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ABSTRACT
Efficient task allocation among multiple robots is crucial for opti-
mizing productivity inmodernwarehouses, particularly in response
to the increasing demands of online order fulfillment. This paper
addresses the real-time multi-robot task allocation (MRTA) prob-
lem in dynamic warehouse environments, where tasks emerge with
specified start and end locations. The objective is to minimize both
the total travel distance of robots and delays in task completion,
while also considering practical constraints such as battery manage-
ment and collision avoidance. We introduce MRTAgent, a dual-agent
Reinforcement Learning (RL) framework inspired by self-play, de-
signed to optimize task assignments and robot selection to ensure
timely task execution. For safe navigation, a modified linear qua-
dratic controller (LQR) approach is employed. To the best of our
knowledge, MRTAgent is the first framework to address all critical
aspects of practical MRTA problems while supporting continuous
robot movements.
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1 INTRODUCTION
Cooperative multi-robot systems are increasingly being utilized
across various domains, including transportation and logistics [7],
search and rescue operations [25], environmental monitoring [19],
precision agriculture [6], construction [27], and warehouse automa-
tion [10, 13]. These systems, characterized by the collaboration
of multiple robots to achieve shared objectives, offer substantial
benefits such as enhanced scalability & efficiency, and greater fault
tolerance, making them indispensable in dynamic environments.
Intricacies of Warehouse Management: Automating warehouse
operations with multi-robot systems presents a unique set of chal-
lenges, stemming from the complexities of spatial layouts, diverse

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

task demands, varying robot capabilities, and the critical need for
safe robotic navigation [4, 31]. These challenges can be broadly
divided into three key objectives: (a) Task Allocation, (b) Real-Time
Robot Assignment, and (c) Path Planning. While these objectives are
interrelated, each introduces distinct sub-problems that must be
resolved to achieve optimal warehouse performance. In a dynamic
warehouse setting, real-time task generation is vital because tasks
cannot be fully anticipated in advance. This unpredictability com-
plicates the planning process, necessitating the prioritization of
tasks based on their arrival times, required completion deadlines,
and the need to minimize the total travel distances of robots while
balancing the demands of ongoing tasks.

Moreover, the immediate and continuous allocation of robots to
tasks demands seamless coordination, regardless of whether the
robots are currently available or occupied. This emphasizes the
need for real-time synchronization across multiple objectives, all
while adhering to various physical and operational constraints. For
example, effective path planning requires the creation of collision-
free routes that navigate around static obstacles and account for the
movements of other robots. Furthermore, it is crucial to consider
the physical dynamics of the robots, such as acceleration, decelera-
tion, andmaneuverability-alongwith other practical considerations,
such as their state-of-charge (SOC). These factors, often overlooked
in existing warehouse management literature, are essential to the
planning process.

The intricate interdependence of these challenges highlights the
need for a sophisticated and adaptable multi-robot framework. Such
a framework must systematically address the complexities of task
allocation, real-time robot assignment, and path planning within
the constantly changing environment of an automated warehouse.
Neglecting the interconnected nature of these tasks often leads
to sub-optimal performance and inefficiencies, undermining the
overall effectiveness of warehouse operations.
Statement of Contributions: In this study, we present a self-play
inspired novel framework, MRTAgent, which employs a bi-level RL
strategy inspired to tackle the challenges of multi-task selection
and multi-robot allocation. MRTAgent is designed to handle real-
time task selection, dynamically allocate tasks to robots, and ensure
safe navigation, all while accounting for critical constraints such
as robot dynamics, charging needs, and specific task requirements.
MRTAgent consists of three key components: (a) Task selection agent
(Planner) to prioritize a task queued in the task buffer, (b) Robot
selection agent (Executor) to allocate a robot to the recommended
task, and (c) Navigator to plan collision-free trajectories of robots
while adhering to physical and SOC constraints. The framework
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Figure 1: Self-play inspired bi-level reinforcement learning agent for assigning robots to tasks within a dynamic environment

is highlighted in Figure 1. The primary contributions of our work
can be summarized as follows:
Coordinating RL agents for task and robot selections: Exist-
ing approaches for MRTA, such as in [2], primarily emphasize task
selection with the assumption that the chosen task will always be
assigned to an available (unoccupied) robot. Although this assump-
tion simplifies the problem, it is highly sub-optimal. For instance,
a robot might become available at a location far from the selected
task’s origin, while another robot in close proximity to the task
origin may soon become available. We alleviate this by introducing
heterogeneous RL agents, one each for task selection and robot
allocation. These RL agents are trained concurrently in our frame-
work in a self-play manner, gradually developing the coordination
between the two.
Collision-free, physics-constrained multi-robot navigation:
Practical robots do not operate in a grid world environment, al-
lowing for sudden grid changes in any of the feasible directions.
However, robots have some underlying dynamics and navigate
continuously. Instead of using collision-free navigation algorithms
applicable to grid worlds, we model these robots as double integra-
tor systems and use linear quadratic regulators (LQRs) with artificial
potential field (APF) for collision-free multi-robot navigation.
An end-to-end framework for MRTA: To the best of our knowl-
edge, our approach is the first to consider multiple echelons of
MRTA, requiring decision-making at each stage. We address every
aspect of MRTA, including robot allocation even when robots are
occupied, accounting for their SOC, underlying dynamics, and en-
suring collision-free navigation under actuation constraints. We
further validate our trained framework on datasets with distribu-
tional shifts, varying numbers of robots and tasks.

2 RELATEDWORKS
Efficient MRTA and path planning are crucial for optimizing or-
der fulfillment, resource management, and obstacle-free navigation
in industrial environments such as automated warehouses and
manufacturing plants. These processes ultimately enhance over-
all productivity, which has made MRTA a focal point of research
over the past two decades. Research efforts in this area range from

heuristic-driven approaches to contemporary learning-based meth-
ods [14]. Early work by [9] provided a comparative analysis of state-
of-the-art (SOTA) multi-robot coordination strategies within spe-
cific domain contexts. Current MRTA research primarily focuses on
two key elements: (a) model-driven optimization, as demonstrated
by [30], and (b) communication-efficient decentralized algorithms,
as seen in [2, 5].

The problem can also be framed as a multi-agent pickup and
delivery (MAPD) challenge, which has been studied through both
distributed and centralized approaches [17, 18, 26, 32]. However,
most existing research in this area has concentrated on offline
MAPD, whereas our approach emphasizes learning-based methods
for online task allocation. This focus is driven by the need for
reliable solutions in dynamic environments, where continually
solving optimization problems can be computationally intensive.

Recent advancements in reinforcement learning (RL) for solving
complex dynamic challenges have led to a trend toward learning-
based approaches for managing warehouse complexities [1, 2, 33].
These learning strategies address various aspects of end-to-end
warehouse management. For instance, [33] proposed a Q-learning
framework to generate collision-free, secure paths for multi-robot
systems. Conversely, the RL frameworks in [1, 2] focus on optimal
task selection but neglect task-to-robot assignment, assuming con-
stant robot availability post-selection. Additionally, these works
leverage𝐴∗ coupled with optimal reciprocal collision avoidance [3]
for collision-free navigation at the low-level path planning stage.

However, as previously discussed, most SOTA learning-based
warehouse management approaches, including those mentioned,
overlook a key benefit of RL: the ability to integrate multiple levels
of warehouse management, and consideration of robots’ constraints
during the training phase of the RL agent. For instance, the learned
policy in [1, 2] is limited in its applicability to realistic warehouse
scenarios due to the neglect of constraints related to robot availabil-
ity and SOC. Moreover, these approaches often aim for a seamless
sequential flow of tasks without considering their generation times.
Similarly, [22] utilizes a cooperative multi-agent RL framework
under the assumption that robots never collide. Much of the prior
work also neglects the complexities of robot dynamics in MRTA
for warehouse settings, often simplifying robots to point objects
or solving problems in basic square grid environments, without
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accounting for robot acceleration, deceleration, and collision risks
during path planning [21].

In our study, we address these gaps by incorporating task ar-
rival times to ensure timely task execution while considering prac-
tical factors such as robot availability, SOC, robot dynamics, and
collision-free path generation. Our framework also demonstrates ro-
bust performance under distribution shifts and with variable-sized
fleets. Our MRTAgent addresses these limitations by integrating ro-
bot dynamics into the navigation planning process using a linear
quadratic regulator (LQR)-based navigation path algorithm within
the RL agent framework. This ensures that path planning is both
effective and collision-free. Additionally, we design a reward struc-
ture that balances prompt task allocation with the shortest possible
execution duration for allocated tasks. This approach ensures com-
petitive runtime during the deployment phase, facilitating real-time
task selection and robot allocation, and collision-free navigation
considering physical dynamics through proposed MRTAgent.

3 PRELIMINARIES
3.1 States, Actions and Rewards
The problem ofMRTA can bemodeled as aMarkovDecision Process
(MDP) [24]. An MDP is denoted by the tuple ⟨S,A,PA , 𝑟 ⟩, where
S andA represent the finite sets of states and actions, respectively.
For any 𝑠, 𝑠′ ∈ 𝑆 , the transition probability from state 𝑠 to state 𝑠′
under the action 𝑎 ∈ 𝐴 is denoted by 𝑝𝑎 (𝑠, 𝑠′) ∈ 𝑃𝐴 . Finally, the
step reward associated with each state-action pair (𝑠, 𝑎) is depicted
by 𝑟 (𝑠, 𝑎). Below, we summarize the set of all possible states, ac-
tions, and rewards in the context of the MRTAgent validated within
warehouse environment settings.
States: At each time step, the warehouse environment is character-
ized by a comprehensive state that includes detailed information
about both tasks and robots. Incoming tasks are immediately stored
in a buffer, forming a limited-size look-ahead (LA) queue in a First-
In-First-Out(FIFO) manner. The Tasks RL agent, referred to as the
Planner, is trained to optimally select tasks from this queue based
on the current state of the environment. Simultaneously, the Robot
RL agent, referred to as the Executor, responsible for executing
tasks, selects most suitable robots to complete them.

The states of the Planner and Executor consist of the features
related to tasks in the LA (denoted by P) as well as the set of robots
(R). Each agent’s state, denoted as 𝑠𝑡 ∈ S at time-step 𝑡 , encom-
passes the following components: (a) origin coordinates of tasks
{𝑜𝑖 }, (b) destination coordinates of tasks {𝑑𝑖 }, (c) euclidean distance
information between task origin and destination {𝑘𝑖 }, (d) times-
tamp of task appearance in the LA queue {𝑙𝑖 }, (e) robot coordinates
{𝑝 𝑗 }, (f) robot availability and the anticipated time for ongoing task
completion {𝑟 𝑗 }, (g) robot charge percentage {𝑐 𝑗 }. Features (a)-(d)
are task-specific and collectively have a dimensionality of 6 for
each task. Conversely, features (e)-(g) are linked to robot-specific
attributes (dim. = 4 for each robot).
Actions: The MRTAgent consists self-play inspired bi-level RL agent;
planner and executor. The goal of the planner is to enhance task
assignment, thereby minimizing total operational time. The plan-
ner’s actions involve systematically selecting tasks from the queue
while the executor focuses on robot allocation, with the objective
of optimally assigning robots to the selected tasks to reduce overall

operational expenses, and task execution delays. Thus, the actions
executed in the environment consist of the selected task and its
corresponding robot pair.
Rewards: The step reward attributed to a task-action pair encom-
passes two distinct components. The initial component is calculated
based on the time it takes for the robot to travel from its current
position to the task’s starting point, termed travel time to origin
(TRTO). The second component is the time gap between task arrival
in the LA and the robot’s initiation of execution, denoted as the
total time gap for the task (TTGT). Let

(
𝑥𝑜𝑖 , 𝑦𝑜𝑖

)
and

(
𝑥𝑑𝑖 , 𝑦𝑑𝑖

)
repre-

sent the origin and destination coordinates of the 𝑖𝑡ℎ-indexed task.
Similarly, (𝑥𝑟 𝑗 , 𝑦𝑟 𝑗 ) indicates the current position of robot 𝑗 , which
can vary based on whether the robot is idle, performing tasks, or
at a charging location for recharging if needed. Additionally, we
introduce 𝑡stamp𝑖 and 𝑡exec𝑖 to denote the time when task 𝑖 appears
in the task allocation (referred to as LA) and the time at which
its execution begins, respectively. In each decision-making step,
we use the variable allotT to signify the index of the selected task
which then gets assigned to a robot selR. Furthermore, we utilize
the function 𝑑 [(𝑥𝑎, 𝑦𝑎), (𝑥𝑏 , 𝑦𝑏 )] to calculate the distance between
two points (𝑥𝑎, 𝑦𝑎) and (𝑥𝑏 , 𝑦𝑏 ) within our system. The step reward
for training the PPO agent is as follows:

𝑅step = −𝑑 [(𝑥𝑟selR , 𝑦𝑟selR ), (𝑥𝑜allotT , 𝑦𝑜allotT )]
−𝛼 ∗ (𝑡execallotT − 𝑡stampallotT ) (1)

The coefficient 𝛼 represents positive constant. The first term in (1)
corresponds to TRTO, while the second term is associated with
TTGT. This reflects the principle that tasks should not remain
unattended for too long.

4 OUR APPROACH
In this section, we introduce MRTAgent, a novel self-play-inspired
bi-level RL framework (see Figure 2) designed to optimize MRTA for
various industrial tasks. The MRTAgent is validated in warehouse
environments scenario and comprises two RL agents: (a) Planner,
and (b) Executor. Tasks are generated in real-time and initially
populate a main task buffer. The planner has access to a small LA
queue of tasks. When a task from LA queue is assigned to a robot
for execution, a new task from the buffer is moved into the LA
queue, making it available for selection by the Planner. If no new
tasks are available in the buffer to replenish the LA queue, task with
the longest duration in the LA queue is duplicated to maintain a
consistent queue length, thereby increasing its likelihood of being
selected by the Planner in subsequent steps. In the exceptional
scenario where both the LA queue and the task buffer are empty,
MRTAgent waits for a task to appear in the environment. The action
selection process operates across three hierarchical levels:
Task Selection: At each instant 𝑡 , the Planner selects a task from
the LA queue for assignment to one of the robots, guided by the
current state of the environment.
Robot Allocation: Upon task selection, the Executor identifies the
most suitable robot for task execution. This decision considers the
positions of all robots after completing their current assignments,
availability and SOC. Notably, the Executor does not wait for robots
to become available before making robot allocations, as the state
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Figure 2: Self-Play Motivated Bi-level RL Agent Architecture with trainable weights denoted by {𝑊𝑘 ,𝑊
′
𝑘
}

information includes time markers indicating when robots will be
free.
Navigation: To guide the robots’ movement, a linear quadratic reg-
ulator (LQR) based controller, augmented with potential functions
for coordinated collision avoidance, considering all its dynamics is
employed. This algorithm directs the robot from its current posi-
tion to the task’s starting point and subsequently to the destination,
ensuring collision avoidance with moving obstacles.

4.1 MRTAgent framework
Both Planner and Executor agents of the MRTAgent utilize Proximal
Policy Optimization (PPO) algorithm [28], with their architectures
depicted in Figure 2. Both the agents are trained using a self-play
inspired strategy, where one agent is actively trained while the
other operates in evaluation mode, alternating every 40 episodes.
This concurrent training framework ensures coordination between
the two agents, facilitating efficient convergence and optimization
of both the task selection and robot allocation processes.

4.2 Neural Network Architecture and Training
Planner and executor both employs a similar novel PPO-based
framework to facilitate online task selection and robot allocation.
This model architecture inspired from [1] is distinctly structured
into three core segments (see Figure 2). The first segment involves
the procedure of feature extraction, particularly focusing on at-
tributes related to robots and tasks. The embedding for robot at-
tributes is created using a sequence of four linear layers of di-
mensions [4, 16, 16, 1]. Concurrently, embeddings related to task
attributes are generated using a similar sequence of four linear
layers of dimensions [6, 16, 16, 1].

Let 𝐹𝑅
𝑗
and 𝐹𝑃

𝑖
represent the feature vectors for the robot 𝑗 ∈ R

and the 𝑖th-task for the planner and executor, then the associated
embeddings are defined as:

𝐸𝑃𝑖 = 𝑊𝑃2 ∗ ReLU(𝑊𝑃1 ∗ 𝐹𝑃𝑖 )
𝐸′𝑅𝑗 = 𝑊 ′𝑅2 ∗ ReLU(𝑊

′
𝑅1 ∗ 𝐹

𝑅
𝑗 )

The second module transforms the extracted embeddings by
concatenating the embeddings of robots and tasks for both planner

and executor. Subsequently, the concatenated feature is channelled
through a linear layer consisting 48 input neurons and 8 output
neurons with ReLU activation.

𝑎𝑃𝑖 = Sigmoid(𝑊𝑃4 ∗ Tanh(𝑊𝑃3 ∗ 𝐸𝑃𝑖 ))
𝑎′𝑅𝑗 = Sigmoid(𝑊 ′𝑅4 ∗ Tanh(𝑊

′
𝑅3 ∗ 𝐸

′𝑅
𝑗 ))

𝜋planner =

(∑︁
𝐸𝑅𝑗 ∗ 𝑎

𝑅
𝑗 ,
∑︁

𝐸𝑃𝑖 ∗ 𝑎
𝑃
𝑖 , 𝐸

𝑃
𝑖

)
𝜋executor =

(∑︁
𝐸′𝑅𝑗 ∗ 𝑎

′𝑅
𝑗 ,

∑︁
𝐸′𝑃𝑖 ∗ 𝑎

′𝑃
𝑖 , 𝐸

′𝑅
𝑗

)
Final layer comprising a linear layer, this element operates with 8
input neurons and 1 output neuron.

𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 = Categorical
(
𝑊2 ∗ ReLU(𝑊1 ∗ 𝜋planner)

)
𝑅𝑜𝑏𝑜𝑡𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 = Categorical

(
𝑊 ′2 ∗ ReLU(𝑊

′
1 ∗ 𝜋

executor)
)

4.3 Multi-Robot Navigation Algorithm: LQR
with Artificial Potential Field

Linear Quadratic Regulator (LQR) is an optimal control strategy
used to determine the control inputs that minimize a quadratic
cost function over time for a linear system. It is widely used in
control engineering to stabilize systems and optimize performance
by balancing different aspects of system behavior, like minimizing
energy use, overshoot, or settling time [16]. When modeling ro-
bot dynamics, a common simplification is to treat the robot as a
double-integrator system. This model is particularly relevant for
systems where the primary concern is controlling the position and
velocity of the robot [29]. Consequently, state of robot 𝑖 is typically
represented by its position 𝑝𝑖 (𝑡) = (𝑥𝑖 (𝑡), 𝑦𝑖 (𝑡)) and velocity 𝑣𝑖 (𝑡),
with the equations of motion represented as:

¤𝑝𝑖 (𝑡) = 𝑣𝑖 (𝑡), ¤𝑣𝑖 (𝑡) = 𝑢𝑖 (𝑡).
Here 𝑢𝑖 (𝑡) = (𝑢𝑖𝑥 (𝑡), 𝑢𝑖𝑦 (𝑡)) is the control input, which directly
influences the acceleration. Here, complete state of the 𝑖th-robot is
represented as: 𝑧𝑖 (𝑡) = (𝑝𝑖 (𝑡), 𝑣𝑖 (𝑡)). Applying LQR to this model
involves designing a controller that minimizes deviations from
a desired trajectory while controlling the velocity and ensuring
smooth acceleration.
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Algorithm 1: MRTAgent
Initialize Planner & Executor policy parameters 𝜃𝑃0, 𝜃𝐸0
and value function parameters 𝜙𝑃0, 𝜙𝐸0 respectively.

for 𝑖𝑡𝑟 = 0, 1, 2, · · ·𝐾1 do
for episodes 𝑘 = 0, 1, 2, · · ·𝐾2 do

Step t=0
State 𝑠𝑡 ≔ {(𝑜𝑖 , 𝑑𝑖 , 𝑘𝑖 , 𝑙𝑖 )∀𝑖∈P , (𝑝 𝑗 , 𝑟 𝑗 , 𝑐 𝑗 )∀ 𝑗∈R }
Each robot 𝑗 ∈ R is executing a task (𝑜 𝑗 , 𝑑 𝑗 )
while True do

Update 𝑝 𝑗 ∀𝑗 ∈ R using LQR with APF
if 𝑝 𝑗 == 𝑑 𝑗 then

if 𝑐 𝑗 < threshold for some 𝑗 ∈ R then
Robot 𝑗 navigates to nearest available
charging dock for recharging.

end if
if 𝑖𝑡𝑟 is even then

run Planner policy 𝜋𝑃𝑘 = 𝜋 (𝜃𝑃𝑘 ) in the
environment to select a task 𝑖 ∈ P.
Executor policy takes state 𝑠𝑡 as input
and allots a robot 𝑗 ∈ R.

else
Planner policy takes state 𝑠𝑡 as input and
selects a task 𝑖 ∈ P.

run Executor policy 𝜋𝐸𝑘 = 𝜋 (𝜃𝐸𝑘 ) to
allocate a robot 𝑗 ∈ R.

end if
end if
𝑡 ← 𝑡 + 1

end while
if 𝑖𝑡𝑟 is even then

Collect set of trajectories D𝑃𝑘

Compute rewards-to-go ˆ𝑅𝑃𝑡
Compute advantage estimates ˆ𝐴𝑃𝑡 based on the
current value function 𝑉𝜙𝑃𝑘

Update policy by maximizing PPO-Clip obj.:

𝜃𝑃𝑘+1 = argmax
𝜃

1
|D𝑃𝑘 |𝑇

∑︁
𝜏∈D𝑃𝑘

𝑇∑︁
𝑡=0

min
(
𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )
𝜋𝜃𝑃𝑘(𝑎𝑡 |𝑠𝑡 )

𝐴
𝜋𝜃𝑃𝑘 (𝑠𝑡 , 𝑎𝑡 ), 𝑔(𝜖,𝐴𝜋𝜃𝑃𝑘 (𝑠𝑡 , 𝑎𝑡 ))

)
via stochastic gradient ascent with Adam;
Fit value function by regression on MSE:

𝜙𝑃𝑘+1 = argmin
𝜙

1
|D𝑃𝑘 |𝑇

∑︁
𝜏∈D𝑃𝑘

𝑇∑︁
𝑡=0

(
𝑉𝜙 (𝑠𝑡 ) − ˆ𝑅𝑃𝑡

)2
via gradient descent

else
Update 𝜃𝐸𝑘 & 𝜙𝐸𝑘 as above

end if
end for

end for

To extend LQR for multi-robot path planning and collision avoid-
ance, the state and control matrices are expanded to accommodate
multiple robots. Each robot is controlled using an individual LQR

controller within this collective framework, allowing for the in-
dependent regulation of position and velocity while minimizing a
global cost function that balances state deviations and control effort.
For collision avoidance, an artificial potential field (APF) method
is employed [23]. This approach introduces repulsive forces be-
tween robots when they come into close proximity, ensuring safe
inter-robot distances. These repulsive forces are integrated into the
control law, enabling the robots to avoid collisions while contin-
uing to track their desired trajectories. This combined LQR-APF
approach provides an effective solution for coordinating multiple
robots in dynamic environments. More formally, we consider a
system with 𝑁 robots, each modeled as a double-integrator in 2D
space. The dynamics of the overall system is given by:

¤z(𝑡) = 𝐴multiz(𝑡) + 𝐵multiu(𝑡), with

z(𝑡) =



𝑝1 (𝑡)
𝑣1 (𝑡)
.
.
.

𝑝𝑁 (𝑡)
𝑣𝑁 (𝑡)


, u(𝑡) =


𝑢1 (𝑡)
.
.
.

𝑢𝑁 (𝑡)


𝐴multi = 𝐼𝑁 ⊗


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

, 𝐵multi = 𝐼𝑁 ⊗


0 0
0 0
1 0
0 1

 ,
where 𝐼𝑁 is the identity matrix of size 𝑁 , and ⊗ denotes the Kro-
necker product. The objective of LQR is to minimize the following
quadratic cost function:

𝐽 =

∞∫
0

(z(𝑡)⊺𝑄z(𝑡) + u(𝑡)⊺𝑅u(𝑡))𝑑𝑡,

where𝑄 and 𝑅 are weighting matrices that penalize deviations from
the desired state and control effort, respectively. The optimal control
input that minimizes the cost function is given by u(𝑡) = −𝐾 (z(𝑡) −
zdes), where𝐾 is the LQR gainmatrix, computed as𝐾 = 𝑅−1𝐵⊺multi𝑃 ,
and zdes represents the target positions and velocities. Here 𝑃 is the
solution to the continuous-time algebraic Riccati equation (CARE):

𝐴
⊺
multi𝑃 + 𝑃𝐴multi − 𝑃𝐵multi𝑅

−1𝐵⊺multi𝑃 +𝑄 = 0.

In addition, we employ APF method that introduces a potential field
around each robot that creates repulsive forces to avoid collisions.
The repulsive potential between robots 𝑖 and 𝑗 is given by:

𝑈rep,𝑖 𝑗 (𝑧𝑖 , 𝑧 𝑗 ) =
{

1
2𝑘rep

(
1
𝑑𝑖 𝑗
− 1

𝑑min

)2
if 𝑑𝑖 𝑗 < 𝑑min

0 if 𝑑𝑖 𝑗 ≥ 𝑑min

where 𝑘rep is a positive constant, 𝑑𝑖 𝑗 = ∥𝑝𝑖 − 𝑝 𝑗 ∥ is the Euclidean
distance between robots 𝑖 and 𝑗 , and 𝑑min is the minimum allowable
distance between robots. The final control input for each robot,
incorporating both LQR control and APF-based collision avoidance,
is given by:

𝑢𝑖 (𝑡) = −𝐾𝑖 (𝑧𝑖 (𝑡) − 𝑧des,𝑖 ) − ∇𝑝𝑖𝑈𝑖 .

This ensures that the robots not only follow their intended paths
but also avoid collisions by adjusting their trajectories dynamically
in response to nearby robots.
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5 EXPERIMENTS
5.1 Datasets and Experimental Setup
The MRTAgent framework has been validated within warehouse
environment settings, operating under several key parameters to
ensure efficient functioning. Due to the absence of publicly acces-
sible real-world datasets for similar problem scenarios, synthetic
data has been employed to evaluate our MRTAgent framework. Each
episode spans 𝜏 time units, and the synthetic datasets used for both
training and evaluation are structured as square-shaped 2D con-
tinuous spaces ranging from [0, 64] × [0, 64], with task origins,
destinations, and robot locations confined within this range.
In our experiments, task concentration varies to reflect specific peri-
ods of the day when the majority of tasks accumulate. Accordingly,
datasets are generated using Gaussian distributions with varying
means and standard deviations.The task’s starting and ending coor-
dinates, along with the task generation times, are provided to the
planner through a limited-size LA. This MRTAgent framework is
evaluated under two configurations:

• Normally distributed task arrival times
• Uniformly distributed task arrival times.

For each configuration, datasets containing 500 tasks per episode
are generated according to the corresponding distributions. For in-
stance, in the case of normally distributed tasks, the task generation
times adhere to N(600, 50), where 600 represents the mean task
generation time. For training, we considered a fleet of 10 robots,
with the LA window length fixed at 5. The robots’ charging thresh-
old is set at 30%, meaning robots with a SOC below 30% must dock
for recharging before resuming task execution. The steady charging
rate is calibrated to be 16× the discharging rate.

The planner and executor agents are implemented using the
PyTorch library in Python 3.8, with an Adam optimizer [15], a
discount factor of 0.99, a lambda value of 0.95, a learning rate of
0.0003, an entropy coefficient of 0.001, a value function coefficient
of 0.0002, and a batch size of 32. The policy networks for both
the planner and executor are trained using the cross-entropy loss
function, while the value networks are fine-tuned using the mean
squared error loss metric.

5.2 Baselines
To the best of our knowledge, no existing work in the literature
concurrently addresses multiple aspects of MRTA simultaneously.
In light of the absence of established approaches, we propose two
suitable baselines.
Brute-force optimal (BFO) : In this approach, all task-robot pairs
(within the LA) undergo an exhaustive brute-force evaluation of
time duration required for task execution by the robots, determined
using standard Euclidean distance. The algorithm then selects the
robot-action pair that minimizes this time duration. While brute-
force optimal approach represents a locally optimal solution, the
exhaustive evaluation significantly amplifies the run-time, posing
practical challenges. Despite, this baseline is frequently adopted
in the literature as a reference point for evaluating decoupled task
allocation and navigation methodologies [2, 20].
FIFO : The FIFO baseline employs a dual-tiered decision framework.
The initial allocation involves selecting the task that entered the

Figure 3: Learning curves of the MRTAgent

LA queue first, aiming to reduce pending tasks within the queue
and allocating the robot that can complete it earliest to minimize
TTGT [11, 12]. Due to its simplicity, the FIFO approach requires
the least execution time among all the considered approaches.

5.3 Training Details
The MRTAgent is trained through a self-play approach. Initially,
the planner undergoes training for 40 episodes, while the executor
remains in evaluation mode. After every 40 episodes, the roles of
the planner and executor are reversed: the planner is switched to
evaluation mode, and the executor is trained. This cycle is repeated
24 times, leading to a total of 960 training episodes. Each episode
consists of 505 tasks, with 10 robots in the environment and a
LA length of 5. Both the Planner and Executor agents are trained
using the PPO algorithm [28]. The model is implemented using
the PyTorch library in Python 3.8. Key hyperparameters include
the Adam optimizer [15], a discount factor of 0.99, a lambda value
of 0.95, a learning rate of 0.0003, an entropy coefficient of 0.001,
a value function coefficient of 0.0002, and a batch size of 32. The
policy network for both agents is trained with the cross-entropy
loss function, while the value network is optimized using mean
squared error (MSE) loss.

5.4 Experiments and Results
We now present a thorough comparative analysis of our proposed
learning-based framework, MRTAgent, against baseline methods,
namely the BFO approach and the FIFO strategy. Our experiments
are designed to include scenarios that incorporate charging consid-
erations, thereby addressing realistic operational challenges. The
results consistently demonstrate the superiority of MRTAgent over
the baseline methods.

Figure 3 presents the average training curve for the bi-level RL
agents. This average is derived from four independent runs with
different random seeds. The RL model is trained over 960 episodes,
each comprising 505 tasks with 10 robots in the environment, and a
look-ahead (LA) length of 5. The training process utilizes the PPO-
based RL algorithm within the PFRL framework [8]. To simulate
real-world task profiles, the training procedure employs task lists
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Table 1: Cost (×103) evaluation on test dataset with 5 tasks in LA, 10 robots & 505 episodic tasks (the lower the better)

Test distibution Uniform distribution data Gaussian distribution data

MRTAgent BFO FIFO MRTAgent BFO FIFO

Similar

13.49 ± 0.44 16.03 16.69 18.23 ± 0.47 18.60 19.08
14.85 ± 0.15 17.72 18.35 18.66 ± 0.06 19.06 19.43
13.72 ± 0.16 15.75 16.49 19.10 ± 0.01 19.77 20.41
14.83 ± 0.26 16.97 17.21 18.40 ± 0.01 19.83 20.67
14.47 ± 0.18 15.95 16.40 18.67 ± 0.09 19.04 19.73

Totally
Different

18.89 ± 0.12 19.06 19.43 15.84 ± 0.56 17.72 18.35
19.50 ± 0.67 20.15 20.56 14.84 ± 0.44 17.25 17.83
18.88 ± 0.13 19.04 19.73 13.98 ± 0.43 15.75 16.49
18.77 ± 0.24 19.58 19.65 14.37 ± 0.38 16.92 17.31
18.53 ± 0.42 20.43 21.03 14.82 ± 0.38 15.95 16.40

Table 2: Cost (×103) comparison on Gaussian dist. dataset
with 5 tasks in LA, 10 robots & 505 tasks/episode

Avg TRTO Avg TTGT

MRTAgent BFO FIFO MRTAgent BFO FIFO

8.44 8.48 8.63 11.38 11.68 11.93
8.03 8.59 8.93 11.09 11.18 11.48
7.59 8.62 9.11 10.79 11.20 11.56
7.70 8.08 8.30 10.90 10.96 11.43
8.20 8.49 9.22 10.70 10.81 11.25

Table 3: Cost (×103) evaluation on Gaussian dist. dataset with
5 tasks in LA, 30 robots & 505 episodic tasks

MRTAgent BFO FIFO

Gaussian dist. data

8.41 8.64 8.81
8.93 9.27 9.63
8.19 8.34 9.05
7.49 7.63 8.53
8.19 8.43 9.61

Table 4: Cost (×103) evaluation on Gaussian dist. dataset with
5 tasks in LA, 25 robots & 505 episodic tasks

MRTAgent BFO FIFO

Gaussian dist. data

9.25 9.56 9.76
10.05 10.37 10.44
9.34 9.57 9.92
8.95 9.42 9.69
8.70 9.13 9.32

generated randomly from a Gaussian distribution, alongside uni-
formly sampled task lists. The reward plots indicate that MRTAgent
achieves stable convergence towards an optimal policy. The im-
provements in rewards from their initial values suggest effective

Table 5: Cost (×103) evaluation on Gaussian dist. dataset with
5 tasks in LA, 10 robots & 2005 episodic tasks

MRTAgent BFO FIFO

Gaussian dist. data

223.44 237.2 279.38
215.81 229.54 274.59
218.44 230.08 277.88
217.31 232.45 276.56
214.67 227.45 274.31

task selection and robot allocation, leading to reduced task waiting
times within the LA window. It is worth noting that the RL agent
is periodically trained with different random task lists, which pre-
vents it from simply memorizing the performance on a specific task
list. Instead, the agent learns to adapt to various scenarios, which
explains the minor fluctuations in rewards across episodes as the
agent refines its policy.

After the training phase, themodel’s performance is evaluated on
different test datasets. For the model trained on task lists following
a specific Gaussian distribution, the evaluation is performed on two
distinct datasets:
• Instances that are similar to the training data with the same
mean and variance specifically with N(600, 50) distributed
data,
• A dataset generated entirely from a uniform distribution
specifically withU(0, 1000) distributed data.

This evaluation assesses MRTAgent’s ability to handle distributional
shifts. Conversely, the model trained on uniformly generated task
lists is evaluated on:
• A dataset sampled from the same uniform distribution specif-
ically withU(0, 1000) distributed data,
• A dataset generated from a Gaussian distribution pecifically
with N(600, 50) distributed data,

offering insights into its performance under distributional shifts.
Table 1 provides a detailed comparison of the test results. The

total number of tasks in each episode, the number of robots, and the
LA queue length remain consistent with the training setup 505 tasks,

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

1592



10 robots, and an LA length of 5. The results clearly demonstrate
MRTAgent’s consistent outperformance over the brute-force opti-
mal and FIFO-based methods across almost all test scenarios. The
MRTAgent framework outperforms the baselines in all instances,
and for a completely different dataset, it performs significantly
better compared to the baselines.

To further analyze MRTAgent’s superiority over other baselines,
we examine the individual reward components of all approaches, as
shown in Table 2. The total cost (reward) consists of two primary
components: (a) TRTO, which aims to minimize robot travel dis-
tance, and (b) TTGT, which seeks to reduce task execution delays.
As shown in Table 2, MRTAgent achieves value, in the TRTO com-
ponent lesser than the brute-force optimal approach signifying its
ability to minimize travel distance for the tasks in the look-ahead
queue, as well as in the TTGT component because the brute-force
optimal approach does not prioritize minimizing delays for tasks
already in the look-ahead. On the other hand, the FIFO approach,
despite assigning tasks sequentially, does not effectively reduce the
TTGT component. This is because the task endpoints may be far
from the starting locations of subsequent tasks in the look-ahead,
potentially causing delays in task execution. As a result, the TRTO
component is typically larger than in the brute-force.
Variable number of robots: To assess MRTAgent’s generalizabil-
ity, we run experiments with varying numbers of robots during
inference. Initially, the executor is trained with a fleet of 10 robots
and 5 tasks in the LA, and the results are presented in Table 1. We
then retrain the executor for a fleet of 30 robots, while keeping the
planner in evaluation mode, to observe MRTAgent’s performance
and scalability. The results for the 30-robot scenarios are shown in
Table 3. As expected, performing the same tasks with more robots
incurs lower costs, as the TRTO and TTGT components reduce
significantly. Nevertheless, MRTAgent consistently outperforms the
baseline methods in all scenarios.

The separation of Tasks (Planner) and Robot (Executor) agents
in our framework enables scalability with varying task and robot
counts. This setup also allows upgrading the Executor without re-
training the entire system. Scenarios like robot failures—which
reduce available robot count—can be managed by extending robot
availability time (𝑟 𝑗 , a feature in MRTAgent) to a large value, exclud-
ing the failed robot from selection. For instance, MRTAgent trained
with 30 robots (see Table 3) is evaluated with only 25 available,
without retraining in Table 4. This is achieved by assigning large
values to 𝑟 𝑗 for the extra 5 robots, effectively preventing task al-
location and enabling our framework to adapt to different robot
counts without retraining.
Variable number of tasks: To evaluate the MRTAgent framework’s
generalizability, the planner and executor, initially trained for a fleet
of 5 robots and 505 tasks (see Table 1), are tested on a larger number
of tasks, specifically 2005 (see Table 5). As observed, MRTAgent
consistently outperforms the baselines across a variable number of
tasks without requiring retraining.

In Tables 1-5, the different rows represent the use of various
datasets for evaluation. Specifically, in Table 1, the standard devia-
tions reported for MRTAgent indicate slight fluctuations in perfor-
mance when the model is evaluated using different random seeds.
It is crucial to note that MRTAgent is trained with a periodically
updated random task list, which prevents the agent from simply

memorizing performance on a fixed set of tasks. Instead, this ap-
proach enables the agent to learn to adapt effectively to a wide
range of scenarios. This is why there are small variations in the
rewards across episodes, even as the agent gradually develops a
consistent policy.
A note on the baselines: While FIFO is known for its simplicity
and computational efficiency; BFO, despite common intuition, is
one of the strongest baselines which, given a look ahead (LA), eval-
uates all task-robot pairs and selects the one with earliest possible
execution. In fact, BFO is an optimal task allocation and assignment
approach given the current state of the LA received in an online
fashion. The reason why MRTAgent is able to outperform it is due
to the fact that MRTAgent exploits the underlying distribution defin-
ing task generation to plan for tasks to appear in future despite it
having access to the same causal information as the BFO.

6 CONCLUSION AND FUTUREWORK
This study introduces MRTAgent, a self-play motivated bi-level
RL framework designed to enhance MRTA in modern warehous-
ing environments. By optimizing operational costs and efficiency,
MRTAgent addresses the increasing demands associated with online
order fulfillment. The framework employs an optimal sequential
task and robot selection process, coupled with a LQR based collision-
free navigation algorithm. It effectively manages critical constraints
such as robot dynamics, charging needs, and specific task require-
ments. Our approach demonstrates significant improvements over
baseline methods across various test datasets. The validation of
MRTAgent over datasets with distributional shifts and varying num-
bers of robots and tasks highlights its generalizability.

While our MRTAgent algorithm presents a promising approach,
it is essential to acknowledge certain limitations that warrant at-
tention in future research endeavors:
1. Single-Task Assumption: The algorithm currently assumes
that robots are engaged in one task at a time, potentially limiting
its applicability in scenarios where multitasking is prevalent.
2. No Contingency for Sudden Breakdowns: The model does
not account for the sudden breakdown of a robot during operation.
Once a task is allocated, our algorithm lacks the capability to re-
consider or revert the decision in the event of an unforeseen robot
malfunction.
3. Homogeneous Robots: We have made the simplifying assump-
tion that all robots in the system are homogeneous, sharing identical
values of characteristics such as velocity, acceleration, and load ca-
pacity. This assumption may not reflect the diversity present in
real-world robot fleets.
4. Negligible Load/Unload Time Assumption: The algorithm
assumes negligible time for loading/unloading operations after a
robot reaches the task origin/destination. In reality, this may not
hold true, and accounting for realistic loading and unloading times
is a consideration for future enhancements.

Future work will focus on enabling robots to handle multiple
tasks simultaneously, incorporating load/unload times, integrating
heterogeneous robots, and implementing learning-based naviga-
tion, all of which will enhance the algorithm’s effectiveness and
applicability in diverse, practical scenarios.
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