
Smooth Information Gathering in Two-Player Noncooperative
Games

Fernando Palafox

University of Texas at Austin

Austin, TX, United States

fernandopalafox@utexas.edu

Jesse Milzman

DEVCOM Army Research Laboratory

Adelphi, MD, United States

jesse.m.milzman.civ@army.mil

Dong Ho Lee

University of Texas at Austin

Austin, TX, United States

Ryan Park

University of Texas at Austin

Austin, TX, United States

David Fridovich-Keil

University of Texas at Austin

Austin, TX, United States

ABSTRACT
We present a mathematical framework for modeling two-player

noncooperative games in which one player is uncertain of the other

player’s costs but can preemptively allocate information-gathering

resources to reduce this uncertainty. We refer to the players as the

uncertain player (UP) and the certain player (CP), respectively. We

obtain UP’s decisions by solving a two-stage problem where, in

Stage 1, UP allocates information-gathering resources that smoothly

transform the information structure in the second stage. Then,

in Stage 2, a signal (that is, a function of the Stage 1 allocation)

informs UP about CP’s costs, and both players execute strategies

which depend upon the signal’s value. This framework allows for a

smooth resource allocation, in contrast to existing literature on the

topic. We also identify conditions under which the gradient of UP’s

overall cost with respect to the information-gathering resources

is well-defined. We then provide a gradient-based algorithm to

solve the two-stage game. Finally, we apply our framework to a

tower-defense game which can be interpreted as a variant of a

Colonel Blotto game with smooth payoff functions and uncertainty

over battlefield valuations. We include an analysis of how optimal

decisions shift with changes in information-gathering allocations

and perturbations in the cost functions.
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1 INTRODUCTION
Incomplete information games provide a mathematical formalism

for understanding the behavior of rational agents who lack perfect

knowledge of one another’s objectives or other aspects of the game

[7]. In real-world scenarios, agents often attempt to preemptively

gather information before such interactions in order to reduce

their uncertainty and gain a strategic advantage. However, any

player gaining new information may have to contend with other

players shifting their strategies in response. Traditionally, such

rational information-gathering activities are framed as a discrete

choice, e.g., whether or not to pay for costly information with

a pre-defined structure [22]. In contrast, real-world information-

gathering decisions, e.g., distributed sensor placement [12], are

often continuously parametrized.

In this paper, we address this question of continuously parame-

terized, preemptive information-gathering. To this end, we develop

a model for two-player non-cooperative games of incomplete infor-

mation with the following features:

• The uncertain player (UP) does not know the certain player

(CP)’s cost.

• UP can smoothly allocate information-gathering resources

to reduce uncertainty, and CP is aware of this allocation.

In such games, there is a coupling between the optimal allocation

of information-gathering resources and both players’ strategic re-

actions.

Our contributions are as follows: (1) A game-theoretic model

for two-player noncooperative games with one-sided uncertainty

and two stages, as shown in Figure 1. In Stage 1, UP selects how

to allocate information-gathering resources from a continuous de-

cision landscape. This allocation parameterizes the relationship

between a world unknown to UP, and a signal that provides UP

with limited information about the world. In Stage 2, UP receives

the value of the signal which both players then use to play a non-

cooperative game. (2) A local descent algorithm to solve both Stage

1 and Stage 2 for each player’s decisions. (3) Conditions under which

gradients of costs and solutions with respect to decision variables

are well-defined. (4) An application of this model to a tower de-

fense scenario—akin to a Colonel Blotto game with smooth payoff

functions—and an analysis of the solutions.

2 RELATEDWORK
Interactions in which some players are uncertain about others’ ob-

jectives were first formally modeled in Harsanyi’s seminal work on
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Figure 1: Overall schematic of the two-stage game applied to a tower defense scenario. In this scenario, UP must defend a tower
(denoted by a star) that can be attacked from three directions. In Stage 1, UP seeks to minimize its expected cost by allocating
information-gathering resources r, and thereby defining posterior distribution 𝑝 (𝜔 |𝜎). Here, “world” 𝜔 ∈ {𝜔1, 𝜔2, 𝜔3} reflects
the direction which CP wishes to attack, and “signal” 𝜎 ∈ {0, 1, 2, 3} is the output of a noisy sensor. In Stage 2, both players
seek to minimize their costs 𝐽 1, 𝐽 2; Their allocations (𝑥1, 𝑥2) are functions of the signal 𝜎 (UP, player 1) and/or the world 𝜔 (CP,
player 2).

Bayesian games [7]. Since then, Bayesian games have been applied

to a variety of domains including, but not limited to, cybersecurity

of nuclear plants [17], intrusion detection in wireless networks

[16], and decision-making in military command and control set-

tings [3, 11]. Much of the existing literature focuses primarily on

optimal decision-making in these uncertain environments, typi-

cally without examining the capacity of agents to transform the

information landscape to their advantage. A notable exception is

the literature on deception, e.g., [8, 21, 22].

In single-agent settings, it is common to study this concept of

altering the information landscape via the value of information

(VoI), which quantifies the expected reduction in cost attributable

to a given source of information—i.e., a given variable available to

the decision-maker. VoI can be understood as the amount a decision-

maker would be willing to pay for information before making a

decision [10]. VoI was traditionally related to the comparison of

experiments [2] from statistical decision theory (SDT) [19], which

has game-theoretic roots [1]. In recent decades, VoI in Bayesian

games has been studied as the comparison of information structures

[9, 13, 14, 18], which essentially adapts the SDT framework for

experiments to the more complex information-cost interactions

that emerge from multiple decision-makers.

In this work, we focus on optimizing preemptive actions that

selectively gather information to strategically minimize uncertainty

in a noncooperative, Bayesian, two-player game. Incorporating VoI-

based information gathering into a game where one player has the

opportunity to rationally manipulate their information structure ex
ante is a less-studied phenomenon. To the best of our knowledge, it

has not been studied for smooth manipulations of the information

structure, as we do in this work.

We highlight a few similar efforts. In earlier work, Hespanha

et al. [8] introduced a partial information attacker/defender game

in which the defender acts first and may selectively reveal some

information about their resource allocation, in order to deceive

their opponent. Fuchs and Khargonekar [6] similarly proposed

a two-stage, Stackelberg-like partial information Colonel Blotto

game. In this game, one player allocates their resources, and then

the second player receives a signal (with a given structure) from a

sensor system which alerts them to whether the resources allocated

to each battlefield are above a fixed threshold. The second player

then uses this information for their allocation. However, they do

not consider sensor placement (as a resource allocation problem) or

individual sensor tuning, i.e., VoI-based decisions on what informa-

tion structures would be optimal. More directly comparable to the

problem we investigate, Xu and Zhuang [22] set up an incomplete

information attacker-defender game, in which the attacker has a

costly choice of whether or not to try to learn the vulnerability of

the defender—a binary variable chosen by nature. This leads to a

characterization of the conditions under which the attacker benefits

from trying to learn the defender’s vulnerability.

To the best of our knowledge, no existing literature has ex-

plicitly modeled the pre-emptive acquisition of information as a

continuously-parametrized decision on the part of one of the play-

ers, prior to strategic engagement. Insofar as many real-world infor-

mational decisions are smoothly parametrized—e.g. the placement,

orientation, and calibration of stationary sensors, or the utilization

of drones to conduct reconnaissance along spatially and temporally

continuous paths—there is a need for the development of theory and

methods for optimizing smooth information structures for decision-

making in non-cooperative settings, adversarial or otherwise. This

work is an initial effort in that direction.

3 FORMULATION
We begin by defining a noncooperative complete information game

and build on it to formulate a Bayesian game with asymmetric

uncertainty about CP’s objective. Then, we introduce the concept

of signals and signal structure in order to model UP’s information-

gathering measures and define a smooth, two-player game with

asymmetric and incomplete information. Finally, we formulate the

problem of optimally allocating information-gathering as a two-

stage problem, in which the continuous decision of the first stage

smoothly transforms the information structure in the second stage.

Throughout the paper, superscripts denote indexing by a player,

where 1 and 2 denote the uncertain (UP) and certain (CP) players,
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respectively. Subscripts denote indexing elements in a vector. We

use the following notation to refer to sets [𝑛] ≡ {1, . . . , 𝑛}.

3.1 Complete Information Game
We begin by defining two-player, static games with complete in-

formation. Each player 𝑖 seeks to minimize a cost function 𝐽 𝑖 :

R2𝑛 → R subject to constraints 𝐺𝑖 (𝑥𝑖 ) = 0 and 𝐻 𝑖 (𝑥𝑖 ) ≥ 0, where

𝐺𝑖
: R𝑛 → R,𝐻 𝑖

: R𝑛 → R, and 𝑛 is the dimension of each player’s

action space.

Mathematically, each player’s problem is given by

min

𝑥1

𝐽 1 (𝑥1, 𝑥2) s.t. 𝑥1 ∈ X1
(1a)

min

𝑥2

𝐽 2 (𝑥1, 𝑥2) s.t. 𝑥2 ∈ X2
(1b)

where X𝑖 = {𝑥𝑖 | 𝐺𝑖 (𝑥𝑖 ) = 0, 𝐻 𝑖 (𝑥𝑖 ) ≥ 0} is player 𝑖’s feasible set.
Note that the players’ decisions 𝑥𝑖 are coupled via 𝐽 𝑖 (·) .

3.2 Bayesian Game With Asymmetric
Uncertainty

Now we extend the game to include UP’s uncertainty about CP’s

cost, where UP must make a decision without any new information

but its prior knowledge. We introduce uncertainty by parameter-

izing the costs with an unknown “world” denoted 𝜔 ∈ Ω = [𝜔𝑚],
where𝑚 is the number of worlds. We assume UP has a prior be-

lief about what the world is in the form of a discrete distribution

𝑝 : Ω → [0, 1], ∑
𝜔 𝑝 (𝜔) = 1. Since UP is uncertain about the

value of𝜔 , it now seeks to minimize its expected cost over the prior

distribution 𝑝 (𝜔). However, computing this expectation requires

knowledge of CP’s decisions for every possible world, i.e., 𝑥2 (𝜔)
for every 𝜔 ∈ Ω. Therefore, the new game is given by

min

𝑥1

E𝜔 [𝐽 1 (𝑥1, 𝑥2 (𝜔);𝜔)] s.t. 𝑥1 ∈ X1
(2a)

min

𝑥2 (𝜔1 )
𝐽 2 (𝑥1, 𝑥2 (𝜔1);𝜔1) s.t. 𝑥2 (𝜔1) ∈ X2

(2b)

.

.

.

min

𝑥2 (𝜔𝑚 )
𝐽 2 (𝑥1, 𝑥2 (𝜔𝑚);𝜔𝑚) s.t. 𝑥2 (𝜔𝑚) ∈ X2 . (2c)

Note that the information structure of (2) implies that CP is

aware of UP’s uncertainty since all of CP’s types 𝑥2 (𝜔), 𝜔 ∈ Ω play

against a single UP 𝑥1, a decision made on the basis of the common

prior 𝑝 (𝜔).

3.3 Signals and Signal Structures
Our next step is to provide amathematical framework that describes

UP’s capacity to deploy information-gathering measures, e.g., by

deploying surveillance resources. To that end, we introduce the con-

cept of a signal and a signal structure. Before deciding on the value

of 𝑥1, suppose that UP receives a signal 𝜎 ∈ S = {0, 1, . . . ,𝑚} with
information about the true value of𝜔 . We associate one signal value

𝑘 for each world 𝜔𝑘 , with a signal of 0 signifying an information-

gathering failure. The relationship between signal 𝜎𝑖 and world 𝜔 𝑗

is determined by the signal structure: the conditional probability

𝑝 (𝜎𝑖 |𝜔 𝑗 ), which will be determined by UP’s information-gathering

decision.

We make the following assumptions regarding the signal struc-

ture:

Assumption 1 (No false positives). 𝑝 (𝑖 |𝜔 𝑗 ) = 0 ∀𝑖 ≠ 𝑗, 𝑖 > 0.
This implies 𝑝 (0|𝜔𝑖 ) = 1 − 𝑝 (𝑖 |𝜔𝑖 ) ∀𝜔𝑖 ∈ Ω.

Assumption 2 (CP’s awareness). CP is aware of both the signal
value and signal structure.

From Assumption 1 it follows that signal 𝑖 > 0 always implies

that 𝜔 = 𝜔𝑖 . Assumption 2 adds information asymmetry to the

interaction: not only is UP uncertain about CP’s true intentions, but

CP is also aware of the signal structure (e.g., surveillance allocation)

and the received signal value. This models a worst-case scenario

where CP is fully aware of the information available to the UP.

Neither assumption is essential to our framework, but they simplify

our presentation and analysis, particularly for Proposition 1.

3.4 Smooth, Two-Player Game with
Asymmetric and Incomplete Information

We now introduce a two-player game that encodes the knowledge

gained from the signal structure defined in the previous section.

UP’s prior distribution remains unchanged. In this game, UP makes

their decision using the signal value, i.e., 𝑥1 (𝜎), and CP makes a

decision using both the signal and the world value, i.e., 𝑥2 (𝜎,𝜔).
Thus, we are solving the Bayesian game given by

min

𝑥1

E𝜔,𝜎 [𝐽 1 (𝑥1 (𝜎), 𝑥2 (𝜎,𝜔);𝜔)] (3a)

min

𝑥2

E𝜔,𝜎 [𝐽 2 (𝑥1 (𝜎), 𝑥2 (𝜎,𝜔);𝜔)] (3b)

where the player strategies are maps of the form

𝑥1 : S → X1
(3c)

𝑥2 : S × Ω → X2 . (3d)

Assumption 1 implies that UP’s decision when 𝜎 ≠ 0 does not

depend on its prior 𝑝 (𝜔), since both players know 𝜔 . However, if

𝜎 = 0, 𝜔 could still be any 𝜔𝑖 for which 𝑝 (0|𝜔𝑖 ) > 0. Therefore, to

select 𝑥1 (0), UP must minimize the expectation of its cost over the

conditional probability 𝑝 (𝜔𝑖 |0) for every 𝜔𝑖 such that 𝑝 (0|𝜔𝑖 ) > 0.

Using this information, we may break up the game given by (3) into

its component decisions, given by:

min

𝑥1 (0)
E𝜔 |0 [𝐽 1 (𝑥1 (0), 𝑥2 (0, 𝜔);𝜔)] (4a)

min

𝑥1 (1)
𝐽 1 (𝑥1 (1), 𝑥2 (1, 𝜔1);𝜔1) (4b)

.

.

.

min

𝑥1 (𝑚)
𝐽 1 (𝑥1 (𝑚), 𝑥2 (𝑚,𝜔𝑚);𝜔𝑚) (4c)

min

𝑥2 (0,𝜔1 )
𝐽 2 (𝑥1 (0), 𝑥2 (0, 𝜔1);𝜔1) (4d)

.

.

.

min

𝑥2 (0,𝜔𝑚 )
𝐽 2 (𝑥1 (0), 𝑥2 (0, 𝜔𝑚);𝜔𝑚) (4e)

min

𝑥2 (1,𝜔1 )
𝐽 2 (𝑥1 (1), 𝑥2 (𝑚,𝜔1);𝜔1) (4f)

.

.

.

min

𝑥2 (𝑚,𝜔𝑚 )
𝐽 2 (𝑥1 (𝑚), 𝑥2 (𝑚,𝜔𝑚);𝜔𝑚), (4g)

subject to 𝑥1 (𝜎) ∈ X1,∀𝜎 ∈ S and 𝑥2 (𝜎,𝜔) ∈ X2,∀𝜎 ∈ S, 𝜔 ∈ Ω.
Note that (4a) depends on the signal structure 𝑝 (0|𝜔𝑖 ) via Bayes’
rule. The term 𝑥1 (0) in (4a) can be interpreted as UP’s decision given
no warning and accounting for its knowledge of how it allocated

information-gathering resources. For example, consider a situation
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where UP allocated enough information-gathering resources to

ensure that it will always be warned when 𝜔 = 𝜔1, i.e., 𝑝 (1|𝜔1) =
1. Then, it need not account for 𝑥2 (0, 𝜔1) when minimizing the

expected cost in (4a) because it knows that 𝑝 (0|𝜔1) = 0.

By contrast, the solutions to the complete information subgames

given by (4b)-(4c) and (4f)-(4g) are completely independent of the

signal structure.

We remark that this game is a generalization of the Bayesian

game described in Section 3.2. To seewhy, note that setting 𝑝 (0|𝜔) =
1, ∀𝜔 ∈ Ω exactly reduces (4) into (2) since the only relevant

decisions are those for which 𝜎 = 0 (as 𝑝 (𝜎 |𝜔) = 0, ∀𝜎 > 0). This

corresponds to the case of a UP without the capability to gather

new information.

3.5 Signal Structure Selection
UP seeks a signal structure that will strategically minimize their

expected cost (3a). To that end, we parametrize the signal structure

from Sec. 3.3 with the decision variable r ∈ R𝑚≥0,
∑
𝑖 𝑟𝑖 = 1 such that

𝑟𝑖 = 𝑝 (𝜎𝑖 |𝜔𝑖 ). We may then formulate the signal structure selection

problem as

min

r
𝐽 (5a)

s.t. 0 ≤ 𝑟𝑖 ≤ 1 (5b)

𝑚∑︁
𝑖=1

𝑟𝑖 = 1 (5c)

where 𝐽 = E𝜔,𝜎 [𝐽 1 (𝑥1 (𝜎), 𝑥2 (𝜎,𝜔))] for brevity, and (5c) can be in-

terpreted as encoding UP’s limited uncertainty-reducing resources,

e.g., a limited number of security cameras.

3.6 Two-Stage Problem
Our goal in this work is to develop a decision-making algorithm

for a UP aiming to optimally allocate information-gathering assets,

and then optimally play a two-player non-cooperative game where

the other player’s costs are unknown. We now have all the parts to

model this scenario as a two-stage problem composed of a signal

structure selection problem (5) and the smooth game described in

Section 3.4. Given a prior distribution over the worlds 𝑝 (𝜔), UP
solves two stages:

• Stage 1: Solve (5) to obtain a signal structure r.
• Stage 2: Given a signal structure, assemble a policy that maps

signals to UP decisions, i.e., 𝑥1 : S → X1
using the solution

to (4).

For both stages, we seek locally optimal solutions. In general, the

Stage 1 decision landscape will not be convex (see e.g. Fig. 2 in

Sec. 5), and thus we cannot guarantee global optimality.

4 SOLVING THE TWO-STAGE PROBLEM
Algorithm 1 summarizes our approach for solving this two-stage

problem. At a high level: (i) we solve the two-stage problem by

making an initial guess for r, (ii) then, we use this guess to solve

Stage 2 in (4), and (iii) finally, we descend the gradient
𝑑 𝐽

𝑑r and

project the resulting value of r onto the simplex constraints (5b)

and (5c).

As Algorithm 1 depends upon the gradient
𝑑 𝐽

𝑑r , we first discuss
the existence and computation of this derivative. The Stage 1 objec-

tive 𝐽 from (5a) is a function of the decision variables for Stage 2, i.e.,

𝑥1 (𝜎), 𝑥2 (𝜎,𝜔). The value of these variables depends on the Stage

1 signal structure selection via (4a). Therefore, when computing
𝑑 𝐽

𝑑r
we must consider the relationship between the solution of the Stage

2 problem (4) and changes in r. Proceeding formally, we compute

the total derivative of 𝐽 with respect to r as

𝑑 𝐽

𝑑r
= ∇r 𝐽 + ∇x 𝐽∇rx (6)

= ∇r 𝐽 +
𝑚∑︁
𝑗=0

∇𝑥1 ( 𝑗 ) 𝐽 ∇r 𝑥1 ( 𝑗)

+
𝑚∑︁
𝑗,𝑖=0

∇𝑥2 ( 𝑗,𝜔𝑖 ) 𝐽 ∇r 𝑥
2 ( 𝑗, 𝜔𝑖 ) (7)

Thus, computing
𝑑 𝐽

𝑑r requires us to compute ∇r x, which is the

derivative of a Nash equilibrium solution with respect to parameters

of players’ objectives, which may not be well-defined, in general.

Thus, we offer the following proposition that provides sufficient

conditions for the existence of
𝑑 𝐽

𝑑r in unconstrained games with

X𝑖 = R𝑛,∀𝑖 ∈ {1, 2}. In the experimental section we describe how

our solver is extended to the constrained setting.

Proposition 1. Let r be a point in the relative interior of the
simplex, and let (x1∗, x2∗) be a Nash equilibrium solution for an
associated Stage 2 game with no constraints (X = R𝑛). Then, the

gradient 𝑑 𝐽

𝑑r exists at r if the following conditions hold:

(1) E𝜔 |0 [𝐽 1 (𝑥1, 𝑥2;𝜔)] and 𝐽 2 (𝑥1, 𝑥2
𝑘
;𝜔𝑘 ), 𝑘 ∈ [𝑚] are twice-

differentiable with respect to 𝑥1 and 𝑥2
𝑘
, respectively.

(2) ∇2
𝑥1
E𝜔 |0 [𝐽 1 (𝑥1, 𝑥2;𝜔)] and each∇2𝑥2

𝑘

𝐽 2 (𝑥1, 𝑥2
𝑘
;𝜔𝑘 ),𝑘 = [𝑚],

are invertible.
(3) The matrix E given by

E = ∇2
𝑥1
E[𝐽 1] −

𝑚∑︁
𝑖=1

∇𝑥2

𝑖
,𝑥1E[𝐽 1] (∇2

𝑥2

𝑖

𝐽 2)−1∇𝑥1,𝑥2

𝑖
𝐽 2

is invertible.

where we employ the notation 𝑥1 = 𝑥1∗ (0) and 𝑥2
𝑖
= 𝑥2∗ (0, 𝜔𝑖 ) for

brevity. All the matrices are evaluated at (r, x1∗, x2∗)

Algorithm 1: Solve Two-Stage Problem
1 Input: 𝑝 (𝜔 ) , step size 𝛼 ∈ R, initial guess r0.
2 r← r0
3 while !converged do
4 𝑥1, 𝑥2 ← solveStage2(r, 𝑝 (𝜔 ) )
5

𝑑 𝐽
𝑑r ← composeDerivative(r, 𝑥1, 𝑥2 )

6 r0 ← r − 𝛼 𝑑 𝐽
𝑑r

7 r← project(r0 ) // Onto constraints

8 end
9 𝑥1, 𝑥2 ← solveStage2(r, 𝑝 (𝜔 ) )

10 return r, 𝑥1, 𝑥2
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Proof. Stage 2 can be decoupled into a set of perfect information

games with signals 𝜎 > 0—i.e., Equations (4b), (4c), (4f) and (4g)—

and a single imperfect information game, where 𝜎 = 0—i.e., Equa-

tions (4a), (4d) and (4e). Due to Assumption 1, only the imperfect

information game depends on the signal structure selection r, and
only these solutions need to be considered when computing ∇r 𝐽 .
That is, ∇r 𝑥1 ( 𝑗) = 0 and ∇r 𝑥2 ( 𝑗, 𝜔 𝑗 ) = 0 for all 𝑗 > 0, and thus

Eq. 6 reduces to

𝑑 𝐽

𝑑r
= ∇r 𝐽 + ∇𝑥1 𝐽∇r𝑥1 +

𝑚∑︁
𝑗=1

∇𝑥2

𝑗
𝐽∇r𝑥2𝑗︸                            ︷︷                            ︸

∇z 𝐽 ∇rz

(8)

where z ≜ (𝑥1, 𝑥2
1
, . . . , 𝑥2𝑚). The terms ∇r 𝐽 and ∇z 𝐽 are straight-

forward to compute due to Assumption 1. However, ∇rz requires
more work since it is not immediately clear how to differentiate

the solution of the Stage 2 subgame (4).

Fortunately, we can find an expression for ∇rz by analyzing the

structure of the game solutions and applying the implicit function

theorem [4]. First, we define a solution to the Stage 2 game as a

Nash equilibrium. Then, using the fact that a Nash equilibrium im-

plies first-order stationarity for all players, we leverage the implicit

function theorem and derive sufficient conditions for the existence

of ∇rz.
Solutions to the Stage 2 game (4) are points that satisfy Nash

equilibrium conditions where no player has a unilateral incentive

to deviate from their chosen strategy. Concretely, in a game with

𝑁 players, strategy x∗ = [𝑥1∗, . . . , 𝑥𝑁 ∗] is a Nash equilibrium if it

satisfies

𝐽 𝑖 (x∗) ≤ 𝐽 𝑖 ( [𝑥𝑖 , 𝑥−𝑖∗]) ∀𝑖 ∈ [𝑁 ], (9)

where [𝑥𝑖 , 𝑥−𝑖∗] denotes a strategy where only player 𝑖 deviates

from x∗.
Inequality (9) implies that first-order stationarity must hold for

all players, i.e.,

F =


∇𝑥1E𝜔 |0 [𝐽 1 (𝑥1∗, 𝑥2∗;𝜔)]
∇𝑥2

1

𝐽 2 (𝑥1∗, 𝑥2∗
1
;𝜔1)

.

.

.

∇𝑥2

𝑚
𝐽 2 (𝑥1∗, 𝑥2∗𝑚 ;𝜔𝑚)


= 0. (10)

Then, assuming certain regularity conditions aremet, by the implicit

function theorem [4, Thm. 1B.1], there exists a localized solution

map z : r′ ↦→ z(r′) for any r′ ∈ 𝑈 , a neighborhood of r on which

F(z(r′), r′) = 0. Moreover, for this localized solutionmap,∇rz exists
and is given by

∇rz = ∇zF−1∇rF. (11)

The following are the sufficient conditions for the existence and

differentiability of this solution map in 𝑈 :

(1) F = 0
(2) F is continuously differentiable

(3) ∇zF is invertible.

The first condition is already given by (10). The second condition

follows if we assume costs are twice-differentiable with respect

to their respective decision variables 𝑥1 and 𝑥2
𝑖
(Condition 1 in

Proposition 1).

To show that the third condition is met we compute ∇zF and

analyze its structure. We begin by noting that

∇zF =


∇2
𝑥1

E[ 𝐽 1 ] ∇
𝑥2
1
,𝑥1

E[ 𝐽 1 ] ·· · ∇
𝑥2𝑚,𝑥1

E[ 𝐽 1 ]

∇
𝑥1,𝑥2

1

𝐽 2
1

∇2
𝑥2
1

𝐽 2
1

· · · ∇
𝑥1
0
,𝑥2𝑚

𝐽 2
1

.

.

.
∇
𝑥1,𝑥2𝑚

𝐽 2𝑚 ∇
𝑥2
1
,𝑥2𝑚

𝐽 2𝑚 · · · ∇2
𝑥2𝑚

𝐽 2𝑚


. (12)

where ∇𝑢,𝑣 = ∇𝑢∇𝑣 , 𝐽 𝑖𝑘 = 𝐽 𝑖 (·;𝜔𝑘 ) and we omit the other argu-

ments for brevity. Decisions made by Player 2 are independent for

all worlds. Therefore, ∇𝑥2

𝑖
,𝑥2

𝑗
𝐽 2
𝑗
= 0, 𝑖 ≠ 𝑗 and all off-diagonal 𝑛 × 𝑛

blocks in the bottom-right 𝑛𝑚 × 𝑛𝑚 block of ∇zF are zero.

=⇒ ∇zF =


∇2
𝑥1

E[ 𝐽 1 ] ∇
𝑥2
1
,𝑥1

E[ 𝐽 1 ] ... ∇
𝑥2𝑚,𝑥1

E[ 𝐽 1 ]

∇
𝑥1,𝑥2

1

𝐽 2 ∇2
𝑥2
1

𝐽 2 ... 0

.

.

.
.
.
.

. . .
.
.
.

∇
𝑥1,𝑥2𝑚

𝐽 2 0 ... ∇2
𝑥2𝑚

𝐽 2


(13)

We can re-write ∇zF as the block matrix

∇zF =

[
A B
C D

]
(14)

where

A = ∇2
𝑥1
E[𝐽 1] (15a)

B =

[
∇𝑥2

1
,𝑥1E[𝐽 1] . . . ∇𝑥2

𝑚,𝑥1E[𝐽 1]
]

(15b)

C =


∇𝑥1,𝑥2

1

𝐽 2
1

.

.

.

∇𝑥1,𝑥2

𝑚
𝐽 2𝑚

 (15c)

D =


∇2
𝑥2
1

𝐽 2
1

... 0

.

.

.
. . .

.

.

.
0 ... ∇2

𝑥2𝑚

𝐽 2𝑚

 . (15d)

If Player 1 and Player 2’s cost Hessians are invertible (Condition 2),

so are A and D, and we can express det(∇zF) in terms of the Schur

complement ∇zF/D:

det(∇zF) = det(A) det(∇zF/D), (16)

where ∇zF/D = A − BD−1C. Then, ∇zF is invertible if and only if

det(∇zF/D) ≠ 0 (since det(A) ≠ 0).

If we let E = ∇zF/D we have

E = ∇2
𝑥1
E[𝐽 1] −

𝑚∑︁
𝑗=1

∇𝑥2

𝑗
,𝑥1E[𝐽 1] (∇2

𝑥2

𝑗

𝐽 2𝑗 )
−1∇𝑥1,𝑥2

𝑗
𝐽 2𝑗 . (17)

Thus, ∇zF is invertible if and only if E is invertible (Condition 3).

Therefore, by the implicit function theorem, ∇rz exists if Con-
ditions 1-3 hold. Moreover, using (8), it follows that

𝑑 𝐽

𝑑r exists as

well. □

5 EXPERIMENTAL RESULTS
In this section we demonstrate our proposed formulation with a

zero-sum tower-defense game. We include a variety of experiments

meant to give intuition about the Stage 1 cost landscape and the
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optimal selection given a selected signal structure. All code is found

in a public repository.
1

We define a zero-sum tower-defense game in which the tower,

referred to as the defender, may be attacked from one of three

directions by an attacker. In Stage 1, the defender (UP) allocates

scouts in each direction, corresponding to the selection of a signal

structure. These scouts are meant to warn the defender of the

preferred attack direction. In Stage 2, the defender receives a signal

from its scouts, represented as an integer 𝜎 ∈ {0, 1, 2, 3}. Integers
1 ≤ 𝜎 ≤ 3 inform the defender what the world is, and in every

world 𝜔 ∈ Ω, the attacker has a preferred attack direction. A zero

signal corresponds to the case where the defender gets no warning

about the world value. After receiving a signal, the defender plays a

zero-sum game with the defender using a policy 𝑥1 : S → X1
that

maps signals to defense allocations. Similarly, the attacker plays the

game with a policy 𝑥2 : S×Ω → X2
, that maps the defender signal

(which we assume the attacker knows) and the world (known to

the attacker), to attack allocations.

Stage 1 consists of the signal structure selection problem defined

in (5) with defender cost function 𝐽 1 given by

𝐽 1 (𝑥1 (𝑖), 𝑥2 (𝑖, 𝜔);𝜔) = −𝐽 2 (𝑥1 (𝑖), 𝑥2 (𝑖, 𝜔);𝜔) (18a)

where 𝐽 2 will be defined shortly. Each world 𝜔 corresponds to

an attacker cost function with a preference towards a particular

direction of attack.

In Stage 2, the policies 𝑥1, 𝑥2 are assembled from the solution of

the Stage 1 game (4) with 𝐽 1 and 𝐽 2 as defined in this section. They

are also constrained such that X𝑖 = {𝑥𝑖 | ∑𝑛
𝑗=0 𝑥

𝑖
𝑗
= 1, 𝑥𝑖 ≥ 0}.

The attacker cost function is given by

𝐽 2 (𝑥1 (𝑖), 𝑥2 (𝑖, 𝜔), 𝜔) = −
𝑚∑︁
𝑗=1

𝜁 (𝛿 𝑗 (𝜔)) 𝛿2𝑗 (𝜔) (19a)

where 𝛿 𝑗 (𝜔) = 𝛽 𝑗 (𝜔)𝑥2𝑗 (𝑖) − 𝑥
1

𝑗 (𝑖, 𝜔) (19b)

𝜁 (𝛿) = 1

1 + 𝑒−2𝑘𝛿
(19c)

0 < 𝛽𝑘 (𝜔 𝑗 ) < 𝛽 𝑗 (𝜔 𝑗 ),∀𝑘 ≠ 𝑗 . (19d)

The term 𝛿 𝑗 (𝜔) in (19b) is the difference between a scaled attacker’s
allocation 𝑥2

𝑗
(𝑖) and the defender allocation 𝑥1

𝑗
(𝑖) in direction 𝑗 . In-

formally, a large 𝛿 𝑗 (𝜔) corresponds to a mismatch between defense

and attack allocations in direction 𝑗 , a win for the attacker. The

scaling effect of 𝛽 𝑗 (𝜔) can be interpreted as a force multiplier in

each direction of attack. Inequality (19d) implies that 𝛽𝑘 (𝜔 𝑗 ) is
larger when 𝑘 = 𝑗 . Therefore, it is easier for the attacker to gain

a numerical advantage in that direction. This is how we encode a

direction preference, since the cost in (19a) is decreasing in each

𝛿 𝑗 . The cost function in (19c) uses a logistic factor with sharpness

parameter 𝑘 that “activates” only if 𝛿 > 0. This ensures that the

attacker is not penalized for situations where the defender allocates

resources in a direction where the attacker is not present.

We gather the preferences for each world and direction in the

matrix B as follows:

B =


𝛽⊤ (𝜔1)
𝛽⊤ (𝜔2)
𝛽⊤ (𝜔3)

 =

𝛽1 (𝜔1) 𝛽2 (𝜔1) 𝛽3 (𝜔1)
𝛽1 (𝜔2) 𝛽2 (𝜔2) 𝛽3 (𝜔2)
𝛽1 (𝜔3) 𝛽2 (𝜔3) 𝛽3 (𝜔3)

 . (20)

1
github.com/CLeARoboticsLab/GamesVoI.jl

Figure 2: Normalized Stage 1 cost |𝐽 | as a function of scout
allocation r.

Figure 3: Values for each term in (22c) as a function of r.
Normalized by the highest value observed across all six terms.

In this case, (19d) implies that the diagonal elements are the largest

for every row.

This experiment can be understood as a version of the Colonel

Blotto game with smooth payoff functions. In the standard formu-

lation of a Colonel Blotto game, two players must simultaneously

allocate forces across a set of battlefields [20]. At every battlefield,

the player with the largest number of forces wins, and the payoff

for all players depends on the number of battlefields they win. By

contrast, ours is a game of degree, as there is a continuously varying

quantity that may be won from each battlefield.

Computing the derivative for this experiment requires consid-

ering the effects of the constraints on the solution of Stage 2 as

these constraints were not considered in Proposition 1. As shown in

Liu et al. [15], when strict complementarity holds, and under mild

assumptions, the derivative ∇rz can be uniquely computed. For the

case of weak complementarity, the derivative is not well-defined,

but subgradients can still be computed. Our implementation of

Algorithm 1 accounts for both cases.

5.1 Understanding the Cost Landscape
We begin by plotting the Stage 1 cost as a function of scout alloca-

tion. To do so, we first select a valid scout allocation r and solve (4)
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Figure 4: Attacker policy 𝑥2 as a function of r and sig-
nal/world.

to obtain 𝑥1 (𝜎) and 𝑥2 (𝜎,𝜔),∀𝜔 ∈ Ω, 𝜎 ∈ S for which 𝑝 (𝜎,𝜔) > 0.

Then, we use these variables to compute the Stage 1 cost (5a). Note

that r belongs to the 2-simplex, and therefore, has only two degrees

of freedom. This means we can plot the Stage 1 cost (5a) as a 3-D

surface where the (𝑥,𝑦)-axes are r1 and r2, and the 𝑧-axis is the

normalized expected cost. We normalize the costs by dividing with

the highest observed cost among all r in the simplex.

For this experiment, we start with a uniform prior 𝑝 (𝜔𝑖 ) =
1

3
, ∀𝑖 ∈ {1, 2, 3}, a sharpness parameter 𝑘 = 10.0, and the following

attacker preference matrix:

B =


3.0 2.0 2.0

2.0 3.0 2.0

2.0 2.0 3.0

 . (21)

The resulting plot in Figure 2 reveals the surprising fact that,

for this parameter regime, the Stage 1 cost landscape is relatively

flat. This implies that scout allocation has only a small effect on the

expected cost for the defender at Stage 1.

To understand why, we begin by separating the Stage 1 cost into

the six terms from which it is composed:

E𝜔,𝜎 [𝐽 1 (𝑥1 (𝜎), 𝑥2 (𝜎,𝜔);𝜔)] = (22a)

3∑︁
𝑖=1

r𝑖𝑝 (𝜔𝑖 ) 𝐽 1 (𝑥1 (𝑖), 𝑥2 (𝑖, 𝜔𝑖 ))+ (22b)

3∑︁
𝑖=1

(1 − r𝑖 )𝑝 (𝜔𝑖 ) 𝐽 1 (𝑥1 (0), 𝑥2 (0, 𝜔𝑖 )) . (22c)

Then, we plot the separate contribution of each term in Figure 3,

where we readily see how the structure of the individual terms

results in a cancellation effect that leads to the relatively flat Stage

1 cost in Figure 2.

The result is that the optimal scout allocations are found at the

vertices of the simplex. This result has an interesting interpretation:

it is in the defender’s best interest to completely remove uncertainty

about one world, instead of distributing its information-gathering

resources across many directions.

5.2 Corresponding Attack and Defense
Decisions

We now present how players’ decisions change as a function of

signal structure selection r. To this end, in Figure 5 we color each

Figure 5: Defender policy 𝑥1 as a function of r and sig-
nal/world.

point in the r simplexwith an RGB colorwhose component intensity

is given by a Stage 2 decision variable. For example, given an r,
if the defender’s optimal Stage 2 decision for 𝜎 = 0 is 𝑥1 (0) =
[0.5, 0.5, 0.0]⊤, then point r is colored by the (normalized) RGB

triplet (0.5, 0.5, 0.0). This figure illustrates what the defense policy
𝑥1 is for every possible combination of signal and signal structure

selection.

We note that in the case of detection (𝜎 ≠ 0, top three plots in

Figure 5), the defense policy is to allocate all of the resources in the

direction of the highest attack preference. For example, consider the

top-middle plot in Figure 5 which displays the defender’s decisions

when (𝜔, 𝜎) = (𝜔2, 2). The preference matrix (20) implies that in

𝜔2, the attacker prefers direction 2. The resulting optimal defensive

action is to allocate all resources in that direction, as shown by the

green surface with RGB triplet (0.0, 1.0, 0.0). To help understand

why, we examine the attack policy, shown in Figure 4, for the same

world and signal combination. Note that the surface in the top-

middle plot is all green, which means that the attacker allocates

all of its resources in direction 2. The interpretation is that even

though a signal 𝜎 = 2 informs the defender what the world is,

and therefore, what the preferred attack direction is, the optimal

choice for the attacker is still to attack in its preferred direction.

In response, the defender allocates all of its resources in that same

direction. This pattern holds for any of the complete information

cases, i.e., (𝜔, 𝜎) = (𝜔𝑖 , 𝑖). This situation arises because the benefits

conferred by a larger attack multiplier in the preferred direction

are large enough to offset the actions taken by a defender who is

aware of this preference.

When the defender has no information about what the world

is (𝜎 = 0), its decision will be based only on its knowledge of how

it allocated information-gathering resources in Stage 1. This may

result in a mixed allocation in different directions. For example,

if the defender’s Stage 1 decision is r = [1, 0, 0]⊤ and it received

a signal of 0, then 𝑝 (0|𝜔1) = 0, implying that the value of the

world must be 𝜔2 or 𝜔3. Therefore, given a uniform prior and no

other information, the optimal decision must be to distribute its

resources between the preferred directions in 𝜔2 and 𝜔3. This is

seen in Figure 5 for 𝜎 = 0, with the selected decision for the bottom

right corner (r = [1, 0, 0]⊤) represented in a teal color, which is

a mixed allocation between directions 2 and 3 (green and blue,

respectively).
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Figure 6: Defender policy x1 given a perturbed preference
matrix B𝜃 (23) with 𝜃 = 2. Red “spreads out” to the right side
of the simplex, because the lower probabilities of the risky
world (as one moves toward the right vertex of the simplex)
are outweighed by the additional expected cost.

5.3 Making One World Riskier
We now examine how the decision landscape changes as we per-

turb the cost functions. Let us consider the scenario in which one

world is much riskier than the others—that is, for one of the worlds,

the preferred direction has a larger force multiplier than the force

multipliers of the preferred directions of the other worlds. Math-

ematically, we can model this by defining a perturbed preference

matrix B𝜃 as follows:

B𝜃 =


3.0 + 𝜃 2.0 2.0

2.0 3.0 2.0

2.0 2.0 3.0

 . (23)

In Figure 6 we present the resulting defender policy for the case

where 𝜃 = 2. Compared to the original defender policy in Figure 5,

the defender policy remains the same for the complete information

cases in the top three plots, i.e., when the world is detected and

(𝜔, 𝜎) = (𝜔𝑖 , 𝑖). This makes sense because, within each world, the

preferred attack direction has not changed, so once the world has

been detected the best defense action remains unchanged whether

𝜃 = 0 or not.

On the other hand, in the incomplete information case (𝜎 = 0),

the defense policy becomes more biased towards allocating defense

resources in the risky direction. The expected cost associated with

the risky world remains high enough to bias the minimizer of (4a)

towards allocating resources in that direction—even if there is a

low probability of that world given 𝜎 = 0 (as given by the scout

allocation r).
This explains the results shown in the bottom three plots of

Figure 6, where a larger portion of the simplex is redwhen compared

to Figure 5. Moreover, as one increases 𝜃 , the red region expands

over more of the r-simplex. This is because the additional risk

of 𝜔1 results in a situation where the defender’s best decision is

x1 (0) = [1, 0, 0]⊤, even when 𝑝 (𝜔1 |0) is low (which happens for r
closer to the right side of the simplex). We note that the attacker

policy remains unchanged and identical to the one seen in Figure 4.

6 CONCLUSION
We provide a two-stage, game-theoretic model for two-player non-

cooperative games where an uncertain player can pre-emptively

gather information. In the first stage, an uncertain player uncertain

player (UP) chooses how to allocate their information-gathering

resources. Critically, this model allows for a smooth resource allo-

cation, in contrast to existing literature on the topic. In the second

stage, UP receives information—also available to the certain player

(CP)—in the form of a signal, which UP and CP use to play a non-

cooperative game. We develop an algorithm that solves this two-

stage problem, returning UP’s optimal allocation of information-

gathering resources and UP’s policy that maps signals to actions in

the noncooperative game.

This work can be extended in several directions. Within Blotto

games, one could characterize how the cost landscapes change

with different priors, cost parameters, and/or cost functions. One

specific cost function of interest is the arctan payoff function in-

troduced by Ferdowsi et al. [5] as part of the Generalized Blotto

Game. Other extensions include: (1) relaxing the assumptions on

the signal structure, e.g., a game without the “no-false-positive"

Assumption 1, (2) applying this to a game with higher dimensional

decision variables and/or more worlds, and (3) playing stage 2 many

times (perhaps infinitely), allowing for the UP to iteratively update

their prior and improve outcomes. (4) A deeper analysis of condi-

tions in Proposition 1, and how they intuitively relate to the player

objectives.
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