
in prior work by explicitly targeting direct sim2real deployment
for our discovered behaviors. One natural way to enable this is
to simply use a high-fidelity robot simulator that can model the
physics of the real world with sufficient precision. While this solu-
tion may be appropriate for methods that are directly optimizing
for a specific behavior, our problem requires evaluating thousands
of swarm controllers for simulations with hundreds of timesteps.
We seek to instead use a simulator that is lightweight, as has been
utilized in prior literature for swarm simulators that require costly
search [31, 39]. Simultaneously, we do not want to neglect the
dynamics of the real world, as over-simplification may produce
behaviors that are infeasible for hardware deployment. Therefore,
we require a strategic simulator design approach that enables both
lightweight evaluation and closes the reality gap.

Reality-to-Simulation-to-Reality for Swarms (RSRS) [44] is a new
simulator design paradigm that leads to more feasible and reliable
real-world swarm deployments. The main idea behind RSRS is that
the robots in simulation are less capable than they actually are

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

1475



Angular
Velocity

Forward
Velocity(a) (b) 

Time-of-
Flight 
Sensor

Figure 2: HeRo+ Robots: We deploy newly discovered behaviors
on a fleet of HeRo+ robots. (a) A single HeRo+ robot uses unicycle
commands to locomote and time-of-flight sensing to detect other
robots. Our open-source robot design is mostly 3D-printed and
costs approximately $80-USD, making it an extremely low-cost
option for swarms research. (b) Our swarm of 11 HeRo+ Robots, 8
of which are used in this study.

in the real world. At first, this may appear as a weakness, as our
problem is defined with respect to the capabilities of real world
robots. Although the dynamics of the real world are difficult to
efficiently represent in simulation, we can approximate these real-
world uncertainties by exaggerating their impact on our robots.
For example, the collision dynamics between two robots cannot
be perfectly modeled in a lightweight simulator, but real robot
collisions can guide our approach to simulator design through
informative observations. For example, for the observation that
“these robots cannot reliably slide past each other if they collide
head-on,” this perhaps indicates that the friction coefficient should
be adjusted to ensure that the simulator does not attempt to find
behaviors that exploit collisions. We follow the four steps described
in the RSRS process [44]: 1) Measure the capabilities and dynamics
of real-world robots, 2) Implement the measurement data into the
robot simulator, 3) Run experiments in simulation, modify robots
and simulator as needed, 4) Perform experiments on real robots,
modify robots and simulator as needed.

In particular, it should be noted that steps 3 and 4 involve itera-
tive refinement to the simulator and robots in order to reproduce
behaviors in the real world. RSRS lays out a simple if-else approach
for modifying the simulator and robots. If it is less expensive to up-
grade the robots to improve reliability than to modify the simulator,
upgrade the robots. Otherwise, make the simulator more realistic
and take more measurements on real robots. RSRS has been previ-
ously shown to be effective when optimizing sim2real transfer for
a specific desired behavior [44]. By contrast, our approach expands
the use of this design paradigm to broadly enable Real2Sim2Real
transfer for open-ended behavior discovery. We discuss the details
of these steps and discuss the modifications we made to our robots
and simulator in Sections 4.1 and 4.2.

4 EXPERIMENTS
We demonstrate the efficacy of our methods by deploying new
behaviors, discovered in simulation, on real swarm robots. Fol-
lowing our 4-stage RSRS process, we first model the interactions

between our low-cost HeRo+ robots (Figure 2) in simulation us-
ing measurements obtained from the real world (4.1-4.2). Second,
we generate a video dataset that is used to train a SimCLR en-
coder using self-supervised learning (4.3), and employ evolutionary
behavior discovery to evolve and discover unique behaviors that
diversify the set of embedded features in the encoder (4.4). Finally,
the behaviors discovered in simulation are deployed on our robots
in the real world (4.5). Videos, code, and open-source hardware
designs are available on our project webpage 1.

4.1 Robot Hardware
4.1.1 Kinematics and Controllers. Our experiments consider a ho-
mogeneous swarm of 8 robots modeled in 2D with unicycle kine-
matics, where the 𝑖th robot is controlled at time 𝑡 with a forward
velocity, 𝑣𝑖,𝑡 , and angular velocity, 𝜔𝑖,𝑡 . Our robots only receive a
binary observation ℎ𝑖,𝑡 ∈ {0, 1} from a line-of-sight sensor and use
this signal as the condition for an if-else style controller of the form
[𝑢𝑣,0, 𝑢𝜔,0, 𝑢𝑣,1, 𝑢𝜔,1] ∈ 𝑈 (𝐶). Though the values of this controller
are shared by all the agents in the swarm, the velocity of different
agents may vary based on the agent’s individual observation state,

(𝑣𝑖,𝑡 , 𝜔𝑖,𝑡 ) =
{
(𝑢𝑣,0, 𝑢𝜔,0) if ℎ𝑖,𝑡 is 0,
(𝑢𝑣,1, 𝑢𝜔,1) otherwise.

(4)

Because the 4-tuple controller representation is time-invariant,
it allows for control of the behavior of the entire swarm, for an
arbitrary simulation horizon, with just four scalar values. These
four values, constrained by the robots’ practical velocity limits,
form the space of possible controllers, 𝑈 (𝐶), where we search for
behaviors as described in Section 3.2.

4.1.2 Improvements to Robot Hardware. The HeRo Robot [36] is an
open-source, low-cost, 3D-printed robot with two-wheeled differen-
tial drive actuation. These robots act using only local observations
and are effectively decentralized. However, for ease of deployment
and control, the robots are connected to a centralized ROS server,
allowing for full swarm emergency stop, synchronized start, and
wireless controller updates.

Our first emergent behavior test on these robots was to attempt
to get them to perform a “Cyclic Pursuit” behavior (all robots form a
circle and rotate about the center) using already discovered unicycle
controllers from prior work [31, 44]. Recall from Section 3.3 that
iteration for RSRS can take two forms: Hardware Upgrades and
Software Upgrades. Using our observations from the real world, we
close the reality gap from a hardware perspective by improving the
HeRo hardware with the following features:

Bump Shield: Based on our observations, the most significant
hindrance to emergent behavior was that collisions between robots
often resulted in actuation difficulties, especially when the contact
was chassis-to-wheel (causing a direct force on the servo motors
and wheels). For behaviors like cyclic pursuit, the robots may bump
into each other during formation, which would effectively halt some
robots in collision, resulting in a pile-up. Rather than attempting

1https://sites.google.com/view/swarmdiscovery-with-rsrs/home
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to carefully model the difference between head-on and chassis-
to-wheel collisions, we found that augmenting robots with a 3D-
printed bump shield was an inexpensive way to allow the robots to
collide with each other without actuation faults.

Time-of-Flight Sensing: By default, the HeRo robot uses 8 IR
sensors, evenly spaced around the robot’s circumference, to sense
its surroundings. We tested our binary controller with just the
forward-facing IR sensor and found that the sensor could not detect
robots at a distance greater than 25 cm and reported false negatives
50% of the time at the 25 cm range, which inhibited the ability of
the robots to correctly sense each other and form together into
a behavior. While these errors can be measured and modeled in
simulation, we found that sensing reliability was critical to behavior
formation, necessitating a hardware upgrade. We implement an
inexpensive upgrade by adding a single laser-ranging Time-of-
Flight sensor (VL53L1X, see Figure 2a) that can detect other robots
up to 2 m away and is significantly more reliable, with almost no
false negatives when the robots are driving at low speeds.

Encoder Feedback: Lastly, we found that the original position
of the gear-driven encoders on the HeRo robot resulted in frequent
reading errors that affected the reliability of low-level PID control.
While it would be difficult to efficiently model this type of uncer-
tainty in simulation, moving the encoder outside the wheels of the
robot and connecting it with a directly-driven shaft significantly
reduced the error frequency.

We found that these hardware improvements greatly increase the
reliability of swarm controllers. We call this RSRS-improved HeRo
robot, the HeRo+ robot. All CAD models and a bill of materials
have been made available in our supplemental materials.

4.1.3 Environment: The robots are placed in a 170x142 cm arena.
The four walls of the arena are each 5 cm tall and were deliberately
designed so as to be shorter than the TOF sensor on the HeRo+
robots, preventing them from detecting the walls so that anything in
line-of-sight can be assumed to be another agent. The environment
also has 3 x 4 = 12 grid initialization points that are roughly centered
in the arena. For simulated controllers, the 8 robots are randomly
assigned to one of the 12 starting locations and randomly oriented
in the range [0, 2𝜋] (following similar instantiation as other robot
swarm studies [18]). When running tests on the real-robots, we
replicate as closely as possible the same starting positions and
orientations used in simulation.

4.2 Robot Simulator
Our HeRo+ robots have a maximum linear velocity of 20 cm/s and a
maximum angular velocity of 3 rad/s. However, we noticed that at
high-speeds, the robots did not have sufficient time to sense other
robots; follow-up tests indicated that the robots had near-perfect
sensing at max speeds of 9 cm/s and 1.6 rad/s, which is what we
chose to implement in simulation so that our robots could switch
velocity commands with sufficient reaction time. In the context of
RSRS design, this was a much cheaper way to bridge the reality
gap than upgrading the robots with increased sensing frequency or
attempting to model the sensing reliability as a function of velocity.

Based on the interactions between robots and the environment
we also observed that friction between the robots and the wall
was a major aspect that impacted the robot’s behavior. Notably, in

the default simulator, the collisions are frictionless, which allow
robots to slide along walls and other robots with ease. In the real
world, however, even though our bump shields allowed for safe
collisions, those collisions still involve friction. Therefore, we ran
intentional collision tests on our robots and manually approximated
the friction coefficient of robot-to-robot and robot-to-wall collisions
until our simulator visually matched our observations in the real
world. This approach successfully prevents the robots from relying
on frictionless interactions to form emergent behaviors.

4.3 Representation Learning
4.3.1 Training Data. Given our RSRS simulator, we randomly sam-
ple unicycle controllers from the constrained space of control veloci-
ties measured on the real world robots to create 6000 training videos.
To reduce the size of the training data, we render all simulation
in greyscale and we also resize the original simulation resolution
from 513x426 to 64x64. Each simulation runs for a fixed duration of
600 timesteps (𝑑𝑡=0.1). To improve processing and training speed,
we sub-sample each video to form an input of size (3, 64, 64), where
the channel dimension represents 3 greyscale images evenly spaced
over the last 300 timesteps of simulation, which we qualitatively
found to capture the final converged emergent behavior.

For the random input transformations, we apply a random crop
that scales the image in the range [0.6, 1.0] with a 1:1 aspect ratio,
a horizontal flip is then applied with probability 𝑝=0.5. For random
rotation, we select a random rotation angle 𝜃 ∈ {0, 𝜋2 , 𝜋,

3𝜋
2 } and

rotate the axes of the video around the image center.

4.3.2 Deep Learning. We instantiate our representation model, 𝜙 ,
as a pretrained ResNet18 [21] model with a modified final output of
size 128. All but the last layer of the ResNet represent the encoder,
and a final 2-layerMLP is used to project the embedding into a space
where the loss is applied. The latent embedding is a vector of size
512, which reflects the ResNet’s default layer size. As recommended
in prior work [11], we only use the encoder part of the network for
downstream evaluation. We train for 100 epochs with a mini-batch
size of 1000 videos, following the large-batch recommendations of
SimCLR [11]. Each video is passed through the random crop and
random rotation transformations to produce a total of 1000 video
pairs. For training, we use the NX-Ent loss [11] from Equation 1
paired with the LARS optimizer [47] with a learning rate of 1.17 =
(0.3 × BatchSize/256) and weight decay of 1.5 × 10−7. All other
hyperparameters follow the original SimCLR implementation [11].

4.3.3 Baseline: Hand-Crafted Metrics. We compare our represen-
tation learning to the set of hand-crafted behavior features used
by prior work on robots of this same capability model (i.e., differ-
ential drive with line-of-sight sensing) [9]. Each metric captures a
scalar-valued characteristic of the collective motion of the agents
including average speed, angular momentum, radial variance, scat-
ter, and group rotation. When concatenated, the five metrics form
a behavior representation 𝑏 ∈ R5.

4.4 Behavior Discovery
Inspired by prior work [31], we use a tournament-style genetic
algorithm to evolve our controllers under the objective function
in Equation 3. We start with an initial population of 50 controllers
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Figure 3: Discovered Behaviors. Behaviors a-c were automatically discovered and deployed on HeRo+ Robots using Real2Sim2Real (RSRS)
Representation Learning for Behavior Discovery. Behaviors d-e were discovered in simulation for a simulator without RSRS improvements,
but could not be deployed to the real world and were not discovered when RSRS was added. (a) Dispersal: Agents cover the environment by
moving away from other robots. (b) Cyclic Pursuit: Agents form a circular chain and revolve around the center. (c) Aggregation: Agents
cluster together in the middle of the environment. (d) Milling: All agents revolve around the centroid of the swarm, but they do not form a
perfect circle like cyclic pursuit. (e) Wall-Following: Agents slide along the walls and trace the outer edge of the environment.

randomly sampled from the controller space and run the evolu-
tionary search for 100 generations, each with a population of 50
genomes. At the end of every generation, the resulting behavior
videos from each controller are passed through the encoder (or
evaluated with the baseline metrics) and saved to the buffer for use
in novelty search. Following prior work [31], we compute novelty
(Equation 2) with respect to the 15 nearest-neighbors in the buffer
and use a same crossover rate of 0.7 and a mutation rate of 0.15.
Novelty search results in a buffer of 5000 controllers. The represen-
tations of these behaviors are then clustered using k-Medoids with
k=10, resulting in 10 behaviors (medoids) from the search that are
selected for evaluation in the real world.

4.5 Real-World Deployment
Aswe did not explicitly filter our behavior space before clustering, it
is likely that some behaviors found in behavior discovery will show
agents crashing into walls, not moving, or not producing a collective
behavior; we refer to these behaviors as Random behaviors. We
note that after behavior discovery, it is up to the discretion of the
human to determine which behaviors they want to try to reproduce
on the robots in the real world. For a fair evaluation, we reproduce
all non-random behaviors in the real world to assess the success of
our RSRS simulator design.

For each experiment, we record whether or not the behavior
was successfully reproduced in the real world and any adjustments
to initial conditions or controllers that were required to produce
the behavior. It should be noted that our assessment of behavior
reproduction is only considered with respect to the swarm’s high-
level behavior. As there will always be uncertainties in the real
world that cannot be modeled in simulation, we do not expect

perfect agent-level sim2real alignment and we do not measure how
accurately each robot follows its individual simulated trajectory.
Rather, our goal is to bring our simulator close enough to reality
that swarm-level behavior can be reliably reproduced on real robots.

5 RESULTS
Our results average 3 runs of behavior discovery for both the base-
line hand-crafted metrics and our self-supervised learned represen-
tation. Across both methods, k-Medoids returns 30 non-random
controllers for deployment and evaluation in the real world. We
show that our automated discovery can detect emergent behaviors
of Cyclic Pursuit (Cyc.), Aggregation (Agg.) and Dispersal (Disp.)
that can be deployed directly into the real world (Figure 3 a-c).
We first analyze the performance of our representation learning,
then discuss the behaviors that were discovered and successfully
deployed onto real-world robots. We also highlight results from an
additional study which supports the inclusion of RSRS design in
our approach, where we show two other behaviors, Milling and
Wall-Following (see Figure 3 d-e), that are also discovered by a
naive behavior search approach that does not use RSRS. While
interesting, these emergent behaviors cannot be deployed into the
real world, whereas all the emergent behaviors discovered via our
approach are directly deployable on our real robots.

5.1 Representation Alignment
Although we did not require any labeled data for training, we
evaluate how well our encoder performs using a set of 500 la-
beled testing videos. We first compute a set of representation-
specific confusion matrices (Figure 4), which indicate how often
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Figure 4: RepresentationConfusionMatrices for (left) the base-
line hand-crafted representations and (right) the self-supervised
representations on a held-out set of 500 labeled test videos. Classes
along the horizontal axis indicate the labeled class of an anchor be-
havior and the values along the vertical axis display the frequency
with which a behavior from the anchor’s class (on-diagonal) was
embedded closer to the anchor when compared with a behavior
from one of the other classes (off-diagonal). Larger diagonal values
indicate stronger within-class correlation in the embedded repre-
sentation space.

different examples of the same emergent behavior were embed-
ded closer together than a different emergent behavior. To eval-
uate the quality of our learned latent representation, we utilize
a triplet, ⟨𝑎, 𝑝, 𝑛⟩, consisting of an anchor (𝑎), positive (𝑝), and
negative (𝑛) example, where 𝑎 and 𝑝 have the same label and 𝑛

is a different label than both 𝑎 and 𝑝 . Under a correct learned
representation, we would expect the embedded representations
𝑎 and 𝑝 to be more similar in the embedding space than the em-
bedding of 𝑛 when compared to 𝑎 or 𝑝 . We adapt the triplet dis-
tance formation to create a representation confusion matrix, where
we evaluate all valid triplets in the labeled testing data defined
by {⟨𝑎, 𝑝, 𝑛⟩ ⊂ 𝑋test | 𝑎label = 𝑝label, 𝑎label ≠ 𝑛label}, and then test
to see if 𝑑𝑖𝑠𝑡 (𝑎, 𝑝) < 𝑑𝑖𝑠𝑡 (𝑎, 𝑛). We conduct this test for both the
baseline and self-supervised representation methods. We evaluate
the static hand-crafted metrics with a single evaluation and the
learned representation as the averages of 3 SimCLR training runs.

Figure 4 shows our findings for emergent behavior representa-
tion alignment, where we see that both methods display a clear
correlation within-behavior as shown by the high values on the di-
agonal. We find that, although the baseline metrics were specifically
crafted to reflect swarm behavior characteristics, the self-supervised
capabilities of SimCLR are able to perform with slightly better or
equal accuracy than the baseline for all non-random behaviors
(+16% cyclic pursuit, +0% aggregation, +5% dispersal), indicating
that the learned model can sufficiently capture behavioral seman-
tics using only self-supervised representation learning, and that it
outperforms the hand-crafted approach.

We also evaluate the representation of the labeled data from a
qualitative perspective by visualizing the embeddings in 2D space
using t-SNE dimensionality reduction [43]. The hand-crafted met-
rics (Figure 5a) show a clear ability to distinguish random behaviors
from cyclic pursuit and aggregation. However, the hand-crafted

Table 1: Discovered Behavior Frequency for novelty search with
k=10 behaviors returned in each trial. Results are averaged across
3 runs and displayed alongside the standard error.

Behavior Representation
Discovered
Behaviors

Hand
Crafted [9]

Triplet
Learning [31]

Self-Supervised
(ours)

Aggregation 4.33 ± 0.66 3.66 ± 0.66 2.0 ± 0.0
Cyclic Pursuit 0.66 ± 0.33 2.0 ± 0.0 1.0 ± 0.57
Dispersal 0.0 ± 0.0 0.0 ± 0.0 2.0 ± 0.57
Random 5.0 ± 1.0 4.33 ± 0.66 5.0 ± 1.0
Total Unique
(excl. Random) 1.6 ± 0.33 2.0 ± 0.0 2.6 ± 0.33

Table 2: Real2Sim2Real (RSRS) Experiments where our self-
supervised method is compared with and without the RSRS [44]
simulator improvements in 3 trials of behavior discovery. Although
the default simulator discovered additional behaviors, they could
not be produced in the real world. Legend: (✓) Behavior discovered
and one-shot deployed on real robots, (✓) behavior discovered
and deployed with 2-3 attempts, (✗) behavior discovered, but not
successfully deployed, (–) behavior not discovered. Multiple entries
per cell indicate that the behavior was returned from behavior
discovery more than once.

No RSRS
(Sim. Default) RSRS

Behavior Trial
1

Trial
2

Trial
3

Trial
1

Trial
2

Trial
3

Aggregation ✓✗ – ✗✗✗ ✓✓ ✓✓ ✓✓

Cyclic Pursuit ✗ ✓ ✓✗ ✓ ✓✓ –
Dispersal – ✓✓ – ✓ ✓✓✓ ✓✓

Milling – ✗ ✗✗ – – –
Wall Following ✗ ✗✗ – – – –

representation poorly differentiates between dispersal and random
controllers, which supports the findings of our quantitative data
(Figure 4a) that show that hand-crafted dispersal representations
are confused for random representations 27% of the time. Notably,
in Figure 5b, the learned embedding does still correctly differentiate
aggregation and cyclic-pursuit from random, but performs with
8% better accuracy when separating dispersal from random. Impor-
tantly, in both representation confusion and t-SNE evaluations, our
self-supervised model is being evaluated on data that was not seen
during training, indicating a strong ability to generalize.

5.2 Discovery and Deployment
We run behavior discovery 3 times for both the baseline metrics
and our learned representation. Each time, a set of 10 controllers
is output and categorized by behavior. The frequency of returned
behaviors is shown in Table 1. We find on average that the number
of behaviors extracted from each method appears to correlate very
closely with how the behaviors were distributed in the t-SNE vi-
sualization, with dispersal never being discovered in the baseline
method, as one might hypothesize based on Figure 5a. Though the
other behaviors vary consistently, it is also worth noting that both
methods return the same number of random behaviors on average.
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Figure 5: t-SNE Embeddings for the (a) baseline hand-crafted representations and the (b) self-supervised representations on a held-out set
of 500 labeled test videos. Qualitatively, the hand-crafted baseline is able to densely associate cyclic pursuit behaviors, but fails to differentiate
dispersal from random behaviors. In our approach, behavior features have more variance, but are more closely associated with behaviors
from the same class, notably dispersal, which is embedded more distinctly from random behaviors than in the baseline case.

From the 60 controllers examined in simulation, exactly 30 (15
from each method) were identified as non-random emergent behav-
iors. We directly deployed the same controllers found in simulation
on our HeRo+ robots in the real world. From the 30 non-random
controllers discovered in the RSRS simulator, we were able to one-
shot reproduce 70% (20) of them in the real world and 90% (27)
were successfully reproduced within 3 attempts, without any con-
troller or initialization adjustment. Our methods show the potential
for sim2real transfer in tandem with behavior discovery using the
RSRS method. We validate this further in a thorough ablation study
where we examine the importance of each improvement to our
simulator by deploying behaviors discovered under simulators with
incomplete RSRS measurements.

5.3 Importance of RSRS in Swarm Deployment
To demonstrate the importance of RSRS in our approach, we ran
3 additional trials of our self-supervised method on the original
simulator, with almost no RSRS improvements. To ensure a fair
comparison that has the potential to produce deployable behaviors,
we implement the physical dimensions of the original HeRo robots
and upper-bound the controller with the robot’s maximum forward
and angular velocities, but we do not include any of our measure-
ments for friction, reasonable speeds for sensing, or the augmented
geometry from the bump shield. Our experiments (Table 2) show
that a total of 18 non-random controllers were discovered, includ-
ing two behaviors that were not discovered in our RSRS behavior
discovery: wall following andmilling. Of the 18 controllers returned
from this ablation experiment, only 22% (4) of the behaviors could
be one-shot reproduced on the robots and 27% (5) were successfully
reproduced within 3 attempts. Compared to the default simulator,
the inclusion of RSRS improves the one-shot success rate by 48% and
the three-shot success rate by 63%.

Notably, neither wall following nor milling were reproduced
successfully, indicating that the RSRS behavior discovery did not

erroneously miss these behaviors—rather, these behaviors are arti-
facts of an imperfect simulator and are not achievable with the real
capabilities of our HeRo+ robots. For wall following, real-world
friction prevents agents from sliding along the walls of the envi-
ronment. Milling could not be achieved in the real world because
it leads to many head-on collisions between robots, which cannot
easily slip past one another as they can in the unrefined simulator.

6 CONCLUSION AND FUTUREWORK
We present Real2Sim2Real Behavior Discovery via Self-Supervised
Representation Learning and show the successful real-world de-
ployment of emergent behaviors discovered in simulation. We also
demonstrate that purely self-supervised learned behavioral repre-
sentations can be used in place of burdensome hand-crafted metrics
and outperform the hand-crafted metrics in terms of emergent be-
havior representation and discovery. In the future, we are excited
to apply our approach to novel swarm capability models, including
limited communication capabilities. We are also excited to study
the effect of the environment (E) on the possible emergent swarm
behaviors. Finally, we believe that behavior discovery has the po-
tential to enable swarm roboticists to discover novel ways of using
robots to accomplish interesting and useful tasks, enabling the
confident deployment of automatically discovered behaviors into
real-world scenarios. Future work should study specific tasks where
novelty and discovery can improve how we solve problems with
scalable swarms of low-cost, limited-capability robots.
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