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ABSTRACT
The embedding of Large Language Models (LLMs) into autonomous
agents is a rapidly developing field which enables dynamic, config-
urable behaviours without the need for extensive domain-specific
training. In our previous work, we introduced SANDMAN, a Decep-
tive Agent architecture leveraging the Five-Factor OCEAN personal-
ity model, demonstrating that personality induction significantly in-
fluences agent task planning. Building on these findings, this study
presents a novel method for measuring and evaluating how induced
personality traits affect task selection processes—specifically plan-
ning, scheduling, and decision-making—in LLM-based agents. Our
results reveal distinct task-selection patterns aligned with induced
OCEAN attributes, underscoring the feasibility of designing highly
plausible Deceptive Agents for proactive cyber defense strategies.
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1 INTRODUCTION
Autonomous agents are software or system entities that operate
independently in an environment, capable of autonomous decision-
making to achieve programmed objectives [5, 8]. In the domain
of cyber defense, Deceptive Agents have emerged as a novel class
of autonomous agent, designed to operate in decoy environments,
and intended to deceive adversaries by replicating plausible human
behaviours, thereby enabling an indistinguishable representation
of a digital environment that is entirely fictitious in nature [24].
The aim of these agents thereby is to effectuate plausible mimesis
for deception–a technique to signify the creation of a false belief
[30]. Therefore, Deceptive Agents are utilised to prolong attacker
engagement and support intelligence gathering efforts whilst si-
multaneously deterring adversaries from production environments.

Recent efforts have explored using large-scale, pre-trained lan-
guage models as the autonomous agent controller [27, 32, 46]. This
has resulted in a novel agent class referred to as Language Agents
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[42, 48]. A key rationale for using LLMs as the controller is that
the agent is able to exploit the underlying LLM’s extensive internal
model of the world and its ability to capture long-range dependen-
cies to support decision-making without domain-specific training
[45]. Prior research in this area has demonstrated great potential in
LLM-based agents completing often complex tasks which has subse-
quently led to the development of new frameworks and ’cognitive’
architectures [24, 42] which incorporate memory pipelines to aid
long-term consistent decision-making. Notably, the role of the LLM
is to provide both the decision-making and generative function in
conjunction, whose outputs remain consistent with each other.

An important use of Language Agents is the representation of
plausible human behaviour [24, 27, 28], often in collaborative and
interactive environments [23, 46, 52]. Such plausibility is crucial
for the success of Deceptive Agents, which rely on realism to dis-
tract and deceive adversaries [24]. A key challenge, however, lies in
crafting prompts that induce suitable personas in the LLM. While
previous work has documented various prompt-engineering strate-
gies for persona construction [27, 42, 47], there is limited system-
atic exploration of how different persona prompts influence agent
behaviour. One promising avenue is to leverage well-established
psychological frameworks—such as the Five-Factor OCEAN model
[6, 21]—as a foundation for persona prompt design.

Prior work on the SANDMAN architecture [24] demonstrated
that prompt-based personality induction significantly affects sched-
ule generation, showing how certain traits influence the creation
and arrangement of tasks. Building on this foundation, the present
study shifts focus from how schedules are generated to how they
are subsequently employed. Specifically, we investigate how in-
duced personality traits shape task selection and prioritisation in
LLM-based agents—a dimension of autonomous decision-making
that, to our knowledge, has not been previously examined. By tran-
sitioning from schedule generation to real-time decision-making
with a pre-generated schedule, we highlight that induced traits con-
tinue to guide an agent’s behaviour well beyond the initial planning
phase. Our core contributions are therefore:

• Proposing a method for measuring and evaluating the effect
of prompt-based persona induction in context-dependent LLM-
based agent decision-making;

• Evidence that prompt-based persona induction produces a sta-
ble yet non-deterministic effect on agent decisions that remain
aligned with the induced persona trait.

The paper is structured as follows: Section 2 outlines background
material and related work. Section 3 discusses the methodology,
including our novel analytical approach. Section 4 details the results
and discusses the findings. Lastly, Section 5 concludes the paper.
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2 BACKGROUND AND RELATEDWORK
Generative AI (GenAI) and LLMs have been used in various security
applications to automate and streamline complex tasks, including
software testing [12], log parsing [19, 41], and threat intelligence
analysis [2]. The extensive training of LLMs on internet-scale text
endows them with emergent capabilities beyond generation and
analysis. In many cases, LLMs appear to mimic or approximate
forms of complex reasoning to achieve long-term objectives within
interactive environments, often designed as multi-agent systems
to enable collaboration [23, 27, 32, 46, 52]. However, the exact na-
ture of these ‘reasoning’ capabilities–whether true reasoning or
sophisticated pattern-matching–remains a subject of debate [4].
Nonetheless, this capacity has given rise to a novel class of AI-
enabled software agents known as LLM-based agents [11] or Lan-
guage Agents [42]—systems that use LLMs as a core computational
unit to reason, plan, and act.

Conventional autonomous agents excel at repetitive tasks in
well-structured environments using heuristic policies or learned
behaviours within defined constraints [17, 22, 39]. By contrast, Lan-
guage Agents leverage the adaptability and expansive knowledge
of LLMs, enabling natural interactions and a broader range of tasks.
This flexibility stems from the transformer-based architecture [45],
combined with extensive training on large-scale text corpora, al-
lowing them to perform diverse functions, including reasoning,
planning, and dynamic interactions within their environment.

It is for this reason the SANDMAN Deceptive Agent framework
[24] adopts an LLM-based agent approach to construct highly plau-
sible simulacra of humans interacting with systems, acting as a
honeypot with an enhanced degree of fidelity, depth, variance, and
non-determinism to lure would-be attackers. A high level of plau-
sibility is required to maintain the attacker’s interest, enabling
long-term intelligence gathering of the attacker’s tools, tactics, and
procedures (TTPs). In this context, Deceptive Agents are purposed
to behave similarly to gray agents (computer-generated entities
designed to simulate realistic, semi-adversarial participants) or non-
player characters utilised in cyber-based exercises and autonomous
cyber operations, such as the GHOSTS framework [44]. Importantly,
it is the LLM’s capability to mimic human behaviour which makes
them particularly useful for this novel form of automated deceptive
behaviour.

Research has shown that LLMs can plausibly mimic human be-
haviours across various contexts, from cognitive tests and reason-
ing tasks [1, 3, 7, 49, 51] to complex simulations like social science
experiments and micro-societies [27, 28, 54]. Initial studies explor-
ing the personalities of LLMs, inherently embedded or externally
induced, have utilised psychometric tests such as the Big Five In-
ventory (BFI) [15] and IPIP-NEO [10, 16] to measure personality
traits [14, 40]. The lexical hypothesis of personality, positing that
significant personality traits are encoded in language, provides
a theoretical foundation for studying how LLMs might embody
human-like traits [9, 33, 38].

These studies have demonstrated that LLMs, particularly pre-
trained language models, implicitly encode aspects of human per-
sonality [40]. Moreover, systematic prompt engineering has been
shown to be an effective approach toward personality trait induc-
tion, leveraging the vast scale and pre-trained knowledge of LLMs

without the need for model parameter adjustments [14]. While
these studies have successfully demonstrated that LLMs can ex-
hibit synthetic personalities consistent with human psychologi-
cal constructs, they have focused on measuring personality traits
through psychometric inventories rather than exploring how in-
duced personality traits affect behaviour in complex agent-based
tasks [14, 31, 40].

In the context of Language Agent systems [42], the impact of
induced personality on LLMs—particularly regarding autonomous
planning and scheduling—remains underexplored. While agent-
based implementations require consistent and predictable behaviours
aligned with specific objectives [48], few studies have evaluated
how induced personality traits affect decision-making, task priori-
tisation, and overall agent performance in these frameworks.

Our previous work introduced ‘Deceptive Agents’—LLM-based
systems designed to mimic human behaviour to deceive adversaries
[24]. However, it primarily addressed forward task planning and
scheduling without examining how induced personality traits in-
fluence autonomous decisions. Although recent studies have begun
to simulate human personality traits in LLMs [14, 37], empirical
evidence on how these traits affect agent-based decision-making
remains scarce. Understanding how personality induction shapes
LLM-based agent behaviour is crucial not only for enhancing the
plausibility of Deceptive Agents [24], but also for enabling greater
control over how task selection and prioritisation align with the
induced personality in real-world scenarios. Accordingly, this study
evaluates how induced personality traits influence decision-making
in LLM-based agents, offering both empirical evidence of their im-
pact and practical mechanisms for exerting control over these traits
in real-world scenarios.

3 METHOD
In our prior work, a novel method to assess the impact of prompt-
based persona induction using the OCEANmodel on an LLM-based
agent’s forward task planning was proposed [24]. In this instance,
the LLM-based agent was asked to construct a schedule of activites
for a typical work-oriented day, based on a defined set of activities to
choose from (e.g., taking a break, having lunch, writing a document,
sending an email etc.). The initial, naive approach taken was then
to execute these tasks as per the constructed schedule. However,
this would not take into account the current context, or persona, of
the Deceptive Agent when it became time to execute the activity
from the schedule. This work therefore looks to expand upon this
aspect, exploring the impact of prompt-based persona induction on
activity selection, given the end-goal of each agent is to complete
all the activities in a given schedule.

3.1 Experimental Process
To evaluate the effect of prompt-based persona induction on activity
selection, a series of 500 work-oriented, daily schedules were gen-
erated by an LLM, each containing a range of activities which can
be classified as either work (answering emails, writing a document)
or personal (taking a break, having lunch), similar to activities used
in previous research with LLM-based agents which adopt planning-
based behaviours and simulate aspects of human behaviour [27, 32].
These 500 schedules were all varied in activity frequency, duration,
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ordering and type, and the schedule start time. The schedules were
formatted in a machine-readable JSON format, with each activity
being given a unique identifier (UID) to support systematic analysis.
UIDs are generated based on a SHA-512 checksum of the task name
and its assigned time. These machine-readable schedules then be-
came the agent’s ‘to-do’ list with the agents’ goal of undertaking
all the activities on the to-do list.

In order to complete the to-do list, the language agent proceeds
through a series of decision-cycles. At each decision-cycle, the
agent is presented with the following zero-shot prompt format,
comprising the components listed below in the specified order:
• Personality: A zero-shot expression of the intended persona,
using either the positive or negative variant of the relevant per-
sonality trait from the OCEAN model, formatted according to
the approach previously described in Newsham et al. [24].

• Current Time:A reference timestamp that grounds the decision-
cycle chronologically, obtained by adding the duration of each
completed task to the schedule’s initial start time.

• Remaining To-Do List: A JSON-based overview of all pending
tasks, expressed in the format of: Task Name (Duration), UID.

• Completed List: A JSON-based record of tasks in the sequence
they were chosen and finished, formatted as: Task Name (UID).

• Instructions: Straightforward directives—such as “select the
next task to perform” and “return only the task UID with no
additional information”—urging the agent to consider only the
contextual details provided.
The cyclical experimental process is shown in Figure 1. The per-

sona statement is always supplied first to emphasise its importance
in the LLM’s reasoning. The number of decision-cycles equals the
total number of tasks in the to-do list; an experimental run con-
cludes only once all tasks are completed, with no option to skip any.
The sole experimental variable is the personality trait, which re-
mains fixed for each run and across all 500 schedules, ensuring that
any effects of induced personality are both isolated and measurable.

Figure 1: Decision-making task to be performed by the LLM
featuring Agreeableness (Positive) as the induced trait.

3.2 Prompt-Based Persona Induction
The prompt-based persona induction schema follows the one used
inNewsham et al. [24]. This uses the five-factormodel of personality
[20, 21], commonly known asOCEAN (Openness, Conscientiousness,
Extraversion, Agreeableness, Neuroticism). The experiment induces
personalities one trait at a time in one of two directions: forward
(e.g., extraverted) or reverse (e.g., introverted). This method aligns

with systematic approaches emplopyed in previous research on
inducing personality traits in LLMs [14, 24, 40].

The schema from our prior work [24] combines the naive descrip-
tors and word-based characteristics identified in [14] to construct
personality trait statements. For instance, a personality trait of
Extraversion, would be defined as follows:
• Naive: "Imagine you are an extraverted person."
• Words: "...characterised by being outgoing, energetic, public."
• Combined: "Imagine you are an extraverted person, charac-
terised by being outgoing, energetic, public."
This results in 10 experimental conditions, each representing

one of the five personality traits (Openness, Conscientiousness,
Extraversion, Agreeableness, Neuroticism) induced in a given di-
rection (Forward:Positive, or Reverse:Negative), and is therefore
consistent with prior research concerning the induction of person-
ality traits in LLMs [14, 37, 40]. The experiment also generates a
control or ‘baseline’ set of outputs used for comparison. The base-
line outputs are generated in the same way but the LLM is not
provided with a personality statement to consider.

The work thereby exploits the inherent non-determinism in
LLMs, characterised by variability in outputs even with identical
prompts [26]. Moreover, it also explores the impact of variation
in the LLMs hyperparameters on the different induced personas.
Specifically, we explore changes in the temperature value.

3.3 Analytical Approach
A significant challenge of this experiment is how to measure the
effect of the induced persona on task selection. To acheive this,
the to-do list is conceived as a sequence defined by the order of
the unique identifiers (UIDs) of its activities. The complete set of
decision-cycles is considered a transformation process. Finally, the
completed list is treated as a newly generated transformed sequence
defined by the new order of UIDs. This conceptualisation enables
the analysis of two key properties of the transformation process.
The first of concern is the plausibility of the transformation, that is,
to what extent is the transformation ‘behaviour’ consistent with
the induced personality trait. The second is determining the extent
to which this activity selection process transforms the to-do list.
By having measures of this transformation, it becomes possible to
assess whether persona-based transformation is statistically signif-
icant from the baseline (no induced person) transformation. The
analytical approaches here represent a novel contribution to ap-
proaches to systematically assess the impact of prompt engineering.

To assess plausibility, we use measurement of movement deltas,
which quantify the shifts in activity positions before and after the
persona-based transformation. The UID of the activity is used to
index and calculate the movement delta based on the initial and the
resultant transformed position. Negative movement deltas indicates
an activity is moved earlier and therefore considerered to be priori-
tised, and a positive movement delta indicates an activity is moved
later and therefore is deprioritised. The traits of Conscientiousness
and Extraversion serve as the central focus in this analysis, which
are hypothesised to affect task selections related to work efficiency
and social interaction, respectively [13, 18, 50].

Given the to-do and completed lists are treated as sequences
defined by their UIDs, it is possible to apply standard approaches of
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sequence comparison for similarity and difference. Prior to the ex-
perimentation, it was not clear which standard measure of sequence
similarity would yield the greatest analytical worth. Therefore, the
following approaches were used to to produce quantitative assess-
ments of the sequence transformation:

• Longest Common Substring (LCSS): Finds the longest se-
quence of consecutive elements common to both sequences. As-
sesses impact on maintaining uninterrupted task sequences, fo-
cusing on contiguous matches.

• Longest Common Prefix (LCP): Finds the longest initial seg-
ment common to both sequences. Reflects initial decision-making
patterns by comparing the start of both sequences.

• Levenshtein Distance: Minimum number of single-character
edits (insertions, deletions, or substitutions) required to transform
one sequence into another. Provides a comprehensive view of all
changes needed [53].

• Longest Common Subsequence (LCS): Measures similarity by
finding the longest subsequence common to both strings. Indi-
cates order preservation in task selection by identifying deletions
and additions [29].

• Similarity Ratio (SR): Normalised measure derived from LCS
length. Evaluates similarity between to-do and completed lists
by considering deletions and additions.

• Hamming Distance: Number of positions at which the corre-
sponding elements differ. Applicable only for sequences of the
same length and focuses on substitutions.

For each directional personality trait, 500 measurements of each
metric were produced enabling a statistical significance test of the
impact of the persona induction against the baseline.

4 RESULTS
In this section, we present the outcomes of our analyses, which
are divided into two key parts corresponding to the analytical ap-
proaches outlined earlier. Firstly, we explore the plausibility of
the observed movement delta shifts in task prioritisation by the
LLM after the induction of specific personality traits. This analysis
focuses on evaluating whether the LLM’s behaviour aligns with
established psychological understandings of Conscientiousness and
Extraversion, particularly in relation to work-oriented and socially-
related tasks, respectively. The goal here is to assess whether the
LLM prioritises tasks in a manner consistent with the traits it has
been induced with, thereby providing insights into the model’s abil-
ity to mimic human-like decision-making patterns. Subsequently,
we turn our attention to a comprehensive statistical analysis that
examines the broader impact of inducing personality traits across
all five dimensions of the OCEAN model [6, 21], adopting a sim-
ilar approach to previous research on personality traits in LLMs
[14, 24, 37, 40]. Using a suite of quantitative measures specifically
designed to assess transformations in the overall ordering of tasks,
we evaluate how the induced personality traits influence the LLM’s
task selection behaviour compared to a baseline condition, where
no specific traits were introduced. This approach provides a robust
framework for measuring changes in the sequential structure of the
schedules, allowing us to quantify the consistency and reliability
of personality-driven modifications in LLMs.

4.1 Plausibility Analysis
As discussed, to evaluate the impact regarding the plausibility of
induced personality traits on the target LLMs, the movement delta
shifts of individual tasks is analysed. As previously defined, move-
ment delta shifts are the direction and magnitude of the change in
task order from the initial to-do list to the completed list after the
LLM processes and transforms the task execution sequence. These
shifts are examined to determine if they align with the expected
priorities of the induced traits. For example, an LLM with high
Conscientiousness (CON-POS) is expected, given the personality
schema and method of induction, to prioritise tasks requiring organ-
isation, discipline, and hard work, such as work-related activities
[50]. Movement delta shifts are quantified by calculating the mean
shift (𝜇) for each task, where negative 𝜇 values indicate prioritisa-
tion (the task appears earlier in the completed list), and positive 𝜇
values suggest deprioritisation.

In this analysis, we hypothesise that an LLM induced with high
Conscientiousness will prioritise work-centric tasks, while one
induced with high Extraversion will favour socially engaging activ-
ities. In our analysis, tasks relevant to these traits are highlighted
in yellow, while others are shown in blue. Given the advanced rea-
soning capabilities of the GPT-4o model, our analysis is restricted
to this model, aiming to determine the plausibility of the LLM’s
decision-making behaviour in aligning with expected task prioriti-
sation patterns.

4.1.1 Conscientiousness:Work-related Activities. Work-related tasks
(highlighted in yellow) made available to the LLM include: Email,
Planning, Work, Team Collaboration, Meeting, Research. Figure 2
below illustrates the movement delta shift for all tasks following
positive induction of Conscientiousness.

Figure 2: Movement Deltas: Positive Conscientiousness (GPT-4o).

The degree of plausibility is inferred by comparing the LLM’s
task prioritisation to established psychological understandings
of the specific trait induced. To justify our focus on the trait of
Conscientiousness in the context of work-related tasks, it is a trait
identified as a key non-cognitive predictor of occupational perfor-
mance and encompasses traits such as diligence, responsibility, and
self-control [13, 35, 50]. Therefore, following a positively-reinforced
induction of this trait, it is logical to expect prioritisation of work-
related tasks. This predicted effect is clearly demonstrated in Figure
2 where the LLM (GPT-4o) clearly favours work-related tasks over
others which may be considered non-work-related, such as Call,
Reflective Time, and Exercise.
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In contrast, an individual low in Conscientiousness may display
disorganisation, a lack of discipline, and general disregard for work-
related responsibilities [13, 36, 50]. As shown in Figure 3, the LLM
deprioritises work-related tasks in favour of non-work-related ac-
tivities when negatively induced, such as Personal Time, Reading,
and Social Media, demonstrating a significant shift in behaviour.

Figure 3: Movement Deltas: Negative Conscientiousness (GPT-4o).

4.1.2 Movement Delta Shift: Work. To provide a more comprehen-
sive and task-specific analysis, we examine the movement deltas
for theWork task across all experimental conditions, as shown in
Figure 4. This figure compares the shifts observed for the GPT-4o
model (blue bars) with those for the GPT-3.5-Turbo model (red bars),
with error bars indicating the standard deviations.

Figure 4: Movement Deltas: Work (GPT-4o & GPT-3.5-Turbo)

Figure 4, above, highlights a stark contrast in behaviour be-
tween GPT-4o and GPT-3.5-Turbo. GPT-4o shows greater alignment
with expected behaviour based on the induced traits, particularly
Conscientiousness, exhibiting more dynamic movement delta shifts,
whereas GPT-3.5-Turbo appears more deterministic, with minimal
notable effects across the conditions.

4.1.3 Extraversion: Social Activities. Socially-related tasks (high-
lighted in yellow) made available to the LLM include: Team Collab-
oration, Meeting, Call, and Social Media. Figure 5 represents the
movement delta shift following positive induction of Extraversion.

As expected, the LLM prioritises social tasks, reflecting the core
aspects of Extraversion, such as sociability and reward sensitivity
[18]. This is evident in the prioritisation of tasks like Team Collabo-
ration, Meeting, and Call, along with other related activities such as
Coffee Break, with slight increases in Exercise and Personal Time.

Conversely, as shown in Figure 6, when negatively-reinforcing
the trait of Extraversion, the LLM deprioritises socially engaging
tasks, instead favouring more solitary activities such as Reflective

Figure 5: Movement Deltas: Positive Extraversion (GPT-4o).

Time, Personal Time, and Reading. This shift suggests that the
LLM adopts introverted tendencies, prioritising tasks that are less
socially oriented.

Figure 6: Movement Deltas: Negative Extraversion (GPT-4o).

In summary, these results suggest that the method of trait induc-
tion used in this experiment effectively steers the LLM’s behaviour
in a manner consistent with the induced personality traits. The
LLM’s prioritisation of tasks is driven by the personality it has been
induced with, without direct instruction to prioritise tasks rele-
vant to that personality. For instance, after positive induction with
Extraversion, the LLM naturally favors social-related tasks, leading
to their earlier appearance in the completed list, as indicated by
negative mean (𝜇) movement delta shift values.

4.2 Transformation Analysis
Experimental results are normalised to facilitate analysis and en-
hance the clarity of visualisations. All quantitative outcomes are
scaled from 0 to 1, enabling a clear comparison of the LLM’s task
selection behaviour. These results illustrate whether the LLM tends
toward perfect alignment with the to-do list or no alignment. For
similarity measures such as LCSS, LCP, and SR, a value of 1 indi-
cates perfect alignment with the to-do list, signifying that the LLM
follows the original sequence exactly. In contrast, for distance mea-
sures like LEV and HAM, a value of 0 represents perfect alignment,
meaning no deviations from the original sequence are observed.

4.2.1 Effect of Sampling Temperature on Sequence Alignment. In-
ference hyperparameters such as sampling temperature, top-k sam-
pling, repetition penalty, and maximum token length can be fine-
tuned to modify the LLMs output at runtime [34, 43]. Whilst the
focus of this study is centred on the effect of induced personality
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Table 1: Normalised GPT-4o and GPT-4o-Mini results with adjusted sampling temperatures on neutral personality experiment.
Temperature (𝜏) range: 0.0 to 1.6. Values are aggregated on the entire sample of pre-generated schedules (𝑛 = 500).

𝜏
GPT-4o (𝜇 / 𝜎)

𝜏
GPT-4o-Mini (𝜇 / 𝜎)

LCSS LCP LEV SR HAM LCSS LCP LEV SR HAM

0.0 0.6350.224 0.6040.260 0.2010.144 0.3210.220 0.8730.095 0.0 0.5220.249 0.4760.288 0.2960.178 0.3930.245 0.8290.111
0.2 0.6330.245 0.5990.268 0.2070.148 0.3130.224 0.8750.094 0.2 0.5060.252 0.4730.285 0.3050.181 0.4050.244 0.8240.116
0.4 0.6240.242 0.5930.274 0.2090.147 0.3100.228 0.8790.093 0.4 0.5150.250 0.4730.289 0.2870.175 0.3840.229 0.8360.111
0.6 0.5880.222 0.5610.252 0.2320.150 0.3280.213 0.8660.097 0.6 0.5010.262 0.4580.293 0.3170.202 0.4080.248 0.8190.127
0.8 0.5780.237 0.5580.258 0.2350.154 0.3390.229 0.8570.103 0.8 0.4940.242 0.4500.283 0.3200.188 0.4290.249 0.8060.127
1.0 0.5620.218 0.5270.255 0.2500.157 0.3490.231 0.8510.104 1.0 0.4540.234 0.4020.271 0.3510.205 0.4490.247 0.7990.127
1.2 0.5410.234 0.5050.267 0.2630.157 0.3660.227 0.8420.106 1.2 0.4700.231 0.4280.263 0.3370.188 0.4320.228 0.8050.121
1.4 0.5410.236 0.5020.272 0.2770.165 0.3920.240 0.8390.105 1.4 0.4080.220 0.3560.255 0.3760.177 0.4940.233 0.7750.121
1.6 0.4640.223 0.4200.259 0.3180.168 0.4460.238 0.8100.108 1.6 0.3830.206 0.3160.250 0.4120.204 0.5300.237 0.7510.132

Figure 7: Aggregated movement deltas per experimental condition.
X-axis: Tasks. Y-axis: Average (𝜇) movement delta shift, ranging from
-15 to +15. Error bars denote deviation (𝜎).

traits, it remains significant to acknowledge the influence of these
hyperparameters with regards to the LLMs performance. Hyperpa-
rameters affecting repetition penalties and token lengths are irrele-
vant in this experiment due to its programmatic design. However,

sampling temperature and top-p (nucleus sampling) are directly rel-
evant as these are hyperparameters used to control the randomness
and creativity of generated text [25, 34]. For GPT-based models, it
is advised to only adjust one of these parameters, not both [25].
Adjustment of sampling temperature is therefore opted for here.

To empirically investigate the influence adjusted sampling tem-
perature has upon the performance of a GPT-based LLM in the
context of our experiment, we perform the experiment outlined in
Section 3, albeit with a strict focus on the control condition–where
no personality is induced. The purpose of this evaluation is to test
the working hypothesis that increased temperature settings within
GPT-based models result in greater levels of non-determinism
[25, 26] whilst simultaneously determining the robustness of our
measures. By systematically adjusting the sampling temperature,
we can observe whether the LLMs adherence to the original to-do
list diminishes as randomness increases, thereby validating the ef-
fectiveness of our chosen metrics in capturing alignment with the
task sequence.

The results, presented in Table 1, demonstrate a clear inverse
relationship between temperature settings and the LLMs’ adher-
ence to the original to-do list across both GPT-4o and GPT-4o-Mini
models. Notably, GPT-4o consistently starts with higher alignment
metrics, such as LCSS (0.652) and LCP (0.615) at T0.0, compared to
GPT-4o-Mini, which begins at 0.528 and 0.489, respectively. These
initial differences suggest that GPT-4o is inherently more capable
of maintaining task sequences, likely due to its larger scale or more
robust sequence retention abilities [25]. As temperature increases
from 0.0 to 1.6, both models show a consistent decrease in LCSS,
LCP, and SR, reflecting reduced similarity with the original task
order. Conversely, the Levenshtein Distance (LEV) increases with
higher temperatures in both models, indicating a greater number
of edits needed to align the completed tasks with the to-do list.
Interestingly, Hamming Distance (HAM) shows a slight decrease
in both models, suggesting that while overall task order becomes
more randomised, specific tasks may still align by chance at higher
temperatures. Despite these nuances, the findings robustly support
the hypothesis that higher temperatures introduce greater vari-
ability and less determinism in the LLMs’ task selection behaviour,
with GPT-4o-Mini demonstrating a baseline tendency towards less
deterministic outputs even at lower temperatures.
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Table 2: Normalised GPT-4o and GPT-4o-Mini results per metric with 𝜏 = 1.0 across all groups (OCEAN → Low/High).

𝑇 Dir.
GPT-4o (𝜇 / 𝜎)

𝑇 Dir.
GPT-4o-Mini (𝜇 / 𝜎)

LCSS LCP LEV SR HAM LCSS LCP LEV SR HAM

O High 0.120.05 0.030.04 0.790.10 0.870.09 0.460.09 O High 0.140.05 0.050.06 0.720.11 0.860.10 0.530.08
Low 0.190.10 0.160.12 0.650.12 0.740.12 0.550.10 Low 0.200.11 0.160.13 0.620.12 0.730.13 0.590.10

C High 0.220.12 0.180.14 0.600.15 0.700.15 0.610.11 C High 0.280.17 0.240.18 0.480.18 0.610.20 0.710.12
Low 0.100.03 0.000.01 0.890.07 0.930.07 0.320.06 Low 0.100.04 0.000.01 0.880.07 0.940.06 0.380.07

E High 0.120.06 0.030.07 0.790.10 0.870.09 0.450.08 E High 0.140.05 0.030.04 0.740.09 0.880.09 0.510.07
Low 0.120.05 0.050.06 0.810.09 0.870.10 0.430.07 Low 0.120.04 0.070.05 0.820.08 0.880.08 0.440.08

A High 0.200.10 0.170.13 0.620.11 0.710.12 0.590.09 A High 0.190.08 0.140.10 0.620.13 0.760.13 0.610.09
Low 0.170.08 0.110.10 0.660.12 0.780.11 0.560.10 Low 0.150.05 0.070.07 0.680.11 0.820.11 0.570.08

N High 0.220.10 0.160.13 0.610.12 0.730.14 0.590.10 N High 0.180.08 0.140.10 0.610.12 0.730.13 0.600.09
Low 0.360.16 0.330.19 0.460.14 0.570.17 0.710.10 Low 0.300.16 0.270.18 0.480.15 0.580.17 0.700.11

B N/A 0.560.22 0.530.26 0.250.16 0.350.23 0.850.10 B N/A 0.450.23 0.400.27 0.350.20 0.450.25 0.800.13

4.2.2 Transformation Significance: Experimental Conditions vs. Con-
trol. The sequence difference (or similarity) metrics were also ap-
plied to assess whether the induction of a personality has a material
impact on the populations of the measurements of the selected
metrics. For this analysis, the LLMs GPT-4o, GPT-4o-mini and GPT-
3.5-Turbo were assessed using the experimental framework out-
lined previously. Figure 8 illustrates the corresponding distributions
for GPT-4o per each of the key metrics (LCSS, LEV, HAMMING,
RATIO) only. GPT-4o-Mini produced similar outputs to GPT-4o
which is expected given it is a more compact model, sacrificing
some performance for greater accessibility and affordability. Thus,
visualised results for GPT-4o-Mini were excluded. In relation to
GPT-3.5-Turbo, a predecessor model, the observed results across
all metrics did not differ substantially, despite being found to be
statistically significant in most cases (See 4.2.4).

In this analysis we seek to assess whether the induction of a
persona creates a statistically significant different population of
the metrics when compared to the baseline. The Null hypothesis
states there will be no difference to the baseline population with the
Alternative Hypothesis being that the induced personality trait will
produce a different population of measurements. To test this, an
independent two-sample Welch’s t-test is performed between each
experimental condition and the control for each measure. For a sin-
gular model (i.e., GPT-4o), this results in 50 pairwise comparisons (5
traits x 2 directions x 5 measures). For example, "LCSS for Openness
(High)" is compared against "LCSS for Baseline". To control for the
family-wise error rate (FWER) due to multiple comparisons, the
Bonferroni correction is applied, controlled by the following:

FWER = 𝑃

(
𝑚0⋃
𝑖=1

{
𝑝𝑖 ≤

𝛼

𝑚

})
≤

𝑚0∑︁
𝑖=1

𝑃

(
𝑝𝑖 ≤

𝛼

𝑚

)
=𝑚0

𝛼

𝑚
≤ 𝛼

where 𝑝𝑖 is the p-value for the 𝑖-th test, 𝑚 = 50 is the total
number of tests, and 𝛼 = 0.05 is the overall significance level. With
50 tests, the alpha level (𝑝 ≤ 0.05) is then adjusted to 𝑝 ≤ 0.001.

4.2.3 GPT-4o and GPT-4o-Mini. For GPT-4o, the Null hypothesis
is rejected on all experimental conditions, potentially attributed
toward the significantly different results for the baseline group on
all measures. For GPT-4o-Mini, the Null hypothesis is rejected on all

experimental conditions. Similar to GPT-4o, this may be attributed
toward the significantly different results for the baseline group on
all measures. All results are displayed in Table 2.

4.2.4 GPT-3.5-Turbo. Null hypothesis is rejected on 41 experimen-
tal conditions, accepted on 9. Statistically insignificant results, dis-
played in Table 3, are not emboldened and marked with an asterisk
(*). Whilst the statistical test results indicate a significantly different
task ordering for the majority of experimental conditions and quan-
titative measures, the absolute difference, between all experimental
conditions and that of the control, are far less considerable when
compared to GPT-4o and GPT-4o-Mini (Table 2).

Table 3: Normalised GPT-3.5-Turbo results per metric with 𝜏 = 1.0
across all experimental groups (OCEAN → Low/High). B = Control1.

GPT-3.5-Turbo (𝜇 / 𝜎)

LCSS LCP LEV SR HAM

O High 0.1110.04 0.001*0.006 0.8590.082 0.930.064 0.4040.077
Low 0.116*0.048 0.0080.023 0.8170.089 0.9130.07 0.4470.077

C High 0.116*0.042 0.0020.011 0.8230.091 0.910.072 0.4320.076
Low 0.1120.042 0.0020.011 0.8410.085 0.9150.073 0.410.076

E High 0.1150.039 0.0010.007 0.830.089 0.9160.07 0.4320.079
Low 0.1150.041 0.006*0.019 0.8550.083 0.9250.07 0.4160.072

A High 0.117*0.04 0.0040.016 0.8220.09 0.9140.074 0.4380.076
Low 0.1140.043 0.0030.012 0.8430.084 0.9280.063 0.420.078

N High 0.1120.041 0.005*0.02 0.8390.085 0.920.072 0.4250.072
Low 0.119*0.047 0.005*0.018 0.8020.098 0.913*0.078 0.4580.088

B1 N/A 0.1240.044 0.0080.025 0.7760.093 0.8920.082 0.4720.081

5 CONCLUSION
This study proposed a method to quantitatively measure the ef-
fect of prompt-based personality induction on LLM-based agent
decision-making in task selection, scheduling, and planning. While
the display of synthetic personality in LLMs is known, no studies
have empirically focused on evaluating how inducing personality
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Figure 8: Kernel density estimation plots for GPT-4o across all experimental groups (OCEAN → Low/High) per quantitative
measure, including the control. Each sub-plot visually represents the GPT-4o results provided in Table 2.

traits based on the Five-Factor OCEANmodel impacts critical agent
behaviours governing decision-making, particularly task selection.

Experiments with all OCEAN traits and a neutral control group
showed that personality induction leads to significant differences
in task prioritisation across GPT-4o, GPT-4o-Mini, and GPT-3.5-
Turbo models. Effects were more pronounced in GPT-4o models,
indicating their greater capacity for reasoning and exhibiting these
traits. Analysis specifically examined the degree of plausibility in
how the LLM-based agent prioritised tasks, assessing whether the
agent’s decisions aligned with contemporary psychological under-
standings of each trait. Our results showed that traits like Openness,
Conscientiousness, and Extraversion substantially impacted task pri-
oritisation, causing significant deviations from original schedules.
In contrast, Agreeableness and Neuroticism had less pronounced
effects, possibly due to LLMs being less receptive to these traits or
due to limitations in task relevance.

These findings show that large-scale, pre-trained language mod-
els like GPT-4o can exhibit personality traits, confirming previ-
ous studies and demonstrating impact within a downstream task.
Moreover, our validated personality induction method highlights
potential for enhancing autonomous agents in planning and sched-
uling, especially in systems performing tasks akin to humans. Our
contributions lay a foundation for integrating nuanced human-like
behaviours into autonomous systems, enhancing their effectiveness
in environments requiring sophisticated, plausible decision-making.

5.1 Ethical Considerations
This research aims to enhance the development of Deceptive Agents,
a novel class of LLM-based autonomous agents which are intended
to effectuate highly plausible simulacra of humans interacting with
digital systems for cyber defense through strategic deception [24].
Ethically, this approach operates on the principle of ‘rightful de-
ception’, where targets have no legitimate claim to truth or trans-
parency due to their unethical intent to access or damage systems
without authorisation. Whilst the intended use is strictly within a
defensive context, there exists the possibility that this work could
facilitate the generation of misinformation or enable tailored per-
suasion tactics, thereby exacerbating issues related to manipulation
and deceit in broader contexts [27]. Specifically, the ability to in-
duce personality traits within LLMs could be exploited to create
more convincing deceptive content, potentially undermining public
trust. It is therefore essential to implement safeguards and adhere
to ethical guidelines in any research or application involving the
induction of personality traits within LLMs to mimic human values,
thought patterns, and behaviour. This includes ensuring robust
oversight, bias mitigation, and alignment to prevent misuse.
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