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ABSTRACT
Graph games are fundamental in strategic reasoning of multi-agent

systems and their environments. We study a new family of graph

games which combine stochastic environmental uncertainties and

auction-based interactions among the agents, formalized as bid-

ding games on (finite) Markov decision processes (MDP). Normally,

on MDPs, a single decision-maker chooses a sequence of actions,

producing a probability distribution over infinite paths. In bidding

games on MDPs, two players—called the reachability and safety
players—bid for the privilege of choosing the next action at each

step. The reachability player’s goal is to maximize the probability

of reaching a given target vertex, whereas the safety player’s goal

is to minimize it. These games generalize traditional bidding games

on graphs, and the existing analysis techniques do not extend. For

instance, the central property of bidding games on graphs is the ex-

istence of a threshold budget, which is the necessary and sufficient

budget to guarantee winning for the reachability player. For MDPs,

the threshold becomes a relation between budgets and probabilities

of reaching the target. We devise value-iteration algorithms that

approximate thresholds and optimal policies for general MDPs,

and compute the exact solutions for acyclic MDPs, and show that

finding thresholds is at least as hard as simple-stochastic games.
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Figure 1: A bidding game
on an MDP. The control
and random vertices are
denoted as circular and
diamond-shaped, respec-
tively. The probabilistic
transitions (marked with
arcs) use the uniform dis-
tribution. The target for
the reachability player is 𝑡 .
The dashed paths are the
viable reachability policies
for the setting of Ex. 1.1.

1 INTRODUCTION
Graph games are fundamental for reasoning about strategic inter-

actions between agents in multi-agent systems, with [31, 33, 42] or

without [3] external environments. Environments, when present,

are commonly modeled using stochastic processes, like Markov de-
cision processes (MDP) [41] in reinforcement learning (single-agent),

and stochastic games in the multi-agent setting [22, 26, 30].

We study games which combine stochastic environments with

auction-based interactions among players, formalized as bidding
games on MDP arenas. An MDP is a graph whose vertices are par-

titioned into control vertices and random vertices, and the game

involves the players moving a token along the edges of the graph.

The rules of the game are as follows. The two players are allocated

initial budgets, normalized in a way that their sum is 1. When the

token reaches a control vertex, an auction is held to determine who

chooses where the token goes next. In these auctions, the players

simultaneously submit bids from their available budgets, the higher

bidder moves the token and pays his bid amount to the lower bidder.

When the token reaches a random vertex, it automatically moves

to one of the successors according to the transition probabilities of

the MDP (without affecting the budgets of the players).

We consider the quantitative reachability objectives, where the

goal of the first player, called the reachability player, is to maximize

the probability that a given target vertex is reached, and the goal

of the second player, called the safety player, is to minimize it.

Example 1.1. Consider the game in Fig. 1 and the initial budget

allocation ⟨0.75+𝜖, 0.25−𝜖⟩ for the two players, where 𝜖 ∈ (0, 0.25)
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is arbitrary. Notice that if the game reaches 𝑙1, 𝑙2, the target 𝑡 can no

longer be reached. We show how the reachability player can reach

𝑡 with probability at least 0.5. Initially, the token moves randomly

from 𝑎. If it reaches 𝑐 , the reachability player avoids 𝑙1 by winning

the auction with the bid 0.25 (which exceeds the opponent’s budget)

and moving to 𝑑 with new budgets ⟨0.5+𝜖, 0.5−𝜖⟩. At 𝑑 , he bids 0.5,
to force the game to 𝑒 , from which 𝑡 is reached with probability 0.5.

If, on the other hand, the token moves to 𝑎 from 𝑏, with probability

0.5 it moves to 𝑙2 and the reachability player loses. If the token

reaches 𝑑 , since no biddings were made, the budgets remain ⟨0.75 +
𝜖, 0.25 − 𝜖⟩. At 𝑑 , the reachability player bids 0.25, proceeds to 𝑓

with budgets ⟨0.5+𝜖, 0.5−𝜖⟩, and then bids 0.5 to force the game to 𝑡 .

Thus, each path 𝑏, 𝑑, 𝑓 , 𝑡 and 𝑐, 𝑑, 𝑒, 𝑡 , after 𝑎, occur with probability

0.5, and the total probability to reach 𝑡 from 𝑎 is 0.5.

Bidding games on MDPs generalize traditional bidding games on

graphs, i.e., on MDPs without any random vertices. Bidding games

on graphs have a rich pedigree, going back to the seminal work of

Lazarus et al. [34, 35], followed by a series of extensions to various

payment schemes [7, 8, 10, 11], non-zero-sum games [36], bidding

games with discrete budgets [2, 15, 16, 28], partial-information

games [12], and bidding games with charging [6].

We point out a distinction of our setup from the traditional one.

In the traditional setup, winning policies are memoryless, i.e., they

choose the same successor from each vertex upon winning the

bidding. As seen in the MDP in Ex. 1.1, the reachability player’s

move at 𝑑 depends on the path used to reach 𝑑 .

Applications. Our results have an immediate application in auction-
based scheduling [14], which is a decentralizedmulti-objective decision-

making framework. In this framework, we are given an arena, mod-

eling the environment, a pair of specifications 𝜑0, 𝜑1, and we want

to compute a pair of policies 𝜎0, 𝜎1 that will be composed at runtime

with the policies bidding against each other at each step for choos-

ing the next action. The goal is to synthesize 𝜎0, 𝜎1 such that their

runtime composition fulfills 𝜑0 ∧ 𝜑1. The advantage is modularity,

where the policies can be independently designed, and if one speci-

fication changes, only the relevant policy needs to be updated. The

synthesis algorithms in auction-based scheduling solve two inde-
pendent zero-sum bidding games for 𝜎0 and 𝜎1 (on the same arena).

As zero-sum bidding games have been studied only on graphs,

auction-based scheduling is restricted to graph arenas until now.

Our work will lead to a decentralized solution of multi-objective

reachability on MDPs using auction-based scheduling.

Fair resource allocation studies how to allocate a collection of

items to a set of agents in a fairmanner, where various definitions of

fairness exist [4, 18]. Bidding games naturally create a fair allocation

mechanism [19, 36], namely allocate an initial budget to each agent,

fix an ordering of the items, and hold a bidding for each item one

by one. Bidding games on MDPs offer resource-allocation under
stochastic uncertainties [17, 20]: now the agents bid, but the outcome

is uncertain (e.g., in online advertisements, the higher bidder gets

the ad-slot, but the number of viewers remains stochastic).

Bidding games on graphs. We briefly survey results on traditional

bidding games on graphs [34, 35]. A central quantity in these games

are the threshold budgets: every vertex 𝑣 is associated with a value
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Figure 2: Value iteration for the game on the left with the
sequence of reachability values (𝑐 is the target) on the right.

Th(𝑣) ∈ [0, 1] such the reachability player wins from 𝑣 if his ini-

tial budget is strictly larger than Th(𝑣), and loses (i.e., the safety

player wins) if it is strictly smaller thanTh(𝑣). Furthermore, pure
policies suffice for both players. Interestingly, computing thresh-

olds is equivalent to solving a class of stochastic games [26] called
random-turn games [39]: For a bidding game G, suppose RT (G)
represents the random-turn game on G where whomoves the token

at each turn is determined uniformly at random. Then the optimal

probability with which the reachability player wins in RT (G) from
a vertex 𝑣 equals 1 − Th(𝑣). This reduction implies that comput-

ing thresholds for bidding games is in NP ∩ co-NP. An opposite

reduction is unknown.

Our results: bidding games on MDPs. We prove thresholds exist

for bidding games on MDPs, though their shapes become signifi-

cantly more complex and reasoning becomes more advanced than

bidding games on graphs. This is because thresholds are now binary
relations between budgets and probabilities, where (𝐵, 𝑝) ∈ Th(𝑣)
if the reachability player can reach the target with every proba-

bility 𝑝 ′ < 𝑝 and every budget 𝐵′ > 𝐵, and the safety player can

avoid the target with every probability (1− 𝑝 ′) > (1− 𝑝) when the

reachability player’s budget is 𝐵′ < 𝐵. We develop a value-iteration

algorithm to find thresholds as described in the next example.

Example 1.2. Fig. 2 illustrates our value-iteration algorithm. In-

tuitively, the shaded area in the plot at iteration 𝑖 ∈ N depicts all

the necessary budgets of the reachability players and the respective

probabilities of reaching the target 𝑐 in at most 𝑖 steps. For example,

for 𝑖 = 4 at 𝑎, if the reachability player has a budget in (0.5, 0.75],
he can win only one bidding (in 𝑎) and reach 𝑐 with probability

up to 0.5 in 2 steps (𝑎𝑏𝑐), and if he has a budget in (0.75, 1], he
can win two biddings (in 𝑎) and reach 𝑐 with probability up to 0.75

in 4 steps (𝑎𝑏𝑎𝑏𝑐). Every other path to 𝑐 is longer than 4 steps. In

the limit, the “plots” tend to thresholds (Thm. 5.1), which for 𝑎 is

{(𝐵, 𝑝) | ∃𝑛 ≥ 1 . 𝐵 ∈ (1 − 2
−𝑛, 1 − 2

−(𝑛+1) ] ∧ 𝑝 ≤ 1 − 2
−𝑛}.

We summarize our results below. We consider the problem of de-

ciding if the reachability player can reach the target in a given MDP

with a given probability 𝑝 using a given budget 𝐵. (I) For general
MDPs, the solution remains unknown. Under the assumption that

(𝐵, 𝑝) is not exactly on the threshold, we show that the problem is

decidable. The time and space complexity of our algorithm depends

2
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on the distance 𝜖 of (𝐵, 𝑝) from the threshold (infinity norm), the

minimum probability 𝛿min of any random edge, and the number

of vertices |𝑉 |, and is given as O
(
|𝑉 |2
𝜖 log (1/𝜖)3 𝛿−4 |𝑉 |

min

)
. Our de-

cision procedure uses an approximated value iteration algorithm

to limit the computational complexity. (II) For acyclic MDPs, the
reachability problem is decidable in O(|𝑉 | |𝑉 |) time and space, for

tree-shaped MDPs, it is decidable in NP ∩ co-NP.

The above assumption that the point (𝐵, 𝑝) does not lie exactly
on the threshold is natural in the context of multi-objective decision-

making. For instance, for “classical” (non-bidding) multi-objective

stochastic games, algorithms for determining the winning player

assume that the target payoff vector does not lie on the boundary

of the Pareto set of achievable payoffs [5].

The proofs omitted due to limited space can be found in the

extended version of this paper [13].

Further Related Work. As mentioned earlier, one of our motiva-

tions is solving multi-objective problems on MDPs via the auction-

based scheduling approach. The alternative approach is to directly

synthesize a single policy achieving an acceptable tradeoff between

the individual objectives as was studied for MDPs [23, 29, 38], sto-

chastic games [5, 24], and reinforcement learning [1, 21, 32, 37]. We

are the first to study quantitative reachability objectives in bidding

games on MDPs. For sure winning, simple reductions to bidding

games on graphs are known [9].

2 PRELIMINARIES OF MARKOV DECISION
PROCESSES (MDP)

Syntax. An MDP is a tuple ⟨𝑉 ,𝑉c,𝑉r, 𝐸, 𝛿⟩, where 𝑉 is a finite set

of vertices, 𝑉c and 𝑉r are the control and random vertices such

that 𝑉c ∪ 𝑉r = 𝑉 and 𝑉c ∩ 𝑉r = ∅, 𝐸 : 𝑉c → 2
𝑉r

is the control
transition function, and 𝛿 : 𝑉r → Δ(𝑉c) is the random transition
function, where Δ(𝑉c) is the set of all probability distributions over

𝑉c. The set of successors of vertex 𝑣 will be denoted as Succ(𝑣), where
Succ(𝑣) B 𝐸 (𝑣) if 𝑣 ∈ 𝑉c and Succ(𝑣) B {𝑣 ′ ∈ 𝑉 | 𝛿 (𝑣) (𝑣 ′) > 0} if
𝑣 ∈ 𝑉r. A vertex 𝑣 is called sink if Succ(𝑣) = {𝑣}.
Convention for figures.MDPs are depicted as transition diagrams

with circular nodes representing control vertices and diamond-

shaped nodes representing random vertices. Target vertices are

depicted in double circles. If the random transitions have uniform

distributions, they are marked using an arc between them.

Semantics. Semantics of MDPs are summarized below; details can

be found in standard textbooks [40]. A path of an MDP starting at

a given vertex 𝑣 ∈ 𝑉 is a sequence 𝑣0𝑣1 . . . with 𝑣0 = 𝑣 and every

𝑣𝑖>0 being a successor of 𝑣𝑖−1. Paths can be either finite or infinite.

We write Pathsfin (𝑀) and Pathsinf (𝑀) to denote, respectively, the

set of all finite and infinite paths, and write Pathscfin (𝑀) to denote

the set of all finite paths that end in a control vertex. A scheduler
is a function 𝜃 : Pathscfin (𝑀) → 𝑉 mapping every finite path 𝜌 =

𝑣0 . . . 𝑣𝑘 ending at the control vertex 𝑣𝑘 ∈ 𝑉c to one of its successors;

i.e., 𝜃 (𝜌) ∈ 𝐸 (𝑣𝑘 ). Every scheduler 𝜃 induces a unique probability

distribution P𝑀,𝜃
𝑣 (·) over the paths of𝑀 with initial vertex 𝑣 .

Specifications. A specification 𝜑 over an MDP𝑀 is a set of infinite

paths of 𝑀 . We will consider reachability and safety specifications

of both bounded and unbounded variants, defined below. Given

a set of vertices 𝑇 ⊆ 𝑉 called the target vertices, and an inte-

ger ℎ > 0, the bounded-horizon reachability specification is the

set of paths that visit 𝑇 in at most ℎ steps, i.e., Reach𝑀,ℎ (𝑇 ) B{
𝑣0𝑣1 . . . ∈ Pathsinf (𝑀) | ∃𝑖 ≤ ℎ . 𝑣𝑖 ∈ 𝑇

}
. The (unbounded) reach-

ability specification is the set of paths that eventually visit 𝑇 ; i.e.,

Reach𝑀 (𝑇 ) B ⋃
ℎ Reach

𝑀,ℎ (𝑇 ). Dually, given a set of vertices

𝑈 ⊆ 𝑉 called the unsafe vertices, and a number ℎ > 0, the bounded-
horizon safety specification is the set of paths that avoid𝑈 for at least
ℎ steps, i.e., Safe𝑀,ℎ (𝑈 ) B

{
𝑣0𝑣1 . . . ∈ Pathsinf (𝑀) | ∀𝑖 ≤ ℎ . 𝑣𝑖 ∉ 𝑈

}
.

The (unbounded) safety specification is the set of paths that always
avoid𝑈 ; i.e., Safe𝑀 (𝑈 ) B ⋂

ℎ Safe
𝑀,ℎ (𝑈 ). Reachability and safety

specifications—with bounded and unbounded horizons—are com-

plementary to each other, i.e., for every ℎ > 0, Reach𝑀,ℎ (𝑇 ) =

𝑉𝜔 \ Safe𝑀,ℎ (𝑇 ), and Reach𝑀 (𝑇 ) = 𝑉𝜔 \ Safe𝑀 (𝑇 ).

3 BIDDING GAMES ON MDP-S
On a given𝑀 , we consider a zero-sum “token game” between two

players, whowill be referred to as the reachability and safety players.
Initially, the token is placed in a given initial vertex, and the players
are allocated budgets (positive real numbers) whose sum is 1. As

convention, we will only specify the reachability player’s budget

as 𝐵, and the safety player’s budget will be implicit (i.e., 1 − 𝐵).

Recall that a game constitutes the two players bidding for the

privilege of moving the token from the control vertices: the higher

bidder chooses the successor and pays the bid amount to the lower

bidder.
1
On the other hand, from every random vertex 𝑣 , the token

moves according to the distribution 𝛿 (𝑣) (𝑤), and the budgets of the
players remain unaffected. The game continues forever, generating

a probability distribution over infinite paths. The reachability player

wants to maximize the probability of reaching 𝑇 , while the safety

player wants to minimize it. We formalize this below.

Policies and paths. A policy of a player is a function of the form

[0, 1] × Pathscfin (𝑀) → [0, 1] ×𝑉 , mapping every pair of available

budget 𝐵 and finite path 𝑣0 . . . 𝑣𝑘 to a pair of a bid value 𝑏 ≤ 𝐵 and

a successor of 𝑣𝑘 . We will write 𝜎 and 𝜏 to represent the policy of

the reachability and the safety player, respectively.

Suppose we are given an initial vertex 𝑣 and an initial budget 𝐵 of

the reachability player (recall that the safety player’s initial budget

will be 1 − 𝐵). We will call the pair ⟨𝑣, 𝐵⟩ the initial configuration.
Every pair of policies (𝜎, 𝜏) and the initial configuration ⟨𝑣, 𝐵⟩
induce a scheduler 𝜃 (𝜎, 𝜏, 𝐵) as follows: if the current path is 𝜌 ∈
Pathscfin (𝑀) and the current budget of the reachability player is 𝐵′

,

then, denoting 𝜎 (𝐵′, 𝜌) = (𝑏𝑅, 𝑢) and 𝜏 (1 − 𝐵′, 𝜌) = (𝑏𝑆 ,𝑤), we
define the scheduler 𝜃 as follows:

• if 𝑏𝑅 ≥ 𝑏𝑆 ,
2
i.e., if the reachability player wins the bidding, then

𝜃 (𝜎, 𝜏, 𝐵) (𝜌) = 𝑢, and his new budget is 𝐵′ − 𝑏𝑅 , and

• if𝑏𝑅 < 𝑏𝑆 , i.e., if the safety playerwins the bidding, then𝜃 (𝜎, 𝜏, 𝐵) (𝜌) =
𝑤 , and the reachability player’s new budget is 𝐵′ + 𝑏𝑆 .

We will write P𝜎,𝜏
𝑣,𝐵

instead of P
𝜃 (𝜎,𝜏,𝐵)
𝑣 to denote the probability

distribution over the set of infinite paths starting at vertex 𝑣 .

1
This bidding mechanism is known as Richman bidding in the literature [34]. Other

bidding mechanisms also exist, but they are left as part of future works.

2
We assume, arbitrarily, that ties go in favor of the reachability player. In our proofs,

we show that it does not matter how ties are resolved.

3
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Winning conditions. Let ⟨𝑣, 𝐵⟩ be an initial configuration, 𝜑 be a

reachability specification (bounded or unbounded), and 𝑝 ∈ [0, 1]
be the required probability for the reachability player to satisfy 𝜑 .

A winning policy of the reachability player is a policy 𝜎 such that

for every policy 𝜏 of the safety player, it holds that P𝜎,𝜏
𝑣,𝐵

(𝜑) ≥ 𝑝 .

Dually, a winning policy of the safety player is a policy 𝜏 such that

for every policy 𝜎 of the reachability player, it holds that P𝜎,𝜏
𝑣,𝐵

(𝜑) ≤
𝑝 . Winning policies of each player are formalized in a way as if

the opponent can see them before choosing the responses. This a

standard practice and eliminates the need to capture concurrent

actions of players [27]. The sets of winning policies of reachability

and safety players will be respectively denoted as ΠR (𝐵, 𝑝, 𝑣, 𝜑) and
ΠS (𝐵, 𝑝, 𝑣, 𝜑), and if 𝜑 is clear, as ΠR (𝐵, 𝑝, 𝑣) and ΠS (𝐵, 𝑝, 𝑣).
Thresholds. In traditional reachability bidding games on graphs,

where probabilities are unnecessary, the threshold of a vertex 𝑣 is

the budget 𝐵 such that the reachability player wins from 𝑣 with

every budget 𝐵′ > 𝐵, and loses with every budget 𝐵′ < 𝐵. In bidding

games on MDPs, thresholds generalize to relations over budgets

and probabilities: The threshold of 𝑣 is the set of all pairs (𝐵, 𝑝)
such that the reachability player wins with every budget greater

than 𝐵 and required probability less than 𝑝 , and loses with every

budget less than 𝐵 and required probability larger than 𝑝 .

Definition 3.1 (Threshold). For a given vertex 𝑣 , the threshold of

𝑣 , written Th𝑣 , is the set of all pairs (𝐵, 𝑝) such that ΠR (𝐵′, 𝑝 ′, 𝑣)
is nonempty whenever 𝐵′ > 𝐵 and 𝑝 ′ < 𝑝 , and ΠS (𝐵′, 𝑝 ′, 𝑣) is
nonempty whenever 𝐵′ < 𝐵 and 𝑝 ′ > 𝑝 .

A central question in traditional bidding games is whether thresh-

olds exist, because then it can be determined which of the players

will win based on the budget allocation, as long as the budget is not

exactly equal to the threshold. In our case, the existence question

of thresholds generalizes to the question of whether the threshold
completely separates the winning points of the two players.

Definition 3.2 (Completely separating thresholds). The threshold
of 𝑣 is completely separating if for every point (𝐵, 𝑝) ∉ Th𝑣 ,

• there exists (𝐵′, 𝑝 ′) ∈ Th𝑣 such that either 𝐵 < 𝐵′
and 𝑝 > 𝑝 ′, or

𝐵 > 𝐵′
and 𝑝 < 𝑝 ′, and

• exactly one of the sets ΠR (𝐵, 𝑝, 𝑣) and ΠS (𝐵, 𝑝, 𝑣) is nonempty.

One of our main results, Cor. 5.2, asserts that completely sepa-

rating thresholds indeed exist. Thus, for almost all points, precisely

one of the players can win regardless of the opponent’s strategy.

The algorithmic question. We define problem instances as tuples
of the form ⟨𝑀, 𝑣,𝑇 , 𝐵, 𝑝⟩, where𝑀 is an MDP, ⟨𝑣, 𝐵⟩ is the initial
configuration, 𝑇 is the target, and 𝑝 is the required probability of

satisfying the reachability specification Reach𝑀 (𝑇 ). The subject of
this paper is how to decide who wins in a given problem instance.

Problem 1 (Quantitative reachability). Let ⟨𝑀, 𝑣,𝑇 , 𝐵, 𝑝⟩
be a problem instance. For a given 𝑗 ∈ {R, S}, decide if the set
Π 𝑗 (𝐵, 𝑝, 𝑣, Reach𝑀 (𝑇 )) is nonempty.

If ΠR (𝐵, 𝑝, 𝑣, Reach𝑀 (𝑇 )) ≠ ∅, our decision procedure will pro-

duce the witness winning policy for the reachability player as a

byproduct; construction of winning policies for the safety player is

solved for acyclic MDPs, and remains open for general MDPs. We

will assume that 𝑇 is a set of sinks, which is without loss of any

generality since the game ends as soon as 𝑇 is reached.

4 BOUNDED-HORIZON VALUE ITERATION
We start with the bounded-horizon variant of Prob. 1 with horizonℎ.

In this setting, we propose a 2-dimensional value iteration algorithm

for deciding who wins the game.

For reachability, for each vertex 𝑣 , our algorithm computes a

monotonically increasing (with respect to “⊆”) sequence of “values”
r-val0𝑣, . . . , r-val

ℎ
𝑣 ⊆ [0, 1]2, where r-val𝑖𝑣 will be shown to represent

the set of all (𝐵, 𝑝) such that for every 𝐵 > 𝐵, the reachability player

can reach 𝑇 from the initial configuration ⟨𝑣, 𝐵⟩ with probability

at least 𝑝 in at most 𝑖 steps. Dually, for safety, for each vertex 𝑣 ,

our algorithm computes a monotonically decreasing sequence of

“values” s-val0𝑣, . . . , s-val
ℎ
𝑣 ⊆ [0, 1]2, where s-val𝑖𝑣 will be shown

to represent the set of all (𝐵, 𝑝) such that for every 𝐵 < 𝐵, the

safety player can avoid 𝑇 from the initial configuration ⟨𝑣, 𝐵⟩ with
probability at least 1 − 𝑝 for at least 𝑖 steps.

Clearly, if 𝑣 is in𝑇 , the target𝑇 will be “reached” in zero steps, no

matter what (𝐵, 𝑝) is, and therefore every (𝐵, 𝑝) belongs to r-val0𝑣 .
In contrast, if 𝑣 is not in𝑇 , the target𝑇 will be reached in zero steps

only with probability 𝑝 = 0. The points with 𝐵 = 1 are trivially

included to r-val0𝑣 as well, because {𝐵 | 𝐵 > 𝐵 = 1} = ∅. By duality,

the definition of s-val0𝑣 is exactly the opposite.

We now consider the case of 𝑖 > 0 and 𝑣 ∉ 𝑇 . We take the

perspective of the reachability player; the case of safety is similar.

Consider the following two cases. (a) Suppose 𝑣 ∈ 𝑉r. Since there is

no bidding in 𝑣 , the budgets of the players at 𝑣 remain unaffected

after the transition. For a fixed budget, if 𝑝𝑤 is the probability

of reaching 𝑇 in 𝑖 − 1 steps from the successor 𝑤 (of 𝑣), then the

probability of reaching𝑇 in 𝑖 steps from 𝑣 becomes

∑
𝑤 𝑝𝑤 ·𝛿 (𝑣) (𝑤).

(b) Now suppose 𝑣 ∈ 𝑉c. For a fixed probability 𝑝 , we can ask for

the least budget needed to reach 𝑇 from 𝑣 . If 𝐵+ and 𝐵− are the

maximum and minimum budgets required from any successor to

reach 𝑇 in 𝑖 − 1 steps with probability 𝑝 , then the budget required

at 𝑣 for 𝑖-step reachability is 𝐵 = (𝐵+ + 𝐵−)/2. This is because the
reachability player can bid (𝐵+−𝐵−)/2 from his budget 𝐵 and make

sure that, regardless of the outcome of the bidding, he has enough

budget in the next step to reach 𝑇 in 𝑖 − 1 steps: either he wins

the bidding and has budget 𝐵−, in which case he must move to the

vertex associated to 𝐵−, or he loses the bidding and has budget 𝐵+.
This is formalized in the value iteration algorithm presented below.

r-val0𝑣 B

{
[0, 1]2 if 𝑣 ∈ 𝑇,

[0, 1] × {0} ∪ {1} × [0, 1] otherwise,

(1)

s-val0𝑣 B

{
[0, 1] × {1} ∪ {0} × [0, 1] if 𝑣 ∈ 𝑇,

[0, 1]2 otherwise,

(2)

and for 𝑖 > 0, r-val𝑖𝑣 B T𝑣
({
r-val𝑖−1𝑤 | 𝑤 ∈ Succ(𝑣)

})
and s-val𝑖𝑣 =

T𝑣
({
s-val𝑖−1𝑤 | 𝑤 ∈ Succ(𝑣)

})
, where the operator T𝑣 is defined as

follows: If 𝑣 ∈ 𝑉r,

T𝑣 ({val𝑤 | 𝑤 ∈ Succ(𝑣)}) B⋃
𝐵∈[0,1]

©«𝐵,
∑︁

𝑤∈Succ (𝑣)
𝛿 (𝑣) (𝑤) · 𝑝𝑤

ª®¬
������∀𝑤 ∈ Succ(𝑣) . (𝐵, 𝑝𝑤) ∈ val𝑤


(3)

4
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𝑝

𝐵

averaging

along

the 𝑝-axis

𝑝

𝐵

averaging

along

the 𝐵-axis

Figure 3: Illustration of the T𝑣 operator for when 𝑣 ∈ 𝑉r (left)
and 𝑣 ∈ 𝑉c (right). In both cases, we assume there are two
successors whose values from the (𝑖−1)-th iteration are given
as the red and blue regions. The outputs of T𝑣 is shown as
the set with thick boundaries. For 𝑣 ∈ 𝑉r (left), we assume
uniform transition probabilities (i.e., 0.5 for each successor).

and if 𝑣 ∈ 𝑉c,

T𝑣 ({val𝑤 | 𝑤 ∈ Succ(𝑣)}) B
⋃

𝑝∈[0,1]

{(
𝐵+ + 𝐵−

2

, 𝑝

) ����
𝐵− ∈ {𝐵 | ∃𝑤 ∈ Succ(𝑣) . (𝐵, 𝑝) ∈ val𝑤} ,
𝐵+ ∈ {𝐵 | ∀𝑤 ∈ Succ(𝑣) . (𝐵, 𝑝) ∈ val𝑤}} .

(4)

Intuitively, the T𝑣 operator averages the value sets of the successors
along the 𝑝 axis for random vertices and along the 𝐵 axis for con-

trol vertices. Fig. 3 illustrates this, and Fig. 2 illustrates the value

iteration algorithm. The following theorem states that the problem

of deciding which player has a winning policy for the horizon 𝑖

reduces to membership queries for the sets r-val𝑖 and s-val𝑖 com-

puted by the above value iteration algorithm, giving us a sound

and complete procedure for determining the winner.

Theorem 4.1. Let ⟨𝑀, 𝑣,𝑇 , 𝐵, 𝑝⟩ be a problem instance and 𝑖 ∈ N
be the horizon. The following hold:

(A) ΠR (𝐵, 𝑝, 𝑣, Reach𝑀,𝑖 (𝑇 )) ≠ ∅ if and only if there exists 𝐵 < 1

such that 𝐵 ≤ 𝐵 and (𝐵, 𝑝) ∈ r-val𝑖𝑣 .
(B) ΠS (𝐵, 𝑝, 𝑣, Reach𝑀,𝑖 (𝑇 )) ≠ ∅ if and only if there exists 𝐵 > 𝐵

such that (𝐵, 𝑝) ∈ s-val𝑖𝑣 , or 𝐵 = 1 and (𝐵, 𝑝) ∈ s-val𝑖𝑣 .

For the sake of space, we show the proof of only the “if” direction

of claims (A) and (B), moreover assuming that there exists 𝐵 from

the statement such that 𝐵 ≠ 𝐵; this will show what the winning

policies look like. The full proof is in the extended version [13].

Proof of the “if” directions given 𝐵 ≠ 𝐵. We simultaneously

consider both (A) and (B), hence we use val to denote either r-val or
s-val. Let (𝐵, 𝑝) ∈ val𝑖𝑣 and suppose the reachability player’s initial

budget is 𝐵 = 𝐵 + 𝑠 with 𝑠 > 0 for r-val and 𝑠 < 0 for s-val.
The winning policy can be inductively extracted from the com-

puted values val𝑖𝑣 . If 𝑖 = 0, the claim is trivially true since satisfaction

of Reach𝑀,0 (𝑇 ) deos not depend on the budget nor chosen policies.

Otherwise, assume 𝑖 > 0 and first discuss the case when 𝑣 ∈ 𝑉c.

In the first step, 𝜋 identifies 𝐵− and 𝐵+ as defined in (4) such that

(𝐵− + 𝐵+)/2 = 𝐵 and bids |𝐵+ − 𝐵− |/2. If 𝜋 wins the bidding, it

moves the token to the successor𝑤 for which (𝐵−, 𝑝) ∈ val𝑖−1𝑤 and

gives the bid to the opponent yielding the new reachability player

budget 𝐵′ = 𝐵− + 𝑠 . Otherwise, the opponent moves the token to

any successor𝑤 yielding the new budget 𝐵′ = 𝐵+ + 𝑠 . By definition

of 𝐵+, (𝐵+, 𝑝) ∈ val𝑖−1𝑤 for any choice of 𝑤 . Therefore, regardless

of the new vertex𝑤 , 𝜋 has enough budget to continue according to

a policy in Π 𝑗 (𝐵′, 𝑝,𝑤, Reach𝑀,𝑖−1 (𝑇 )) which is nonempty by the

induction hypothesis (here 𝑗 is R if val is r-val and S if val is s-val).
Now suppose 𝑣 ∈ 𝑉r. By the inductive definition of val𝑖𝑣 in (3),

for each 𝑤 ∈ Succ(𝑣) there exists 𝑝𝑤 with (𝐵, 𝑝𝑤) ∈ val𝑖−1𝑤 , such

that

∑
𝑤∈Succ (𝑣) 𝛿 (𝑣) (𝑤) · 𝑝𝑤 = 𝑝 . By the inductive hypothesis, for

each 𝑤 ∈ Succ(𝑣), Π 𝑗 (𝐵, 𝑝𝑤 ,𝑤, Reach𝑀,𝑖−1 (𝑇 )) contains a policy

𝜋𝑤 , which can be followed by 𝜋 regardless of the outcome. □

From the construction of policies in the (partial) proof of Thm. 4.1,

it follows that for any given vertex 𝑣 and any given budget, the

choice of the policy will depend on the probability 𝑝𝑣 and the

horizon length 𝑖 remaining for satisfying the bounded-horizon

specification. It is clear that both 𝑝𝑣 and 𝑖 will depend on the path
followed to reach 𝑣 ; for instance, in Ex. 1.1, at 𝑑 , if 𝑏 was visited

earlier, then 𝑝𝑑 is 1, whereas if 𝑐 was visited earlier, then 𝑝𝑑 is 0.5

(the horizon 𝑖 is 2 in both cases). This makes policies implicitly

history-dependent.

The computability of the values at each step follows from their

finite representations. In particular, the sets r-val𝑖𝑣 and s-val𝑖𝑣 have
a “staircase form” (see Fig. 3) and can be represented by the corner

points of the steps. Before formalizing this, define the order ≺ as

(𝐵, 𝑝) ≺ (𝐵′, 𝑝 ′) if and only if 𝐵 ≥ 𝐵′
and 𝑝 ≤ 𝑝 ′. A ≺-downward

(or≺-upward) closure of a set 𝑆 is the set of all points (𝐵, 𝑝) such that
there exists (𝐵′, 𝑝 ′) ∈ 𝑆 with (𝐵, 𝑝) ≺ (𝐵′, 𝑝 ′) (or (𝐵′, 𝑝 ′) ≺ (𝐵, 𝑝)).

Lemma 4.2. Let 𝑀 be an MDP, 𝑇 be target vertices, and 𝑣 be a
vertex in 𝑀 . For every 𝑖 ∈ N, there exists a finite set 𝐺 ⊆ [0, 1]2 of
at most 3|𝑉 |𝑖 points such that r-val𝑖𝑣 is the ≺-downward closure of
𝐺 , and s-val𝑖𝑣 is the ≺-upward closure of 𝐺 . Moreover, all boundary
points of r-val𝑖𝑣 belong to s-val

𝑖
𝑣 , and vice versa.

The sets r-val0𝑣 and s-val
0

𝑣 are downward and upward closures of

{(0, 0), (0, 1), (1, 1)} or {(0, 0), (1, 0), (1, 1)}, depending on whether

𝑣 is in 𝑇 or not. Thus they indeed have the staircase shape with a

single step. The proof of Lem. 4.2 [13] requires showing that the

staircase shape propagates through the operator T𝑣 .
A direct consequence of Lem. 4.2 is that the sets r-val𝑖𝑣 and s-val

𝑖
𝑣

can be computed in exponential time and space for every 𝑖 .

Corollary 4.3. The sets r-val𝑖𝑣 and s-val𝑖𝑣 for each 𝑣 and 𝑖 can
be computed in O(|𝑉 |𝑖 ) time and O(|𝑉 |𝑖 ) space.

Another consequence is determinacy, i.e., one of the players

always fulfills the respective bounded-horizon specification.

Corollary 4.4. Let ⟨𝑀, 𝑣,𝑇 , 𝐵, 𝑝⟩ be an arbitrary problem in-
stance. For every 𝑖 , the point (𝐵, 𝑝) belongs to at least one of the sets
r-val𝑖𝑣 and s-val

𝑖
𝑣 .

5 FROM BOUNDED TO UNBOUNDED
HORIZON

5.1 Limiting Behavior of Value Iteration
If we continue the bounded-horizon value iteration for increasing

horizon, we obtain the following values in the limit:

r-val∗𝑣 B cl

[ ∞⋃
𝑖=0

r-val𝑖𝑣

]
and s-val∗𝑣 B

∞⋂
𝑖=0

s-val𝑖𝑣,

5
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where cl [𝑆] denotes the closure of a set 𝑆 in the Euclidean met-

ric; note that s-val∗𝑣 is closed by construction. In this section, we

establish a connection between r-val∗𝑣, s-val
∗
𝑣 and the true values

that are winning for the respective player in the unbounded hori-

zon setting. In particular, we relate the limit sets to the threshold

Th𝑣 , and present an algorithm for Prob. 1 that runs in doubly ex-

ponential time. Our proof also constructs the winning policy for

the reachability player, if one exists; the construction of the safety

player’s winning policy remains open. In the following, we will use

the notation ⟨𝑆⟩ to denote the interior of the set 𝑆 .

Theorem 5.1. Let ⟨𝑀, 𝑣,𝑇 , 𝐵, 𝑝⟩ be a problem instance. The fol-
lowing hold:

(A) (𝐵, 𝑝) ∈
〈
r-val∗𝑣

〉
⇒ ΠR (𝐵, 𝑝, 𝑣, Reach𝑀 (𝑇 )) ≠ ∅,

(B) (𝐵, 𝑝) ∈
〈
s-val∗𝑣

〉
⇒ ΠS (𝐵, 𝑝, 𝑣, Reach𝑀 (𝑇 )) ≠ ∅.

Proof. Let (𝐵, 𝑝) ∈
〈
r-val∗𝑣

〉
. Then, for some 𝑖 ∈ N, it is already

in the interior of r-val𝑖𝑣 . Since every reachability policy winning on

a finite horizon also wins on the infinite horizon, Thm. 4.1 implies

ΠR (𝐵, 𝑝, 𝑣, Reach𝑀 (𝑇 )) is non-empty.

Now, assume (𝐵, 𝑝) is in the interior of s-val∗𝑣 , so there exists

𝐵 = 𝐵 + 𝑠 for some 𝑠 > 0 with (𝐵, 𝑝) ∈ s-val∗𝑣 . The safety player

follows a policy 𝜏 that, besides the current budget, maintains a

requested probability of avoiding 𝑇 , initially 𝑝 . Since s-val∗𝑣 is a

fixpoint of T [13], the safety player, when in 𝑣 ∈ 𝑉c, determines 𝐵+
and 𝐵− from eq. (4) such that (𝐵−+𝐵+)/2 = 𝐵 and bids (𝐵−−𝐵+)/2.
If she wins, the budget increases to 𝐵− − 𝑠 and she moves to 𝑤

where (𝐵−, 𝑝) ∈ s-val∗𝑤 . Otherwise, the budget decreases to 𝐵+ − 𝑠

or less and the reachability player can select any successor𝑤 . By

definition of 𝐵+, (𝐵+, 𝑝) ∈ s-val∗𝑤 regardless of the choice.

For 𝑣 ∈ 𝑉r, the safety player determines 𝑝𝑤 for each successor𝑤

such that

∑
𝑤∈Succ (𝑣) 𝛿 (𝑣) (𝑤) ·𝑝𝑤 = 𝑝 and (𝐵, 𝑝𝑤) ∈ s-val∗𝑤 . Upon

moving to𝑤 , she updates the requested probability to 𝑝𝑤 .

Since each step preserves the invariant (𝐵′
, 𝑝 ′) ∈ s-val∗𝑤 , where

(𝐵′, 𝑝 ′) is either (𝐵−, 𝑝), (𝐵+, 𝑝), or (𝐵, 𝑝𝑤), the above rule can it-

erate indefinitely. Moreover, as (𝐵′, 𝑝 ′) ∈ s-val∗𝑤 implies (𝐵′, 𝑝 ′) ∈
s-val𝑖𝑤 for all 𝑖 ∈ N, policy 𝜏 essentially coincides with the policy

from Thm. 4.1 for any finite 𝑖 . Thus, 𝜏 ∈ ΠS (𝐵, 𝑝, 𝑣, Reach𝑀,𝑖 (𝑇 ))
for every 𝑖 . If there was a reachability player policy 𝜎 such that

P𝜎,𝜏
𝑣,𝐵

(Reach𝑀 (𝑇 )) = 𝑞 > 𝑝 , then, for some 𝑘 , we must have 𝑞 ≥
P𝜎,𝜏
𝑣,𝐵

(Reach𝑀,𝑘 (𝑇 )) > 𝑝 , contradicting𝜏 ∈ ΠS (𝐵, 𝑝, 𝑣, Reach𝑀,𝑘 (𝑇 )).
Thus, no such 𝜎 exists, proving 𝜏 is in ΠS (𝐵, 𝑝, 𝑣, Reach𝑀 (𝑇 )). □

We now characterize the threshold and show that it is completely

separating, thereby establishing determinacy.

Corollary 5.2 (Determinacy). For every MDP𝑀 , target vertices
𝑇 , and vertex 𝑣 in 𝑀 , it holds that r-val∗𝑣 ∩ s-val∗𝑣 = Th𝑣 . Moreover,
the threshold is completely separating.

5.2 On the Decidability of the Quantitative
Reachability Problem

From Thm. 5.1, it follows that Problem 1 reduces to the membership

problem of deciding which of the sets r-val∗𝑣 and s-val
∗
𝑣 contain the

given pair (𝐵, 𝑝). Unfortunately, the decidability of this question

remains open. If we were using the value iteration trying to answer

decidability, the difficulty comes from the situation when (𝐵, 𝑝) ∈

Th𝑣 , because the true Th𝑣 is obtained only in the limit, and we are

not guaranteed to decide the membership of (𝐵, 𝑝) in finite time.

To circumvent this “edge case,” we make the following assumption.

Assumption 1. The problem instance ⟨𝑀, 𝑣,𝑇 , 𝐵, 𝑝⟩ is such that the
given pair (𝐵, 𝑝) does not belong to Th𝑣 .

In other words, we assume that the pair (𝐵, 𝑝) lies either in
the interior of r-val∗𝑣 or in the interior of s-val∗𝑣 . For every point

(𝐵, 𝑝) ∈
〈
r-val∗𝑣

〉
, Lem. 5.3 below provides an upper bound on the

iteration index after which (𝐵, 𝑝) will be included inside r-val𝑖𝑣 ; and
excluded from s-val𝑖𝑣 , respectively.

We first introduce some notation. We use 𝛿min to denote the

minimum positive transition probability in𝑀 unless all transitions

are non-probabilistic; in that case we set 𝛿min = 1

2
. We further

denote by 𝑑∞ (𝑥,𝑦) and 𝑑∞ (𝑥,𝑌 ) the 𝐿∞ distance of a point 𝑥 to

another point 𝑦 and to the set 𝑌 . Of importance is the situation

when either 𝑥 ∈ r-val∗𝑣 and 𝑌 = s-val∗𝑣 , or 𝑥 ∈ s-val∗𝑣 and 𝑌 =

r-val∗𝑣 , in which case 𝑑∞ (𝑥,𝑌 ) is called the distance of 𝑥 from 𝑣 ’s
threshold. Given the sets 𝑋,𝑌 ⊆ [0, 1]2, the Hausdorff distance

𝑑ℎ (𝑋,𝑌 ) between 𝑋 and 𝑌 is the largest distance one needs to

travel starting from any point in either 𝑋 or 𝑌 to reach the closest

point in the other set. Formally,

𝑑ℎ (𝑋,𝑌 ) B max

{
max

𝑦∈𝑌
min

𝑥 ∈𝑋
∥𝑥 − 𝑦∥∞,max

𝑥 ∈𝑋
min

𝑦∈𝑌
∥𝑥 − 𝑦∥∞

}
.

It can be shown that there exist optimal policies that admit

a short path to 𝑇 regardless of the game history, and that after

exponentially many random choices, such a path is traversed with

sufficiently high probability. This idea yields the following lemma.

Lemma 5.3. Let ⟨𝑀, 𝑣,𝑇 , 𝐵, 𝑝⟩ be a problem instance and suppose
(𝐵, 𝑝) is in the interior of r-val∗𝑣 with its distance from 𝑣 ’s threshold
being 𝜖 > 0. Then for every 𝑛𝜖 such that

𝑛𝜖 ≥ 4 log (2/𝜖) |𝑉 |𝛿−2 |𝑉 |
min

,

it holds that (𝐵, 𝑝) ∈ r-val𝑛𝜖𝑣 .

We obtain the following algorithm for Prob. 1 under Assump. 1.

Algorithm: AlgExact
Repeat for 𝑖 = 0, 1, 2, . . .:

(1) If (𝐵, 𝑝) ∈ r-val𝑖𝑣 , return “(𝐵, 𝑝) ∈
〈
r-val∗𝑣

〉
”.

(2) If𝑑∞ ((𝐵, 𝑝), r-val𝑖𝑣) > 2𝑒−𝑖𝛿
2|𝑉 |
min

/4 |𝑉 |
, return “(𝐵, 𝑝) ∈

〈
s-val∗𝑣

〉
.”

It is easy to see that AlgExact is sound: If it returns that (𝐵, 𝑝) ∈
r-val∗𝑣 , i.e., if (1) happens before (2), then soundness follows from the

fact that r-val𝑖𝑣 ⊆ r-val∗𝑣 for each 𝑖 . If it returns that (𝐵, 𝑝) ∈ s-val∗𝑣 ,
i.e., if (2) happens before (1), then it follows from Lemma 5.3 that

(𝐵, 𝑝) is farther away from r-val𝑖𝑣 than the threshold of 𝑣 . There-

fore, r-val∗𝑣 does not contain (𝐵, 𝑝), and from Cor. 5.2, it follows

that s-val∗𝑣 must contain (𝐵, 𝑝). Despite soundness, AlgExact is a
semi-decision procedure, because, in general, neither (1) nor (2) is

guaranteed to be triggered after finitely many 𝑖 , as has been ex-

plained earlier. Luckily, termination is guaranteed when Assump. 1

holds, in which case AlgExact is sound and complete.

Theorem 5.4. AlgExact is a semi-decision procedure for Prob. 1,
and is sound and complete when Assump. 1 is fulfilled by the given
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problem instance. For the latter case, if the distance between (𝐵, 𝑝)
and 𝑣 ’s threshold is 𝜖 > 0, then AlgExact terminates in at most

O
(
log (1/𝜖) |𝑉 |𝛿−2 |𝑉 |

min

)
iterations, yielding the space and time com-

plexity |𝑉 |O
(
log(1/𝜖) |𝑉 |𝛿−2|𝑉 |

min

)
.

5.3 Abstraction for Complexity Reduction
To reduce the high computational complexity of AlgExact, we
present an approximation algorithm that is sound and complete in

the sense of Thm. 5.4, while the running time is exponential in |𝑉 |.
The high complexity of AlgExact stems from the arbitrarily high

precision of the value set representations. The idea of our algorithm

is to discretize the two dimensions—budget and probability—using

a fixed finite precision. The approximate value iteration begins

by rounding off r-val0𝑣 or s-val0𝑣 (whether rounding up or down

depends on the dimension and the value set) to the closest discrete

level along each dimension. At each subsequent step, first the T𝑣 op-
erator (defined in (4) and (3)) is applied on the approximate values

from the previous iteration. Since T𝑣 may produce value sets with

higher precision than the chosen one, the obtained sets are further

rounded off again to the closest discrete level along each dimension.

We show that the procedure yields a sufficiently low approximation

error that depends on the number of iterations and the chosen

precision. We formalize the abstract safety value iteration below;

the abstract reachability values are later obtained through duality.

Let 𝛼 ∈ (0, 1] be a constant parameter, called the grid size, such
that 1/𝛼 is an integer. We define a uniform grid 𝑋 that divides the

value space [0, 1]2 in squares of length 𝛼 , i.e.,

𝑋 B {[𝑝𝛼, (𝑝 + 1)𝛼] × [𝑞𝛼, (𝑞 + 1)𝛼] | 0 ≤ 𝑝, 𝑞 < 1/𝛼} .

Given a relation 𝑆 ⊆ [0, 1]2 over the budgets and probabilities,

define Δ𝛼 (𝑆) as the over-approximation of 𝑆 using the elements of

𝑋 , i.e., Δ𝛼 (𝑆) B
⋃ {𝑥 ∈ 𝑋 | 𝑥 ∩ 𝑆 ≠ ∅}.

For every 𝑣 ∈ 𝑉 , the abstract safety value iteration computes the

sequence Js-valK0𝑣 ⊇ Js-valK1𝑣 ⊇ . . ., where

Js-valK0𝑣 B Δ𝛼 (s-val0𝑣),

∀𝑖 > 0 : Js-valK𝑖𝑣 B Δ𝛼 ◦ T𝑣
({

Js-valK𝑖−1𝑤 | 𝑤 ∈ Succ(𝑣)
})

.

Henceforth, we will refer to Js-valK𝑖𝑣 as abstract values, and s-val𝑖𝑣
as concrete values. The following lemma shows that the abstract

values always over-approximate the concrete values, and the ap-

proximation error remain bounded by 𝛼 (𝑖 + 1) for every 𝑖 .

Lemma 5.5. For every 𝑣 ∈ 𝑉 and every 𝑖 , Js-valK𝑖𝑣 ⊇ s-val𝑖𝑣 , and,
moreover, 𝑑ℎ (Js-valK𝑖𝑣, s-val𝑖𝑣) ≤ 𝛼 (𝑖+1). The abstract value Js-valK𝑖

can be computed in 2|𝑉 |2𝑖/𝛼 time and 2|𝑉 |/𝛼 space.

Given an abstract safety value, we can define an abstract reacha-

bility value Jr-valK𝑖𝑣 B [0, 1]2 \ Jr-valK𝑖𝑣 ∪ r-val0𝑣 . Note that Jr-valK𝑖𝑣
is under-approximation of r-val𝑖𝑣 since both, the complement of

Js-valK𝑖𝑣 and r-val0𝑣 , are subsets of r-val𝑖𝑣 . Moreover, whenever

𝑑ℎ

(
Js-valK𝑖𝑣, s-val

𝑖
𝑣

)
≤ 𝜖 then 𝑑ℎ

(
Jr-valK𝑖𝑣, r-val

𝑖
𝑣

)
≤ 𝜖 .

We now present AlgApprox, an improved algorithm for Prob. 1.

AlgApprox uses the same principle as AlgExact, but instead of using
the exact value iteration, uses the approximate counterpart along

with an iterated refinement of the resolution of the grid.

Algorithm: AlgApprox
Repeat for ℎ = 0, 1, 2, . . .:

(1) Set 𝜖 B 2
−ℎ

, 𝑛 B ⌈4|𝑉 | log
(
2

𝜖

)
𝛿
−2 |𝑉 |
min

⌉, 𝛼 B 𝜖/𝑛.
(2) Compute Js-valK𝑛𝑣 for a given 𝛼 and its complement Jr-valK𝑛𝑣 .
(3) If (𝐵, 𝑝) ∈ Jr-valK𝑛𝑣 , return “(𝐵, 𝑝) is in

〈
r-val∗𝑣

〉
.”

(4) If 𝑑∞
(
(𝐵, 𝑝), Jr-valK𝑛𝑣

)
≥ 2𝜖 , return “(𝐵, 𝑝) is in

〈
s-val∗𝑣

〉
.”

The algorithm AlgApprox iteratively looks for a precision 𝜖 that

is sufficient to decide whether (𝐵, 𝑝) is in r-val∗𝑣 or s-val∗𝑣 . Since
Jr-valK𝑛𝑣 ⊆ r-val𝑛𝑣 ⊆ r-val∗𝑣 , every time the algorithm returns from

Step (3), the decision is sound. For a given precision 𝜖 , the algorithm

computes enough steps of the abstract value iteration on a fine-

enough grid to ensure that: a) the abstract value Jr-val𝑛𝑣 K is at most

𝜖-far from r-val𝑛𝑣 , and b) the concrete value r-val𝑛𝑣 is at most 𝜖-far

from r-val∗𝑣 . Hence the decision on line (4) is also sound, by the

triangular inequality. Finally, provided that (𝐵, 𝑝) is in 𝜖-distance

from the threshold, the algorithm will eventually set 𝜖 ≤ 𝜖
2
, decide

by (3) or (4), and terminate.

Theorem 5.6. The restriction of Prob. 1 to inputs satisfying As-
sump. 1 lies in EXPTIME. In particular, AlgApprox is a sound and
complete algorithm when Assump. 1 is fulfilled by the given problem
instance, and provided the distance between (𝐵, 𝑝) and 𝑣 ’s threshold
is 𝜖 > 0, then AlgApprox terminates in at most ℎ = ⌈log(1/𝜖)⌉ + 1

iterations yielding the time complexity

O
(
|𝑉 |4
𝜖

log (1/𝜖)3 𝛿−4 |𝑉 |
min

)
.

5.4 Lower Complexity Bounds
We show that the exact problem for general MDPs is at least as

hard as computing values in simple stochastic games (SSG), which

is known to be in NP∩ co-NP, and whether it belongs to P remains

a long-standing open problem. SSGs generalize MDPs by parti-

tioning control vertices into two sets based on ownership by two

players, referred to as Player 0 and Player 1. Formally, an SSG is a

tuple ⟨𝑉 ,𝑉0,𝑉1,𝑉r, 𝐸, 𝛿⟩, where𝑉0 and𝑉1 are the vertices owned by
Player 0 and Player 1, respectively. The components 𝑉 , 𝑉r, 𝐸, and 𝛿

are adapted fromMDPs as follows:𝑉 = 𝑉0∪𝑉1∪𝑉r, 𝐸 : 𝑉0∪𝑉1 → 𝑉r,

and 𝛿 : 𝑉r → Δ(𝑉0 ∪ 𝑉1). Without loss of generality, we assume

every SSG has a designated initial vertex in 𝑉1 and that every path

belongs to (𝑉1𝑉r𝑉0𝑉r)𝜔 , ensuring an even alternation of vertex

types, which can be achieved with polynomial blowup.

A Player 𝑗 policy maps each vertex 𝑣 ∈ 𝑉𝑗 to one of its successors.

Suppose Player 0 is the reachability player aiming to reach a given

target 𝑇𝐺 ⊆ 𝑉 , while Player 1 is the safety player trying to avoid it.

The value of𝐺 is the maximum probability 𝑝 such that Player 0 can

reach 𝑇𝐺 with probability at least 𝑝 against any policy of Player 1.

For detailed formal definitions, we refer to Condon [25].

Theorem 5.7. For any SSG 𝐺 with initial vertex 𝑣 , there exists
a bidding game 𝐺𝐵 whose size is polynomial in the size of 𝐺 , and
such that the value of the reachability objective in 𝐺 is equal to the
minimal 𝑝 that satisfies ( 1

3
, 𝑝) ∈ s-val∗𝑣 in 𝐺𝐵 .

We provide the idea behind the proof; details are in the extended

version [13]. For an SSG 𝐺 , we construct the bidding game 𝐺𝐵 by
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adding an extra edge (𝑣, 𝑣 ′) to each vertex 𝑣 ∈ 𝑉0 ∪𝑉1 where 𝑣
′
is

a new sink. The set of target vertices in 𝐺𝐵 contains the vertices in

𝑇𝐵 , and moreover contains every newly introduced sink state that

is connected to a state in𝑉1. In other words, from the vertices in𝑉1
and 𝑉0 in 𝐺𝐵 , the reachability and safety players, respectively, can

immediately win bymoving to the connected sink vertex. This setup

forces the safety and reachability players to outbid their opponents

when 𝑣 ∈ 𝑉1 and 𝑣 ∈ 𝑉0, respectively, as losing the bid would

result in an immediate loss. To analyze this game, we examine

the achievable safety and reachability probabilities for an initial

budget of 1/3−𝜀0. If both players bid optimally, the budget oscillates

between 1/3 − 𝜀𝑡 and 2/3 − 𝜀𝑡 , with the deviation 𝜀𝑡 growing at

each step. While the reachability player mimics his strategy from

𝐺 , the safety player can eventually force a transition to a sink once

𝜀𝑡 is large enough. However, this can take arbitrarily many steps

depending on 𝜀0, allowing the reachability player to win with a

probability arbitrarily close to the value of 𝐺 as 𝜀0 → 0.

6 BIDDING GAMES ON RESTRICTED MDP-S
Now we consider the special cases of Prob. 1 for acyclic and tree-

shaped MDPs, which are MDPs whose underlying transition graphs

are acyclic (with loops on sinks) and rooted trees, respectively.

6.1 Acyclic MDPs
Contrary to general MDPs, the value iteration algorithm (from

Sec. 5) converges in at most |𝑉 | iterations for acyclic MDPs. This

implies that AlgExactwill always terminate in at most |𝑉 | iterations.

Lemma 6.1. For acyclic MDPs, for every vertex 𝑣 , r-val |𝑉 |
𝑣 = r-val∗𝑣

and s-val |𝑉 |
𝑣 = s-val∗𝑣 .

Lem. 6.1 implies that Prob. 1 is in EXPTIME for acyclic MDPs.

Theorem 6.2. For acyclic MDPs, AlgExact is a sound and complete
algorithm for Prob. 1 and terminates in at most |𝑉 | iterations, yielding
the space and time complexity O

(
|𝑉 | |𝑉 |

)
.

6.2 Tree-Shaped MDPs
In case the MDP is tree-shaped, we can solve Prob. 1 in NP ∩ co-NP.

The main idea of the proof is to find a certificate of the fact that

(𝐵, 𝑝) belongs to r-val |𝑉 |
𝑣 . According to the inductive definition

of r-val |𝑉 |
𝑣 by (3) and (4), the presence of (𝐵, 𝑝) in r-val |𝑉 |

𝑣 can be

witnessed by a point (𝐵𝑤 , 𝑝𝑤) ∈ r-val |𝑉 |−1
𝑤 for every𝑤 ∈ Succ(𝑣).

A similar witness can be constructed to show that each of the points

(𝐵𝑤 , 𝑝𝑤) belongs to r-val |𝑉 |−1
𝑤 , and the process can be repeated

recursively up to the base case (𝐵𝑢 , 𝑝𝑢 ) ∈ r-val0𝑢 . Therefore, when-
ever (𝐵, 𝑝) belongs to r-val∗𝑣 , there exists a certificate of this fact in
the form of a finite set of points satisfying the relations in (3) and

(4). If𝑀 is a tree, the certificate moreover contains a single point

(𝐵𝑢 , 𝑝𝑢 ) for every vertex 𝑢 ∈ 𝑉 . The whole certificate then satisfies

the following constraints:

𝐵𝑣 ≤ 𝐵, 𝑝𝑣 ≥ 𝑝

∀𝑢∈𝑉c
∃𝑢−,𝑢+∈Succ (𝑢) : 𝐵𝑢 =

𝐵𝑢− + 𝐵𝑢+

2

, 𝑝𝑢 ≤min

𝑤∈Succ (𝑢)
𝑝𝑤 , 𝐵𝑢+ ≥max

𝑤∈Succ (𝑢)
𝐵𝑤

∀𝑢 ∈ 𝑉r : 𝐵𝑢 ≥ max

𝑤∈Succ (𝑢)
𝐵𝑤 , 𝑝𝑢 =

∑︁
𝑤∈Succ (𝑢)

𝛿 (𝑢) (𝑤) · 𝑝𝑤

∀𝑡 ∈ 𝑇 : 0 ≤ 𝐵𝑡 ≤ 1, 0 ≤ 𝑝𝑡 ≤ 1

∀𝑧 ∈ 𝑍 : 𝐵𝑧 = 1 or 𝑝𝑧 = 0,

where 𝑍 is the set of leaves not in 𝑇 . By fixing a choice of 𝑢− and

𝑢+ for every control vertex 𝑢, and a choice of which of the two

equalities should hold for each 𝑧 ∈ 𝑍 , we create a concrete linear

program. The point (𝐵, 𝑝) belongs to r-val∗𝑣 if and only if there is a

choice that makes the linear program feasible. The same idea can

be used to prove a point belongs to s-val∗𝑣 . Combining this with

Thm. 4.1, we obtain the following upper complexity bounds.

Theorem 6.3. For tree-shaped MDPs, Prob. 1 is in NP ∩ co-NP.

7 CONCLUSIONS AND FUTUREWORK
We studied bidding games on MDPs with quantitative reachability

and safety specifications. We show that thresholds are binary rela-

tions over budgets and probabilities. This makes their computation

significantly more challenging than traditional bidding games on

graphs, for which thresholds are scalars (budgets). We developed

a new value iteration algorithm for approximating the threshold

up to arbitrary precision, and showed how it can be used to decide

whether a given initial budget 𝐵 suffices to win with probability

at least 𝑝 , assuming (𝐵, 𝑝) is not on the threshold (Assump. 1). In

acyclic and tree-shaped MDPs, Assump. 1 is not required and the

decision procedure becomes significantly more efficient.

A number of questions remain open: Is Prob. 1 decidable without

Assump. 1? What are the exact complexities? (There is a big gap

between the upper and lower complexity bounds.) Furthermore, sev-

eral interesting extensions can be considered, namely extensions to

richer classes of specifications (like𝜔-regular andmean-payoff) and

extensions to different forms of bidding mechanisms (like poorman

and taxman, both with and without charging). Another interest-

ing question is the equivalence with stochastic models (recall that

bidding games are equivalent to random-turn games). This is still

unclear, because even if the threshold budget were simulated by

random turn assignments, this randomness would not “blend” with

the existing randomness (in the random transitions) in the MDP,

and we would obtain stochastic games with two sources of proba-

bilities, which have not been studied to the best of our knowledge.

Finally, the foundation of auction-based scheduling [14] on MDPs

is now ready, and it will be interesting to investigate how policy

synthesis for multi-objective MDPs can benefit from it.
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