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ABSTRACT
Neural solvers based on the divide-and-conquer approach for Ve-

hicle Routing Problems (VRPs) in general, and capacitated VRP

(CVRP) in particular, integrates the global partition of an instance

with local constructions for each subproblem to enhance gener-

alization. However, during the global partition phase, miscluster-

ings within subgraphs have a tendency to progressively compound

throughout the multi-step decoding process of the learning-based

partition policy. This suboptimal behavior in the global partition

phase, in turn, may lead to a dramatic deterioration in the per-

formance of the overall decomposition-based system, despite us-

ing optimal local constructions. To address these challenges, we

propose a versatile Hierarchical Learning-based Graph Partition

(HLGP) framework, which is tailored to benefit the partition of

CVRP instances by synergistically integrating global and local par-

tition policies. Specifically, the global partition policy is tasked with

creating the coarse multi-way partition to generate the sequence

of simpler two-way partition subtasks. These subtasks mark the

initiation of the subsequent K local partition levels. At each local

partition level, subtasks exclusive for this level are assigned to the

local partition policy which benefits from the insensitive local topo-

logical features to incrementally alleviate the compounded errors.

This framework is versatile in the sense that it optimizes the in-

volved partition policies towards a unified objective harmoniously

compatible with both reinforcement learning (RL) and supervised

learning (SL). Additionally, we decompose the synchronized train-

ing into individual training of each component to circumvent the

instability issue. Furthermore, we point out the importance of view-

ing the subproblems encountered during the partition process as

individual training instances. Extensive experiments conducted on

various CVRP benchmarks demonstrate the effectiveness and gen-

eralization of the HLGP framework. The source code is available at

https://github.com/panyxy/hlgp_cvrp.
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1 INTRODUCTION
The Vehicle Routing Problem (VRP) is a widely-studied NP-hard

problem which has many real-world applications including trans-

portation [10], logistic [2], and digital e-commerce [24]. Exact meth-

ods for solving VRP often use mixed integer linear programming

(MILP) techniques and employ MILP solvers to generate optimal

solutions with theoretical guarantees [21]. However, these methods

so far are not computationally efficient enough to handle large-scale

instances, particularly for the applications with time-sensitive and

dynamically changing VRP scenarios. In contrast, heuristic meth-

ods such as LKH3 [12] and HGS [37] aim to generate high-quality

solutions quickly. They commonly improve the quality of the exist-

ing solution incrementally by local search techniques. However, in

addition to the heavy reliance on the quality of handcrafted local

operators, these methods are not robust and often need to start

from scratch for the problem instances with slight variations.

More recently, there has been much work on neural network-

based solvers for VRP. Experimentally they have been shown ca-

pable of inferring near-optimal efficiently solutions for instances

which fall within the training data distribution. These learning-

based solvers typically use one of the following methods: construc-

tive, iterative, and divide-and-conquer. The constructive method,

as a pioneering paradigm, incrementally deduces a complete solu-

tion starting from an empty state [18–20, 25, 32, 38, 40]. However,

challenges arise when dealing with out-of-distribution instances

due to the limited expressivity of neural network and the intri-

cate search landscape. To mitigate this performance degradation,

the iterative method merges a neural network-based policy with

heuristic local operators to progressively refine the current solu-

tion [3, 13, 26, 29, 30, 41]. Yet, this approach relies on numerous
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improvement steps with well-crafted local operators for satisfac-

tory solutions. By comparison, the divide-and-conquer approach

embraces either a heuristic-based partition policy [4, 7, 8, 17, 23, 46]

or a neural partition policy [14, 33, 42, 44] to globally divide the

entire graph into subgraphs and employ a local construction policy

to solve subproblems. However, a failure in either component policy

may lead to a significant performance drop. Moreover, heuristic-

based partition rules often result in local optima, and neural parti-

tion policies may be vulnerable to distribution shifts. Hence, there

is a pressing need for a more generalizable and meticulous partition

policy, which is the focus of this paper.

In the divide-and-conquer paradigm, the local construction pol-

icy agent benefits from the local topological features within sub-

problems insensitive against distribution and scale shifts, contribut-

ing to the (near-)optimality of solutions of subproblems [6, 9, 16].

However, during the multi-step decoding process of the learning-

based partition policy for Capacitated VRP (CVRP) instances [14,

42], the decoding of clustered nodes in each step relies on the par-

tial partition solution from the preceding step. This implies that

errors in the clustering from earlier steps have a tendency to prop-

agate and result in a chain of misclusterings in subsequent steps,

called as compounded errors. Consequently, even with an optimal

local construction policy, deficiencies in the partition task lead to

substantial deviations from the ideal policy in the overall system.

Therefore, we argue that the partition task holds a critical position

in the overall decomposition-based system for solving CVRP. Fur-

thermore, the success of the local construction policy inspires us to

introduce a local partition policy which aims to progressively alle-

viate compounded errors by harnessing local topological features

in the partition task. We thus consider to implement a hierarchical

learning (HL) framework specifically designed for the partition task

in CVRP, which is capable of seamlessly integrating both global and

local partition policies. In prevailing HL frameworks, a high-level

policy is adopted to derive a series of simpler sub-tasks which are

then delegated to the low-level policy, with the aim of facilitating

exploration [34]. These frameworks predominantly focus on rein-

forcement learning and undergo joint training of the associated

policies [22]. Yet, these HL frameworks have not been extensively

explored in addressing compounded errors within the graph par-

tition task of large-scale CVRP. In contrast, our study extends the

HL framework to the partition task of CVRP and demonstrates its

efficacy in mitigating compounded errors.

In this paper, we present a versatile Hierarchical Learning-based

Graph Partition (HLGP) framework specifically tailored for the par-

tition task in CVRP, which synergistically integrates both global and

local partitioning policies. To be specific, our method formulates

the partition problem of CVRP using a multi-level HL framework.

At the global partition level, the global partition policy is respon-

sible for initiating a coarse multi-way partition to create a series

of simpler 2-way partition subtasks. These subtasks stand as the

starting point for the subsequent K local partition levels. At each

local partition level, a tailored sequence of subtasks is derived from

the partition solution of the preceding level. These subtasks are

then fed into the local partition policy. Such a setup allows the local

partition policy to mitigate the potential misclustering arising from

the previous level by leveraging the insensitive local topological

features inherent in the subtask. By enabling the local partition pol-

icy to traverse through the subtasks at each local partition level, the

compounded misclusterings can be mitigated progressively across

levels as a consequence.

Our proposed HLGP framework is versatile, featuring a unified

objective that effortlessly accommodates both reinforcement learn-

ing (RL) and supervised learning (SL) for training the partition

policies. It is worth noting that unlike prior approaches that uti-

lized SL to directly train the neural solver, our method explores

the application of SL for training the partition policy, usually omit-

ting the need for permutation information. Additionally, the joint

training of the involved policies is disentangled to mitigate training

instability. Moreover, by conducting in-depth analyses in both the

RL and SL settings, we shed light on the importance of viewing the

subproblems encountered during the partition process as individ-

ual training instances. Empirically, the proposed HLGP framework

convincingly demonstrates its superiority through extensive exper-

iments on various CVRP benchmarks over previous SOTA methods.

In particular, our method can scale up to CVRP10K instances with

around 10% performance improvement over current literature.

2 RELATEDWORKS
Learning-based methods for solving combinatorial optimization

problems (COPs) typically fall into three main categories: con-
structivemethods, iterativemethods, and divide-and-conquer
methods. Constructive methods aim to progressively infer com-

plete solutions using the autoregressive mechanism [1, 9, 11, 15, 18–

20, 31, 32, 35, 36, 38, 45]. Impressively, SL-driven constructive poli-

cies, such as BQ [5], LEHD [27] and SIL [28] can mitigate the high

GPU memory demands associated with gradient backpropagation

by eliminating the need for delayed rewards in the training of RL

algorithms. Iterative methods offer the benefit of consistently im-

proving a given solution until convergence [3, 13, 26, 29, 30, 41]

by integrating local improvement operators into RL policies. The

divide-and-conquer paradigm can exploit local topological features

that remain insensitive to distribution or scale shifts, thus alleviat-

ing performance degradation. Somemethods harness heuristic rules

for the partitioning process [4, 8, 17, 23, 46]. In contrast, H-TSP [33],

TAM [14], GLOP [42], and UDC [44] opt to use a learning-based pol-

icy to globally divide the entire instance into subproblems, which

are then addressed by a pretrained local construction policy. For a
more detailed review of related algorithms used to solve VRPs, please
refer to the Appendix-D.

3 PRELIMINARIES
CVRP Formulation. A CVRP instance 𝐼 is defined as a tuple,

represented by 𝐼 = (𝐺, 𝐷, 𝑁max). The graph 𝐺 consists of a depot

node 𝑣0 and 𝑁𝑣 customer nodes 𝑣𝑖 (1 ≤ 𝑖 ≤ 𝑁𝑣 ). 𝐷 and 𝑁max

denote the vehicle capacity and maximum allowable number of

times vehicles returning to the depot, respectively. Each node is

associated with its coordinates (𝑎𝑖 , 𝑏𝑖 ) and each customer node is

further associated with a demand 𝑑𝑖 . 𝑁max is accordingly defined

as ⌈∑𝑁𝑣
𝑖=1

𝑑𝑖/𝐷⌉ + 1. The distance between any pair of nodes can

be measured by the Euclidean distance. In the CVRP, the vehicle

needs to visit each customer exactly once, fulfills their demands

without exceeding 𝐷 , and returns to the depot to reload goods if
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necessary. A feasible solution T ∈ ST can be described as a node

permutation where the depot node can occur multiple times, while

each customer node appears only once. Furthermore, the feasible

solution T also can be decomposed into 𝑁𝜏 feasible subtours. In

each subtour 𝜏𝑖 (1 ≤ 𝑖 ≤ 𝑁𝜏 ), the starting and ending nodes are the

depot, and the intermediate nodes are customers. The travel cost

𝑒 (𝜏𝑖 ) associated with 𝜏𝑖 is the sum of Euclidean distances along this

subtour. Thus, the objective is to minimize 𝑒 (T ) = ∑𝑁𝜏
𝑖=1

𝑒 (𝜏𝑖 ). ST
denotes the space of feasible solutions, as does the notation used

for S in the following sections.

Global Partition and Local Construction (GPLC). In the con-

text of CVRP, the partition task involves clustering nodes into

distinct groups, ensuring that each cluster includes the depot node,

each customer node belongs to a single cluster, and the total de-

mand within each cluster does not surpass 𝐷 . Each cluster of nodes

forms a subgraph. A feasible partition solution C ∈ SC comprises

𝑁𝑐 subgraphs. Each subgraph 𝑐𝑖 (1 ≤ 𝑖 ≤ 𝑁𝑐 ) consists of the depot
node along with various customer nodes distinct from those in

other subgraphs (i.e., ∪𝑁𝑐
𝑖=1
𝑐𝑖 = 𝐺 and ∩𝑁𝑐

𝑖=1
𝑐𝑖 = {𝑣0}). The feasible

partition solution C can also be represented as a node list where the

order of customer nodes is ignored between the two consecutively

visited depot nodes. Therefore, a feasible solution T can be equiva-

lently seen as a feasible partition solution C when disregarding the

node permutation information in T .

Obviously, both the original CVRP and the partition problem

within CVRP revolve around feasible solutionsT and C composed of

discrete value variables. This fact prompts prevalent learning-based

methods to employ stochastic policies as the neural solver to handle

whatever types of problems (permutation or partition) within the

context of CVRP. Let Δ(·) denote the space of the probability mea-

sure. In the GPLC paradigm [14, 42], a stochastic partition policy

𝜋part (C |𝐼 ) ∈ Δ(SC) is used to derive a feasible partition solution

C by dividing the graph 𝐺 . Then, a (near-)optimal local permuta-

tion policy 𝜋∗
perm
(T |C) ∈ Δ(ST ) can generate the feasible subtour

𝜏𝑖 for each subproblem (𝑐𝑖 , 𝐷, 1). The objective is to identify an

optimal partition policy 𝜋∗
part

that minimizes 𝑒 (T ). However, prior
GPLC methods lack theoretical foundations of the partition problem.
Therefore, we introduce Theorem 1 to establish the rationality of the
partition problem for CVRP. Please see Appendix-C.1 for proofs.

Theorem 1. The objective in solving an original CVRP instance 𝐼 is
to identify a (permutation) policy 𝜋 (T |𝐼 ) ∈ Δ(ST ) so as to minimize
the expected cost ET ∼𝜋 [𝑒 (T )]. If 𝜋∗perm

∈ Δ(ST ) is optimal for each
subproblem (𝑐𝑖 , 𝐷, 1), then the original objective can be reframed as
identifying an optimal partition policy 𝜋∗

part
∈ Δ(SC) to minimize

the expected cost, expressed as:

min

𝜋part

EC∼𝜋part
[
𝑁𝑐∑︁
𝑖=1

E𝜏𝑖∼𝜋∗perm

(𝑒 (𝜏𝑖 ))], (1)

where 𝜋∗
perm
(T |C) = ∏𝑁𝑐

𝑖=1
𝜋∗

perm
(𝜏𝑖 |𝑐𝑖 ) implies that 𝜏𝑖 is indepen-

dently sampled given the corresponding 𝑐𝑖 . As aforementioned, view-
ing a feasible partition solution C as a node list implies that the
partition policy can incrementally construct the partition solution.
This process involves conditioning the current selected node C [𝑛] on
the partial partition solution C [0 : 𝑛 − 1] (C [0] = ∅) and the given
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Figure 1: The proposed HLGP framework. 𝐼𝑘
𝑗≥1

represents a
sequence of subproblems. Following the HLGP framework,
the sequence of subproblems 𝐼𝐾

𝑗≥1
are fed to a permutation

policy to derive the respective subtours.

problem instance 𝐼 , written as:

𝜋part (C |𝐼 ) =
𝑁

sol∏
𝑛=1

𝜋part (C [𝑛] |C [0 : 𝑛 − 1], 𝐼 ), (2)

where 𝑁
sol

denotes the length of partition solution. Please note that we
abuse the notation of 𝑁

sol
to denote the length of different partition

solutions for brevity in the following sections. Since the objective
defined in Equation 1 essentially aligns with that associated with RL,
the common approach involves training neural policies using RL.

4 HIERARCHICAL LEARNING-BASED GRAPH
PARTITION

Our proposed HLGP framework is built upon the GPLC paradigm.

Likewise, we assume the optimal local permutation policy 𝜋∗
perm

is obtainable by leveraging LKH3 [12] or the neural solver used

in GLOP [42]. It is evident from the partition policy expression in

Equation 2 that decoding the nodes at each step hinges on the partial

partition solution obtained in the preceding steps. Consequently,

inaccuracies in clustering from earlier steps tend to propagate,

resulting in a chain of misclustering in subsequent steps. These

misclusterings in the partition policy exacerbate notably when con-

fronted with substantial distribution or scale shifts. This empirical

challenge in CVRP thus motivates us to develop a HL framework

for solving the partition problem in CVRP. We anticipate that this

HL framework can progressively mitigate compounded errors by

incorporating both global and local partition policies.

4.1 HL Formulation of Partition Problem
In this section, we begin by introducing the feasible cost function
𝑓 (C) for a feasible partition solution C as defined in Definition 1.

Following this, various forms of 𝑓 (C) will be presented in the subse-

quent sections to align with both RL and SL objectives for training

the partition policies.
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Definition 1. Let 𝜋∗
part

denote the optimal partition policy ob-
tained by optimizing the objective in Equation 1. Given a cost function
𝑓 (C) : SC → R, if 𝜋∗

part
can be derived by optimizing the objective

min𝜋part
EC∼𝜋part

[𝑓 (C)], then 𝑓 (C) is a feasible cost function.

By leveraging this well-defined feasible cost function 𝑓 (C), the
goal of the partition problem is to minimize EC [𝑓 (C)]. Then, we re-
formulate the partition problem using a multi-level HL framework.

In this framework, the global partition policy 𝜋Gpart and the local

partition policy 𝜋Lpart work together in synergy to execute the parti-

tion task, as depicted in Figure 1. At the global partition level, 𝜋Gpart

creates an initial coarse feasible partition C (0) = {𝑐 (0)
1
, . . . , 𝑐

(0)
𝑁𝑐
},

where 𝑐
(0)
𝑖

denotes the subgraph at this level. In this partition solu-

tion C (0) , each pair of subgraphs (𝑐 (0)
𝑖
, 𝑐
(0)
𝑖%𝑁𝑐+1) (where 1 ≤ 𝑖 ≤ 𝑁𝑐 )

is stipulated as neighboring subgraphs as defined by a specific

heuristic rule. For instance, a simple heuristic involves rearranging

subgraphs in C (0) based on the polar angles of their centroids

in a Polar coordinate system centered at the depot node. This

coarse multi-way partition C (0) serves as the entry point of the

subsequent 𝐾 local partition levels. At each local partition level

𝑘 ∈ {1, ..., 𝐾}, the subproblems are sequentially formed by reunit-

ing pairs of neighboring subgraphs from C (𝑘−1)
. Each subproblem

𝐼
(𝑘−1)
𝑗

(1 ≤ 𝑗 ≤ ⌊𝑁𝑐
2
⌋) is defined as:

𝐼
(𝑘−1)
𝑗

= (𝐺 (𝑘−1)
𝑗

, 𝐷, 2);

𝐺
(𝑘−1)
𝑗

= 𝑐
(𝑘−1)
(𝑚+𝑘−1)%𝑁𝑐+1 ∪ 𝑐

(𝑘−1)
(𝑚+𝑘 )%𝑁𝑐+1,

(3)

where𝑚 = 2( 𝑗 −1). There are ⌊𝑁𝑐
2
⌋ subproblems in each local parti-

tion level. For each subproblem, the vehicle is only allowed to return

twice to the depot by subproblem definition. Please note that each

pair of consecutive subproblems 𝐼
(𝑘−1)
𝑗

and 𝐼
(𝑘−1)
𝑗+1 do not overlap

in terms of the subgraphs they contain. Additionally, this technique

for creating subproblems can be described as initially left-shifting

the subgraphs in C (𝑘−1)
by 𝑘−1 places and then merging the neigh-

boring subgraphs without overlaps. At each local partition level

𝑘 ≥ 1, the subproblem sequence is directed to the local partition

policy 𝜋Lpart. This allows the local partition policy 𝜋Lpart to address

potential misclusterings from the preceding level by utilizing the

robust local topological features. As a result, the local partition

policy can traverse through subproblems at each local partition

level, gradually reducing accumulated misclusterings across lev-

els. Moreover, upon completion of solving the subproblem 𝐼
(𝑘−1)
𝑗

,

the pair of subgraphs (𝑐 (𝑘−1)
(𝑚+𝑘−1)%𝑁𝑐+1, 𝑐

(𝑘−1)
(𝑚+𝑘 )%𝑁𝑐+1) is transitioned

to the corresponding subgraph pair (𝑐 (𝑘 )(𝑚+𝑘−1)%𝑁𝑐+1, 𝑐
(𝑘 )
(𝑚+𝑘 )%𝑁𝑐+1).

Consequently, the resolution of the subproblem sequence results in

an update from C (𝑘−1)
to C (𝑘 ) .

Within the overall HLGP framework, the global partition policy

𝜋Gpart is formulated identical to the partition policy in the GPLC

method, written as:

𝜋Gpart (C (0) |𝐼 ) =
𝑁

sol∏
𝑛=1

𝜋Gpart (C (0) [𝑛] |C (0) [0 : 𝑛 − 1], 𝐼 ), (4)

where C (0) [𝑛] and C (0) [0 : 𝑛 − 1] denote the 𝑛-th selected node

and the partial solution in C0
, respectively. In contrast, the local

partition policy addresses the series of subproblems produced from

the previous partition solution C (𝑘−1)
to construct the partition

solution C (𝑘 ) . Let C (𝑘−1)
𝑗

denote the partition solution for the sub-

problem 𝐼
(𝑘−1)
𝑗

. Again, the partition solution C (𝑘−1)
𝑗

can be either

represented as a node list where C (𝑘−1)
𝑗

[𝑛] and C (𝑘−1)
𝑗

[0 : 𝑛 − 1]
indicate the 𝑛-th node and partial solution within it respectively,

or decomposed into two subgraphs 𝑐
(𝑘 )
(𝑚+𝑘−1)%𝑁𝑐+1, 𝑐

(𝑘 )
(𝑚+𝑘 )%𝑁𝑐+1

both of which also belong to C (𝑘 ) . Thus, it can be expressed as:

𝜋Lpart (C (𝑘 ) |C (𝑘−1) , 𝑘) =
⌊ 𝑁𝑐

2
⌋∏

𝑗=1

𝜋Lpart (C (𝑘−1)
𝑗

|𝐼 (𝑘−1)
𝑗

)

=

⌊ 𝑁𝑐
2
⌋∏

𝑗=1

𝑁
sol∏

𝑛=1

𝜋Lpart (C (𝑘−1)
𝑗

[𝑛] |C (𝑘−1)
𝑗

[0 : 𝑛 − 1], 𝐼 (𝑘−1)
𝑗

).

(5)

Please note that in the LHS of Equation 5, the parameter 𝑘 repre-

senting the level is included as an input to the local partition policy.

This inclusion is necessary as the parameter 𝑘 governs the construc-

tion of different subproblem sequences for each level. As a result,

the objective of HLGP framework is to minimize the expected cost

by optimizing both 𝜋Gpart and 𝜋Lpart, written as:

min

𝜋Gpart,𝜋Lpart

EC (0)EC (1) · · ·EC (𝐾 ) [𝑓 (C
(𝐾 ) )], (6)

where C (0) and C (𝑘 ) (𝑘 ≥ 1) are sampled from 𝜋Gpart (C (0) |𝐼 ) and
𝜋Lpart (C (𝑘 ) |C (𝑘−1) , 𝑘), respectively.

4.2 RL-driven HLGP
In the HLGP framework, the imperative task at hand involves the

joint optimization for the global and local partition policies, as

illustrated in Equation 6. To address this intricate optimization

challenge through RL algorithms, a rigorous formulation utilizing

a multi-level Markov Decision Process (MDP) is required. How-

ever, Equation 6 essentially revolves around evaluating C (𝐾 ) at
the 𝐾-th level. The absence of direct evaluations for C (𝑘 ) , 𝑘 < 𝐾 ,

primarily contributes to the instability concern during the joint

training via RL. We thus equivalently convert it to one involving

direct evaluations at each level, as outlined in Theorem 2.

Theorem 2. Let 𝑔(𝑐𝑖 ) denote E𝜏𝑖∼𝜋∗perm
( · |𝑐𝑖 ) (𝑒 (𝜏𝑖 )). It is clear that

𝑓 (C) = ∑𝑁𝑐
𝑖=1

𝑔(𝑐𝑖 ) acts as a feasible cost function. Then, the optimiza-
tion problem defined in Equation 6 can be transformed equivalently
as follows:

min

𝜋Gpart,𝜋Lpart

EC (0) [𝑓 (C
(0) )] + EC (0)EC (1) [𝑓 (C

(1) ) − 𝑓 (C (0) )]+

· · · + EC (0)EC (1) · · ·EC (𝐾 ) [𝑓 (C
(𝐾 ) ) − 𝑓 (C (𝐾−1) )] .

(7)

The evaluation for C (𝑘 ) , 𝑘 ≥ 1, can further be derived as:

𝑓 (C (𝑘 ) ) − 𝑓 (C (𝑘−1) ) =
⌊ 𝑁𝑐

2
⌋∑︁

𝑗=1

[ℎ(C (𝑘 ) , 𝑘,𝑚) − ℎ(C (𝑘−1) , 𝑘,𝑚)];

ℎ(C (𝑘 ) , 𝑘,𝑚) = 𝑔(𝑐 (𝑘 )(𝑚+𝑘−1)%𝑁𝑐+1) + 𝑔(𝑐
(𝑘 )
(𝑚+𝑘 )%𝑁𝑐+1), (8)
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where𝑚 = 2( 𝑗 − 1).

Please see Appendix-C.2 for proofs. Theorem 2 breaks down

the objective described in Equation 6 into 𝐾 + 1 components, with

each component associated with the direct evaluation of the re-

spective partition solution. Notably, except for the evaluation of

C (0) which solely considers its own cost 𝑓 (C (0) ), the evaluation of

C (𝑘 ) , 𝑘 ≥ 1 hinges on the difference between its own cost 𝑓 (C (𝑘 ) )
and the cost 𝑓 (C (𝑘−1) ) from the preceding level. At each local

partition level 𝑘 ≥ 1, the local partition policy is responsible for

resolving each subproblem 𝐼𝑘−1

𝑗
, leading to the modification of each

pair of subgraphs (𝑐 (𝑘−1)
(𝑚+𝑘−1)%𝑁𝑐+1, 𝑐

(𝑘−1)
(𝑚+𝑘 )%𝑁𝑐+1) to the respective

subgraph pair (𝑐 (𝑘 )(𝑚+𝑘−1)%𝑁𝑐+1, 𝑐
(𝑘 )
(𝑚+𝑘 )%𝑁𝑐+1). We are thus allowed

to proceed with the derivation as indicated in Equation 8. Given

the optimization problem stated above, we present the formulation

utilizing a multi-level MDP in Proposition 1.

Proposition 1. In the multi-level MDP framework, at the global
partition level, for 𝑡 ≥ 1, the state 𝑥 (0)𝑡 ∈ X(0) comprises problem
instance 𝐼 and the partial partition solution C (0) [0 : 𝑡 −1] (C (0) [0] =
∅). The initial distribution 𝜇 (0) aligns with the problem instance
distribution 𝑝𝐼 . The action 𝑢

(0)
𝑡 ∈ U(0) involves selecting a node

denoted as C (0) [𝑡], from unvisited customer nodes and the depot node.
Let 𝑖𝑡 index subgraphs such that at timestep 𝑡 , the agent is constructing
𝑖𝑡 -th subgraph 𝑐 (0)

𝑖𝑡
. If the subgraph 𝑐 (0)

𝑖𝑡
is created, then the reward

𝑟
(0)
𝑡 is set as −𝑔(𝑐 (0)

𝑖𝑡
); otherwise, it remains at 0. The global partition

policy, parameterized by 𝜃𝐺 , is thus specified as 𝜋𝜃𝐺 (𝑢
(0)
𝑡 |𝑥

(0)
𝑡 ).

At each local partition level 𝑘 ≥ 1, the local partition policy is
tasked with solving the sequence of subproblems obtained from C (𝑘−1) .
In this context, we use 𝑗𝑡 as an index for subproblems, indicating that
the 𝑗𝑡 -th subproblem denoted as 𝐼 (𝑘−1)

𝑗𝑡
, is currently being addressed

but remains incomplete at timestep 𝑡 . The state 𝑥 (𝑘 )𝑡 ∈ X(𝑘 ) consists
of the subproblem sequence and the partial solution of 𝐼 (𝑘−1)

𝑗𝑡
. The

initial state distribution 𝜇 (𝑘 ) corresponds to the distribution of the
subproblem sequence. The action 𝑢 (𝑘 )𝑡 ∈ U(𝑘 ) involves selecting a

node for solving 𝐼 (𝑘−1)
𝑗𝑡

. When 𝐼 (𝑘−1)
𝑗𝑡

is successfully solved, the index

𝑗𝑡 will proceed to the next subproblem, and the reward 𝑟 (𝑘 )𝑡 is set as
−(ℎ(C (𝑘 ) , 𝑘,𝑚) −ℎ(C (𝑘−1) , 𝑘,𝑚)) (where𝑚 = 2( 𝑗𝑡 − 1)). Otherwise,
the reward remains at 0. Thus, the local partition policy parameterized
by 𝜃𝐿 , is defined as 𝜋𝜃𝐿 (𝑢

(𝑘 )
𝑡 |𝑥

(𝑘 )
𝑡 ). The objective is to maximize the

sum of expected returns across levels, as defined below:

𝐽 (𝜃𝐺 , 𝜃𝐿) = E𝜔 (0) [
𝑇 (0)∑︁
𝑡=1

𝑟
(0)
𝑡 ] + · · · +E𝜔 (0) · · ·E𝜔 (𝐾 ) [

𝑇 (𝐾 )∑︁
𝑡=1

𝑟
(𝐾 )
𝑡 ], (9)

where 𝑇 (𝑘 ) and 𝜔 (𝑘 ) denote the horizon and the trajectory at level 𝑘 .

Notably, although Equation 9 isolates the evaluation exclusively

for𝜔 (𝑘 ) , the evaluation impacted by the trajectories𝜔 (𝑘+1) , ..., 𝜔 (𝐾 )

still remains. This implies that the underlying MDP at level 𝑘 re-

mains nonstationary. We thus take the following optimization prob-

lem as an approximation:

𝐽 (𝜃𝐺 , 𝜃𝐿) = 𝐿(𝜃𝐺 , 𝜆𝐺 , 0) +
𝐾∑︁
𝑘=1

𝐿(𝜃𝐿, 𝜆𝐿, 𝑘);

𝐿(𝜃, 𝜆, 𝑘) = E𝜔 (𝑘 )∼𝜇 (𝑘 ) ,𝜋𝜃 [
𝑇 (𝑘 )∑︁
𝑡=1

𝑟
(𝑘 )
𝑡 ] + 𝜆H(𝜋𝜃 ),

(10)

where 𝜇 (𝑘 ) is a surrogate initial state distribution at level 𝑘 ,H(𝜋𝜃 )
is the entropy term, and 𝜆 denotes the hyperparameter. The entropy

term is typically defined to minimize the KL divergence between

the policy and a uniform distribution. In Equation 9, 𝜔 (𝑘 ) , 𝑘 ≥ 1

is drawn from the initial distribution 𝜇 (𝑘 ) and the local partition

policy 𝜋𝜃𝐿 . However, 𝜇
(𝑘 )

heavily relies on preceding partition

solutions derived from both the global and local partition policies.

Therefore, in Equation 10, the surrogate initial distribution 𝜇 (𝑘 ) is
introduced to eliminate this dependency. Please note that 𝜇 (0) =
𝜇 (0) . As a result, the optimization for 𝜋𝜃𝐺 and 𝜋𝜃𝐿 is decoupled.

In the context of RL-driven HLGP, we incorporate the surro-

gate objective defined in Equation 10 into the REINFORCE algo-

rithm [39] to update 𝜋𝜃𝐺 and 𝜋𝜃𝐿 . In each iteration 𝑛 ≥ 0 of RE-

INFORCE, the existing global partition policy denoted as 𝜋𝜃𝑛
𝐺
is

employed to sample 𝜔 (0) for the update of 𝜋𝜃𝑛
𝐺
. At each local parti-

tion level 𝑘 ≥ 1, the current local partition policy denoted as 𝜋𝜃𝑛
𝐿
is

additionally leveraged to sample the partition solution C𝑘−1
, crucial

for 𝜇 (𝑘 ) . Following this,𝜔 (𝑘 ) is sampled to update 𝜋𝜃𝑛
𝐿
. Please refer

to Appendix-B for the pseudocode.

Furthermore, in the standard theoretical analysis of REINFORCE

algorithm conducted in [43], the upper bound of regret includes the

term represented by | | 𝑑𝜇 | |∞, where 𝑑 and 𝜇 stand for the stationary

state distribution and the initial state distribution. However, the

existing method using REINFORCE algorithm for whatever types of

problems (permutation or partition) in the context of CVRP ignores

the potential risks highlighted in the regret bound. We exemplify

the partition problem as a case study to elucidate this issue. The

support set of 𝜇 consists solely of the problem instances 𝐼 . Let 𝑁𝑣 (𝑡)
denote the number of customer nodes selected before timestep

𝑡 . In contrast, during the partition process, at each step 𝑡 > 1,

the partition policy is indeed responsible to solve the subproblem

denoted as 𝐼𝑁𝑣 (𝑡 ) in which the graph comprises depot and unvisited

customers. Let 𝑐𝑖𝑡 denote the subgraph under construction. The

capacity in 𝐼𝑁𝑣 (𝑡 ) is accordingly subtracted from the total demand

of the visited node in 𝑐𝑖𝑡 , reverting back to 𝐷 once 𝑐𝑖𝑡 is fully

formed. The support set of 𝑑 thus includes the subproblems 𝐼𝑁𝑣 (𝑡 ) .
This significant discrepancy in support sets inevitably results in

an infinite | | 𝑑𝜇 | |∞ in the regret bound. This observation inspires

us to incorporate the subproblems 𝐼𝑁𝑣 (𝑡 ) encountered during the

partition process into the training of involved partition policies to

reduce the mismatch between support sets.

In the practical implementation, a problem instance 𝐼 is initially

generated from the instance distribution 𝑝𝐼 , which is used to train

𝜋𝜃𝐺 via RL. If a new subgraph 𝑐𝑖𝑡 is formed at timestep 𝑡 , then

the subproblem 𝐼𝑁𝑣 (𝑡 ) is treated as an individual problem instance,

denoted as 𝐼 ← 𝐼𝑁𝑣 (𝑡 ) , for the training of 𝜋𝜃𝐺 . This procedure
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Figure 2: RL-driven HLGP replaces the initially generated partial partition solution with the complete partition solution of
subproblems within C (0) at level 0. SL-driven HLGP requires labeled instances for training 𝜋𝜃𝐺 and 𝜋𝜃𝐿 .

continues until 𝐺 = ∅ in 𝐼 , and reverts back to 𝑝𝐼 for a new in-

stance 𝐼 . For efficiency reasons, we do not include all subproblems.

In inference, the partition solution C (0) is formed by sequentially

replacing the partial partition solution with the corresponding com-

plete partition solution of the subproblem. An example is shown

in Figure 2(a). The training and inference procedure utilizing the

encountered subproblem can similarly be applied to 𝜋𝜃𝐿 . Addition-

ally, we utilize the isomorphic Graph Neural Netwok (GNN) as

presented in GLOP [42] to serve as the backbones of 𝜋𝜃𝐺 and 𝜋𝜃𝐿
correspondingly.

4.3 SL-driven HLGP
In this section, we pivot towards an SL training strategy to optimize

the objective of the partition problem as defined in Equation 6.

Here, the optimal partition solver 𝜋∗
part

is presumed to be available

in advance. The optimal partition solution
¯C = {𝑐1, . . . , 𝑐𝑁𝑐 } for

each instance 𝐼 is accordingly obtainable from 𝜋∗
part

. We thus adopt

𝑓 (C) = −1(C = ¯C) = −1(𝑐1 = 𝑐1, . . . , 𝑐𝑁𝑐 = 𝑐𝑁𝑐 ), where 1(·)
denotes the indicator function. Recall that the optimal solution

¯T of

the CVRP instance can be equivalently seen as the optimal partition

solution
¯C when disregarding the node permutation information in

¯T . Therefore, by setting
¯C = ¯T , the feasible cost function can be

defined as 𝑓 (C) = −1(C [0] = ¯C [0], . . . , C [𝑁
sol
] = ¯C [𝑁

sol
]). Upon

utilizing this design of 𝑓 (C), Theorem 3 simplifies the optimization

objective of HLGP framework.

Theorem 3. Given 𝑓 (C) = −1(C = ¯C), the optimization objective
in the HLGP framework for a problem instance 𝐼 is to identify 𝜋𝜃𝐺
and 𝜋𝜃𝐿 so as to minimize:

𝐿(𝜃𝐺 , 𝜃𝐿, ¯C) = − log𝜋𝜃𝐺 ( ¯C |𝐼 ) −
𝑁𝑐∑︁
𝑖=1

log𝜋𝜃𝐿 ( ¯C𝑖 |𝐼𝑖 ), (11)

where 𝐼𝑖 = (𝐺𝑖 , 𝐷, 2) denotes the subproblem, with𝐺𝑖 = 𝑐𝑖 ∪ 𝑐𝑖%𝑁𝑐+1,
and ¯C𝑖 = {𝑐𝑖 , 𝑐𝑖%𝑁𝑐+1} represents the corresponding label.

Please see Appendix-C.3 for proofs. We can observe that the

optimization objective for 𝜋𝜃𝐺 and 𝜋𝜃𝐿 is totally disentangled in

Theorem 3. Accordingly, the optimization objective for instances

sampled from 𝑝𝐼 is to minimize:

𝐽 (𝜃𝐺 , 𝜃𝐿) = E(𝐼 , ¯C )∼𝑝𝐼 ,𝜋∗part

[𝐿(𝜃𝐺 , 𝜃𝐿, ¯C)] . (12)

This objective involves evaluating the performance of 𝜋𝜃𝐺 and 𝜋𝜃𝐿
on the sampled trajectories induced by 𝜋∗

part
. However, 𝜋∗

part
is

practically unavailable for the NP-hard partition problem, since it

is impossible to directly get supervised labels. Inspired by recent

techniques known as self-imitation learning [28, 36], our goal is

to acquire high-quality labeled instances from a behavioral policy

𝜋part. The working pipeline of 𝜋part can be described as follows

(see Figure 2(b)): At the global partition level,
ˆC (0) is first generated

using beam search with 𝜋𝜃𝐺 . Then, at each local partition level

𝑘 ≥ 1, the partition solution is further refined locally using beam

search with 𝜋𝜃𝐿 to obtain the ultimate partition solution
ˆC (𝐾 ) . Thus,

during training,
¯C = ˆC (𝐾 ) serves as the label. The practical loss

function is thus defined as:

𝐽 (𝜃𝐺 , 𝜃𝐿) = E(𝐼 , ¯C)∼𝑝𝐼 ,𝜋part

[𝐿(𝜃𝐺 , 𝜃𝐿, ¯C)] + reg(𝜃𝐺 , 𝜃𝐿), (13)

where reg(𝜃𝐺 , 𝜃𝐿) = 𝜆𝐺 | |𝜃𝐺 | |
2

2
+ 𝜆𝐿 | |𝜃𝐿 | |

2

2
, with hyperparameters

𝜆𝐺 and 𝜆𝐿 . Therefore, this loss function is incorporated into the

imitation learning algorithm to iteratively optimize 𝜋𝜃𝐺 and 𝜋𝜃𝐿 . In

each iteration 𝑛 ≥ 0, the algorithm deploys 𝜋𝑛
part

(which relies on

𝜃𝑛
𝐺
and 𝜃𝑛

𝐿
) and gathers the labeled instance (𝐼 , ¯C). Online gradient

updates are then executed based on estimated gradients to update

𝜃𝑛
𝐺
and 𝜃𝑛

𝐿
. Please refer to Appendix-B for the pseudocode.

Here, let us delve deeper into illustrating the training process

for the global partition policy 𝜋𝜃𝐺 as a case study to elucidate
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Table 1: Comparative results on uniformly distributed CVRP instances. OOM stands for out-of-memory. The symbol ∗ indicates
that the results are obtained from the original paper. The notation ↓ indicates that a lower value is better.

Methods

CVRP1K CVRP2K CVRP5K CVRP7K CVRP10K

𝐴𝑣𝑔.↓ 𝑆𝑡𝑑.↓ 𝑇𝑖𝑚𝑒↓ 𝐴𝑣𝑔.↓ 𝑆𝑡𝑑.↓ 𝑇𝑖𝑚𝑒↓ 𝐴𝑣𝑔.↓ 𝑆𝑡𝑑.↓ 𝑇𝑖𝑚𝑒↓ 𝐴𝑣𝑔.↓ 𝑆𝑡𝑑.↓ 𝑇𝑖𝑚𝑒↓ 𝐴𝑣𝑔.↓ 𝑆𝑡𝑑.↓ 𝑇𝑖𝑚𝑒↓
LKH 42.17 0.80 14.18s 58.06 1.06 31.92s 126.59 2.81 6.80m 172.80 4.04 18.21m 240.23 5.42 41.29m

HGS 41.12 0.77 4.57m 56.24 1.07 12.68m 122.84 2.87 18.80m 165.37 3.95 20.15m 226.59 5.29 24.64m

AM (ICLR’19) 59.18 2.81 8.84s OOM OOM OOM OOM

POMO (NeurIPS’20) 100.99 7.43 4.63s 255.13 30.02 39.35s OOM OOM OOM

Sym-POMO (NeurIPS’22) 98.04 2.86 5.71s 157.89 2.96 45.23s OOM OOM OOM

AMDKD (NeurIPS’22) 84.16 0.98 4.27s 188.75 4.39 34.39s OOM OOM OOM

Omni-POMO (ICML’23) 47.80 0.77 4.45s 74.01 1.05 35.86s OOM OOM OOM

ELG-POMO (IJCAI’24) 46.41 0.40 9.53s 66.07 0.55 67.19s OOM OOM OOM

INViT (ICML’24) 46.56 0.81 17.08s 64.94 1.09 36.67s 139.45 2.86 141.07s 186.57 3.93 4.81m 254.17 5.39 6.96m

LEHD (NeurIPS’23) 42.80 0.82 40.25s 60.48 1.12 72.48s 136.80 2.86 3.22m 188.11 4.00 6.52m 266.06 5.56 11.92m

BQ (NeurIPS’23) 43.12 0.80 4.75s 60.95 1.10 15.66s 137.14 3.00 79.89s 188.78 4.23 1.88m 265.81 5.97 3.30m

L2I (ICLR’20) 49.79 1.10 18.60s 95.58 5.44 44.88s 262.84 9.99 2.64m 506.73 25.25 3.61m 1263.23 4.00 4.07m

NLNS (ECAI’20) 53.51 0.83 12.08s 81.54 1.12 12.15s 180.84 2.99 12.62s 243.50 4.17 13.16s 331.27 5.53 13.97s

DACT (NeurIPS’21) 50.43 0.35 75.47s 71.17 0.51 5.40m OOM OOM OOM

L2D (NeurIPS’21) 46.45 0.87 4.67s 64.04 1.21 7.54s 135.09 3.02 16.11s 182.21 4.13 24.37s 246.38 5.55 27.59s

RBG
∗
(KDD’22) 74.00 - 13.00s 137.60 - 42.00s - - -

TAM-AM
∗
(ICLR’23) 50.06 0.98 0.76s 74.31 1.42 2.20s 172.22 - 11.78s 233.44 - 26.47s -

TAM-LKH
∗
(ICLR’23) 46.34 0.84 1.82s 64.78 1.18 5.63s 144.64 - 17.19s 196.91 - 33.21s -

GLOP-G (AAAI’24) 47.21 0.90 0.73s 63.60 1.41 1.74s 141.67 3.67 2.37s 191.75 4.99 3.50s 266.96 6.46 13.74s

GLOP-LKH (AAAI’24) 46.03 0.99 0.78s 63.10 1.43 1.83s 140.51 3.72 4.31s 191.45 5.06 7.34s 267.50 6.50 16.47s

RL-driven HLGP 43.78 0.85 3.72s 59.58 1.17 10.03s 128.12 3.06 82.59s 173.71 4.39 1.96m 238.62 6.03 5.13m

SL-driven HLGP 41.95 0.78 8.31s 57.67 1.08 32.40s 124.13 2.79 97.27s 166.73 3.91 2.15m 227.07 5.25 3.39m

the intricacies of the SL algorithm for the partition problem. A

similar analysis can be conducted for the local partition policy

𝜋𝜃𝐿 . The global partition policy 𝜋𝜃𝐺 requires to imitate the whole

trajectory induced by the behavioral policy 𝜋part. Following the

formulation in Equation 4, the global partition policy can directly

output the node sequence. Subsequently, the log-probability of this

node sequence in
ˆC is maximized to update 𝜃𝐺 . This log-probability

of the node sequence contains the product of a series of conditional

probabilities, represented as log

∏𝑁
sol

𝑡=1
𝜋𝜃𝐺 ( ¯C [𝑡] | ¯C [0 : 𝑡 − 1], 𝐼 ) =∑𝑁

sol

𝑡=1
log𝜋𝜃𝐺 ( ¯C [𝑡] | ¯C [0 : 𝑡 − 1], 𝐼 ). This sum of log-probabilities

prompts us to consider ( ¯C [0 : 𝑡 − 1], 𝐼 ) as an individual training

sample, with its corresponding label being a singular
¯C [𝑡]. In this

context, at timestep 𝑡 ≥ 1, the global partition policy is addressing

a subproblem 𝐼𝑁𝑣 (𝑡 ) determined by ( ¯C [0 : 𝑡 − 1], 𝐼 ), and it aligns

with the same definition as in the RL setting. Hence, rather than

generating the entire node sequence for behavioral imitation, the

labeled instance (𝐼𝑁𝑣 (𝑡 ) , ¯C [𝑡]) is fed to the global partition policy

to imitate one-step behavior at each time step 𝑡 ≥ 1. In practice, we

employ a variant Transformer model of BQ [5] as the backbones of

𝜋𝜃𝐺 and 𝜋𝜃𝐿 , which aligns with the analysis above. Therefore, we

underscore the importance of viewing the subproblems encountered

during training as individual training instances within both the

contexts of RL and SL training paradigms.

5 EXPERIMENTS
5.1 Training and Evaluation Settings
In the training for both RL-driven and SL-drivenHLGP,we adhere to

the problem settings used in GLOP [42]. During the training phase,

each CVRP instance consists of 1000 customer nodes distributed

uniformly, with a vehicle capacity of 200. During the evaluation

phase, our focus is on assessing the generalization capabilities of

various models. Therefore, we utilize diverse datasets with varying

scales and distributions. Each evaluation dataset can specify the

number of customer nodes as 1000, 2000, 5000, 7000, or 10000.

The customer nodes in each dataset are distributed according to a

Uniform distribution, a Gaussian distribution, an explosion pattern,

or a rotation pattern. Except for the dataset with 1000 customer

nodes setting capacity as 200, the capacity for the other datasets

is set to 300. Each dataset comprises 128 instances. The process

of generating problem instances aligns with the methodologies

outlined in [19, 45]. Please refer to Appendix-A.1 for more training

details. Note that the code of our implementation, along with the

Appendix, has been uploaded as the supplementary material.

During the evaluation phase, we compare our proposed RL-

driven and SL-driven HLGP models with various methods. The

classical heuristic methods include LKH3 [12] and HGS [37]. In

learning-based constructive methods, AM [19], POMO [20], and

Sym-POMO [18] serve as baselines trained with RL. AMDKD [1]

and Omni-POMO [45] target generalization issues specifically. ELG-

POMO [9] and INViT [6] harness local topological features. Within

the realm of iterative methods, L2I [26], NLNS [13], and DACT [30]

integrate RL-based policies with local operators to iteratively refine

a given solution. In the context of the divide-and-conquer paradigm,

RBG [46] and L2D [23] employ heuristic rules for the partition pol-

icy, while GPLC paradigms TAM [14] and GLOP [42] utilize neural

partition policies.We adhere to the official implementations of these

methods and the instructions provided by other works [6, 14, 42]

that cite these methods to replicate the experimental results. For
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Table 2: Comparative results on various distributed CVRP instances. “G" denotes the Gaussian distribution. “E" denotes the
Explosion distribution. “R" denotes the Rotation distribution. The notation ↓ indicates that a lower value is better.

Methods

CVRP1K+G CVRP1K+E CVRP1K+R CVRP2K+G CVRP5K+E CVRP7K+R

𝐴𝑣𝑔.↓ 𝑆𝑡𝑑.↓ 𝑇𝑖𝑚𝑒↓ 𝐴𝑣𝑔.↓ 𝑆𝑡𝑑.↓ 𝑇𝑖𝑚𝑒↓ 𝐴𝑣𝑔.↓ 𝑆𝑡𝑑.↓ 𝑇𝑖𝑚𝑒↓ 𝐴𝑣𝑔.↓ 𝑆𝑡𝑑.↓ 𝑇𝑖𝑚𝑒↓ 𝐴𝑣𝑔.↓ 𝑆𝑡𝑑.↓ 𝑇𝑖𝑚𝑒↓ 𝐴𝑣𝑔.↓ 𝑆𝑡𝑑.↓ 𝑇𝑖𝑚𝑒↓
LKH3 32.52 1.21 37.35s 38.01 1.48 15.55s 37.50 1.33 15.35s 42.60 1.62 64.06s 103.45 4.39 6.67m 156.04 6.81 25.69m

HGS 31.84 1.19 15.57m 37.13 1.46 6.52m 36.62 1.32 7.78m 41.64 1.61 19.80m 101.16 4.40 16.53m 151.04 6.72 21.04m

AM (ICLR’19) 93.62 20.23 9.32s 58.99 4.79 8.74s 60.80 5.42 8.72s OOM OOM OOM

POMO (NeurIPS’20) 56.83 2.72 4.78s 74.88 4.84 4.54s 75.26 5.52 4.41s 101.75 7.32 38.31s OOM OOM

Sym-POMO (NeurIPS’22) 97.59 5.35 5.57s 95.08 5.11 5.65s 106.88 6.11 5.53s 134.32 5.20 40.56s OOM OOM

AMDKD (NeurIPS’22) 58.71 1.98 4.14s 71.10 2.04 4.17s 73.32 2.00 4.11s 108.11 3.82 32.96s OOM OOM

Omni-POMO (ICML’23) 35.47 1.20 4.30s 41.80 1.47 4.30s 41.30 1.34 4.28s 51.02 1.76 35.31s OOM OOM

ELG-POMO (IJCAI’24) 36.49 0.63 9.86s 41.64 0.75 9.67s 41.31 0.69 9.48s 49.34 0.86 68.73s OOM OOM

INViT (ICML’24) 35.67 1.28 19.80s 42.11 1.53 19.80s 41.22 1.37 19.74s 47.31 1.75 46.92s 113.26 4.79 3.17m 169.38 7.47 4.66m

LEHD (NeurIPS’23) 33.99 1.23 36.27s 38.96 1.50 36.19s 38.44 1.36 36.16s 47.48 1.65 64.80s 116.70 4.38 2.85m 176.14 6.91 5.93m

BQ (NeurIPS’23) 34.71 1.25 3.88s 39.64 1.50 3.90s 39.17 1.39 3.91s 47.74 1.67 11.34s 120.23 4.75 72.12s 181.04 7.59 76.47s

L2I (ICLR’20) 37.42 1.28 13.56s 44.05 1.58 14.15s 43.56 1.41 14.01s 63.33 3.26 26.14s 204.51 10.31 2.10m 348.70 17.47 4.37m

NLNS (ECAI’20) 41.31 1.27 12.15s 46.52 1.51 12.15s 47.44 1.36 12.16s 60.38 1.89 12.22s 142.87 4.65 12.73s 221.69 6.51 13.02s

DACT (NeurIPS’21) 37.03 0.57 68.63s 43.10 0.66 67.92s 43.50 0.57 67.98s 49.30 0.83 4.52m OOM OOM

L2D (NeurIPS’21) 35.26 1.24 2.60s 41.09 1.50 2.52s 40.40 1.37 2.63s 46.29 1.69 4.24s 108.95 4.63 10.15s 162.90 6.99 19.04s

GLOP-G (AAAI’24) 39.20 1.40 0.44s 43.44 1.63 0.43s 43.46 1.46 0.41s 50.55 1.97 1.88s 117.65 4.80 7.07s 178.37 6.84 7.98s

GLOP-LKH (AAAI’24) 38.71 1.42 1.22s 42.83 1.67 0.93s 42.80 1.49 0.77s 50.42 1.98 3.84s 117.04 4.83 9.85s 178.08 6.90 11.35s

RL-driven HLGP 34.58 1.26 3.47s 39.85 1.54 3.43s 39.36 1.38 3.47s 44.80 1.70 10.37s 106.27 4.52 70.80s 160.73 7.20 3.04m

SL-driven HLGP 32.55 1.21 7.21s 37.96 1.48 7.55s 37.40 1.34 7.41s 42.85 1.65 30.61s 102.27 4.47 84.12s 152.47 6.91 98.49s

RBG and TAM, we directly use the reported results from the pa-

pers. For a fair comparison, we only consider baseline methods that

either have official code available for reproduction or have been

extensively reported in previous papers. Further details are deferred

to the Appendix-A.6. In addition, for comparison, the metrics in-

clude the average solution costs (𝐴𝑣𝑔.), the standard deviation of

solution costs (𝑆𝑡𝑑.), and average inference time (𝑇𝑖𝑚𝑒).

5.2 Performance Comparisons
In Table 1, our proposed RL-driven and SL-driven HLGP are com-

pared with various previous methods on cross-size datasets. When

compared to the state-of-the-art method, LEHD, RL-driven HLGP

shows only a slight performance drop, notably on the CVRP1K

dataset. Across other cross-size datasets, RL-driven HLGP consis-

tently delivers superior solutions and is notably more efficient than

LEHD. In comparison to all other learning-based baselines, SL-

driven HLGP consistently demonstrates its superiority in terms

of average cost while maintaining efficiency. Moreover, compared

to classical heuristic solvers, SL-driven HLGP can swiftly produce

high-quality solutions. In the most challenging case, CVRP10K, SL-

driven HLGP stands out as the only method capable of generating

high-quality solutions within 4 minutes for each instance. Addition-

ally, owing to the adopted HL framework to mitigate compounded

errors, both RL-driven HLGP and SL-driven HLGP outperform their

respective baselines (GLOP and BQ).

Table 2 displays the comparison of our proposed methods with

various existing methods on both cross-distribution datasets and

cross-size and distribution datasets. When compared to BQ and

LEHD, our RL-driven HLGP exhibits a minor performance decline

on cross-distribution datasets. However, on the cross-size and distri-

bution datasets, RL-driven HLGP consistently showcases superior

generalization by efficiently producing improved solutions. In com-

parison to all previous learning-based methods, SL-driven HLGP

consistently outperforms on both cross-size and cross-size and dis-

tribution datasets. Moreover, the performance of SL-driven HLGP

closely approaches that of HGS while being dramatically more

efficient. This justifies the use of supervised partition policy espe-

cially for larger instances. Please refer to the Appendix-A.3 and

Appendix-A.4 for the hyperparameter studies, ablation studies, and

visualization results.

6 CONCLUSION
In this work, we propose a novel hierarchical learning-based frame-

work for the graph partition in CVRP. The global partition policy

and local partition policy synergistically tackle the partition task to

progressively alleviate the compounded misclusterings. Our meth-

ods adopt a unified objective function harmoniously compatible

with both RL and SL training methods. Meanwhile, we thoroughly

analyze the significance of treating the subproblems encountered

during training as individual instances in both the RL and SL set-

tings. Experimental results unequivocally demonstrate the gener-

alization capability of proposed HLGP framework in finding low-

cost CVRP solutions under distribution and scale shifts. In future,

we plan to extend our HLGP to more different VRP variants like

CVRPTW and Min-max CVRP, as well as other types of COPs.
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