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ABSTRACT
This paper proposes a novel framework for incorporating anytime
fairness guarantees in a general Stochastic Combinatorial Multi-

Armed Bandit (CMAB) problem when the time horizon is unknown.

Our framework does not make any assumptions about the reward

feedback or structure and provides fairness guarantees as long

as a sublinear regret algorithm exists to solve the same problem.

The framework essentially operates in the episodes of length 𝐻 ,

which is a user-defined parameter. The framework divides each

episode of length 𝐻 into fairness rounds and learning rounds. Moti-

vated by preemptive scheduling on uniform machines, we propose

Fair-CMAB which prioritizes fairness rounds upfront and uses any

existing CMAB algorithm for learning rounds. This helps in general-

izing the framework significantly. Theoretically, we prove that for a

sufficiently large value of 𝐻 , Fair-CMAB achieves anytime fairness

guarantees after some initial number of rounds and achieves the

regret guarantees of the same order as the learning algorithm.
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1 INTRODUCTION
The classical Multi-Armed Bandit (MAB) problem, introduced by

[53], is an important online decision-making problem where the

data arrives in a sequence and the learner must make an irrevocable

decision at each time. In a stochastic MAB problem, a learner selects

a single arm from the set of 𝑁 arms at each time step and receives a

reward sampled from an independent distribution associated with

that arm. The objective is to maximize the expected cumulative

reward or, equivalently, to minimize the regret.
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The Combinatorial Multi-Armed Bandit (CMAB) problem gener-

alizes this framework by allowing the learner to select a subset of

arms at each time. The expected reward from a subset of arms is

determined by a deterministic mapping from a set of arms pulled to

a real-valued reward as a function of the expected rewards from the

pulled arms. Upon selecting a subset of arms, the learner receives

feedback in terms of a random reward. CMAB is studied under

two feedback types: semi-bandit feedback [5, 15, 22, 23, 31, 34],

where individual reward samples from each selected arm are ob-

served; and full-bandit feedback [1, 2, 19, 21, 41–43], where only the

combined reward for the selected subset is revealed to the learner.

CMAB is further studied under two settings for the reward func-

tion: linear [18, 50, 52], or non-linear [19, 21, 40, 41, 43], with the

reward function being linear or non-linear, respectively, based on

the individual rewards of the arms in the selected subset. CMAB

plays an important role in applications such as sponsored search

auctions [44], crowdsourcing [51], influence maximization [14, 61],

recommender systems [49], etc. The feedback type and the structure

of the reward function directly influence the arm-pulling strategy

and learning efficiency. Note that the semi-bandit feedback reveals

more information to the learner than a full-bandit feedback.

While a long line ofwork (see [1–3, 19, 21, 41, 43] for an overview)

focuses on identifying the optimal set of arms, incorporating fair-

ness requirements in the stochastic CMAB problem remains largely

unexplored. An optimal MAB algorithm tends to allocate resources

or opportunities in a skewed manner, and such winner-takes-all
allocations may lead to societal issues such as loss of trust. Fair-

ness is important in many real-world applications in combinatorial

bandits, where equitable distribution of resources or opportunities

among arms is crucial: in sponsored ads, it ensures visibility for all

advertisers; in crowdsourcing, equitable task distribution; in wire-

less scheduling, minimum service quality [37]; and in recommender

systems, diverse content and cross-selling prevention [2, 62].

This paper focuses on fairness constraints induced by a mini-
mum guaranteed number of pulls for each individual arm. Though

this problem has interesting connections with the scheduling lit-

erature (see [39]), the design of optimal online learning with a

minimum-pull guarantee for each arm is relatively new. Patil et al.

[46] introduces the problem of satisfying the minimum-pull guar-

antee as a fraction of the total number of pulls for each round 𝑡

(aka, anytime guarantee) in the classical stochastic MAB setting

when only a single arm needs to be pulled at a time.
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Anytime fairness guarantee is required in many applications that

use CMAB. One such example is an online crowdsourcing platform

where organizations would like to choose the best𝐾 workers (arms)

at each time. However, selecting only a few workers at each time

might lead to workers leaving the platforms. Therefore, one might

ask to maintain a minimum exposure guarantee for each worker.

Another example is in sponsored search advertisements. As per

the example provided in [46], Facebook was recently sued by the

US Department of Housing and Urban Development for targeting

ads based on attributes such as gender, race, and religion. Anytime

fairness guarantee can demand the minimum fraction of exposure

on such attributes thus preventing these discriminations while

selecting 𝐾 advertisements at each time.

Existing regret guarantees in [46] hold only when the learning

algorithm is based on the Upper Confidence Bound (UCB) [6, 7]

approach. Therefore, the algorithm in [46] cannot be extended to

the CMAB setting, because, firstly, in the CMAB setting, the most

rewarding arm may not be a part of the optimal subset of arms.

Thus, allocating the remaining rounds after satisfying the fairness

requirement to a set of optimal arms may not result in an optimal

schedule. And secondly, in a full-bandit feedback setting, where

reward feedback is available for the subset of pulled arms, but the

fairness requirements are specified individually for each arm. In

this context, it is unclear how to identify the best schedule from

all feasible schedules. More importantly, the theoretical analysis

for regret changes is based on the base learning algorithm. Our

main aim is to provide a unified framework for fairness in CMAB

problems which can be integrated with any existing algorithm

while providing anytime fairness guarantees.

Our unified approach not only advances the theoretical under-

standing of fairness in CMAB problems but also facilitates the

practical application of these algorithms across diverse, real-world

scenarios. Further, our framework can also be used to provide any-

time fairness guarantees for existing algorithms in classical bandit

settings since CMAB generalizes classical bandit settings (where

only one arm is selected). In summary, our contributions include:

(1) We introduce an anytime Fair-CMAB framework for a broad

class of feedback settings (semi-bandit and bandit), applicable

to different classes of reward functions (linear, non -linear,

and submodular) along with cardinality constraints.

(2) Anytime Fair-CMAB framework uses a simple algorithm that

incorporates a user-defined parameter 𝐻 . It guarantees any-

time fairness for all rounds 𝑡 ≥ 𝐻𝜂𝐻 , with 𝜂𝐻 denoting the

minimum fraction of the 𝐻 rounds required to ensure that

each arm is pulled the necessary fraction of times up to 𝐻 .

(3) We show that the extra number of rounds that the Fair-CMAB
framework uses for fairness converges to that of the number

of fairness rounds used by any optimal fair algorithm for

sufficiently small value of 𝐻 .

(4) We prove that the anytime Fair-CMAB framework achieves

similar order bounds on regret as the learning algorithm

used for the framework.

2 RELATEDWORK
We first discuss existing CMAB algorithms with semi-bandit and

full-bandit feedback followed by literature on fairness in stochastic

bandits. A comprehensive coverage of the theoretical insights and

application of MAB can be found in [10, 35, 55].

2.1 Stochastic Combinatorial Bandits
CMAB was first studied for the shortest path problem by György

et al. [28] and later extensively analyzed by Lattimore and Szepesvári

[35]. Subsequent works on combinatorial bandits with semi-bandit

feedback include [12, 13, 16, 17, 23, 24, 32, 59, 61]. Gai et al. [23]

introduced approximation oracles under linear rewards, while Chen

et al. [15] generalized this to 𝛼-approximation oracles covering a

much larger class of linear and nonlinear rewards. Furthermore,

Chen et al. [16] extended these results considering arm dependen-

cies and probabilistically trigger arms, establishing online influence

maximization as a subclass. Wang and Chen [61] refined regret

bounds from exponential to sublinear for this subclass. The work of

Zimmert et al. [64] further bridged adversarial and stochastic set-

tings to accommodate nonlinear reward functions. Although these

studies focus on optimizing reward or minimizing regret, none con-

siders fairness in CMAB. While semi-bandit feedback is a simplified

setting, there are numerous applications for the bandit feedback

setting [21, 40, 41, 43, 47, 57, 58]. Earlier works on full-bandit feed-

back include [18, 52] for the linear reward setting and Agarwal

et al. [1, 2] for the non-linear reward setting. It must be noted that

different approaches are required to solve the problem depending

on the structure of the rewards. For example, monotone submodular

rewards result in a cardinality-constrained best K-arms selection

problem, whereas non-monotone submodular rewards does not

require cardinality constraint. Similarly, while the approach in [1]

works by dividing the arms into groups and merging them to obtain

the best 𝐾 arms, [20, 21, 41, 43] proposed an explore-then-commit

based algorithm in a more general reward model.

2.2 Fairness in Stochastic and CMAB with
Semi-Bandit Feedback

For the classical bandit setting, similar to ours, [46] guarantees

anytime fairness of exposure for each arm, and [60] introduces

merit-based exposure to the arms. Motivated by the group fairness

notion in the machine learning community [8, 27, 29, 30, 45, 54],

Grazzi et al. [26] considers exposure fairness within the group,

while Pokhriyal et al. [48] proposed bi-level fairness, which ensures

minimum exposure (anytime guarantee) to groups and merit-based

exposure (asymptotic guarantee) to arms within the group.

In the context of CMAB settings with semi-bandit feedback, Li

et al. [37] propose a UCB-based approach using a virtual queue tech-

nique to ensure fairness in expectation for each arm, asymptotically.

Extending this, Xu et al. [63] employ online convex optimization

to achieve sublinear regret, generalizing to concave rewards and

knapsack constraints. Liu et al. [38] unify bandits with knapsack

and fairness constraints using an LP-style algorithm, achieving

problem-independent regret bounds with zero fairness violations.

For real-time systems, Steiger et al. [56] focus on short-term fairness

in combinatorial semi-bandit problems with sleeping arms and de-

layed feedback, providing instance-independent regret bounds. All

these fairness notions provide only asymptotic guarantees. Further-

more, each work provides fairness guarantees in a specific setting

that too under the semi-bandit feedback setting. On the other hand,
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our proposed framework works for a large variety of settings as

long as an algorithm exists for the corresponding unfair setting.

This allows our framework to function even for bandit feedback

settings, where no prior work has specifically addressed fairness.

In another growing set of works in the equitability over time

fairness setting in online algorithms, such as ones in [4, 11, 36], the

setup is different from ours, as these works consider arms arrival

over time and the goal is to decide whether to pull the arm or not.

Whereas, in our setting, stochastic arms are available and the goal

is to learn the arm with optimal reward.

3 PROBLEM FORMULATION
In a combinatorial MAB setting, the learner pulls a subset 𝑆𝑡 of arms

from a finite set [𝑁 ] = {1, 2, · · · , 𝑁 } at each time 𝑡 and receives a

stochastic reward 𝑓𝑡 (𝑆𝑡 ) until an a priori unknown time horizon 𝑇 .

We define an arm 𝑖 ∈ [𝑁 ] as a base arm and refer to 𝑆 ⊆ [𝑁 ] as a
super arm. There are two possible settings in CMAB. The first is a

fixed budget setting [1, 2, 41, 52], where the learner pulls exactly

𝐾 arms at each time. The second allows the learner to pull any

number of arms in each round (e.g., non-monotone submodular

bandits [19]). The set of all possible actions is represented byA. In

the budgeted MAB setting, A = {𝑆 ⊆ [𝑁 ] : |𝑆 | = 𝐾}, and for the

non-monotone setting, A = {𝑆 ⊆ [𝑁 ]}.
In the stochastic setting, the expected reward for each action 𝑆 is

derived from a reward function 𝑓 : A → R. The realized reward for
𝑆 ∈ A comes from a fixed distribution𝐷𝑆 with a mean 𝑓 (𝑆). Let the
realized reward at time 𝑡 when pulling the super arm 𝑆𝑡 be denoted

by 𝑓𝑡 (𝑆𝑡 ). Then, the reward for action 𝑆𝑡 is 𝑓 (𝑆𝑡 ) = E[𝑓𝑡 (𝑆𝑡 )],
where {𝑓1, 𝑓2, . . . , 𝑓𝑡 } are independent and identically distributed

(IID) rewards for 𝑆𝑡 ∈ A generated from distribution 𝐷𝑆𝑡 . We

further assume that the rewards 𝑓𝑡 are bounded
1
. For simplicity of

notation, we omit the time index 𝑡 when evident from context. The

learner’s goal is to identify and play the optimal action 𝑆★ ∈ A
defined as 𝑆★ ∈ argmax𝑆∈A 𝑓 (𝑆) .

Without loss of generality, we assume that the optimal super-

arm is unique, that is for all 𝑆 ≠ 𝑆★, 𝑓 (𝑆★) > 𝑓 (𝑆). In the stochastic

setting, based on how the feedback is received, we have two settings.

(1) Full-bandit Feedback: In a full-bandit feedback setting

[3, 19, 21, 43, 52], the learner only observes the reward 𝑓𝑡 (𝑆𝑡 )
for the selected action 𝑆𝑡 .

(2) Semi-Bandit Feedback: In the case of semi-bandit feedback

[15, 61, 64], the learner additionally observes rewards for

each base arm in a selected super arm 𝑆𝑡 .

Note that Fair-CMAB utilizes existing CMAB algorithms for learn-

ing, which allows it to operate for both the feedback settings.

3.1 Fairness Requirement:
This paper studies the fairness requirement that guarantees that

each base arm is pulled for at least a specified fraction of times. We

define the fairness constraint through a vector 𝑟 = (𝑟1, 𝑟2, . . . , 𝑟𝑁 ),
where 𝑟𝑖 ∈

(
0, 1

2𝜅

)
for each arm 𝑖 ∈ [𝑁 ], with 𝜅 = ⌈𝑁 /𝐾⌉. This

parameter 𝜅 restricts the fairness quota for each arm, ensuring that

each arm 𝑖 is pulled at least a fraction 𝑟𝑖 of times. The goal of the

learner is to satisfy fairness constraints at every time step 𝑡 by

1
We assume, without loss of generality, that 𝑓𝑡 (𝑆𝑡 ) ∈ [0, 1].

ensuring that the number of times arm 𝑖 has been pulled by time 𝑡 ,

denoted by 𝑛𝑖,𝑡 , satisfies: 𝑛𝑖,𝑡 ≥ ⌊𝑟𝑖𝑡⌋ ∀𝑖 ∈ [𝑁 ] .

Definition 1 ((𝑟, 𝛾)-fair algorithm). Let𝑇 > 1 be an arbitrary
stopping time. We call a combinatorial multi-armed bandit (CMAB)
algorithm (𝑟,𝛾)-fair if, for a given fairness vector 𝑟 = (𝑟1, 𝑟2, . . . , 𝑟𝑁 )
and a given 𝛾 > 0, it satisfies the following condition for 𝑡 ≥ 𝛾 i.e.,

𝑛𝑖,𝑡 ≥ ⌊𝑟𝑖 · 𝑡⌋ ∀𝑡 ≥ 𝛾 .

Note that we recover aytime fairness guarantee when 𝛾 = 1 [46].

3.2 Regret
The 𝛼-regret of the algorithm used in this paper captures the gap

between 𝛼 times sum of the rewards when optimal subset is chosen

and the rewards obtained by the algorithm [43]. More formally,

Definition 2 (𝛼-Regret). Let (𝑆𝑡 )𝑡≥1 denote the sequence of
pulls made by CMAB algorithm Alg, 𝑇 > 1 be an arbitrary stopping
time and 𝛼 > 0. The 𝛼-regret of Alg over 𝑇 rounds is defined as

RAlg (𝑇 ) = 𝛼 ·𝑇 · 𝑓 (𝑆★) − E
[
𝑇∑︁
𝑡=1

𝑓𝑡 (𝑆𝑡 )
]
,

where 𝑓 (𝑆★) is the optimal expected reward.

The goal of the learner is to maximize the expected cumulative

reward E
[ ∑𝑇

𝑡=1 𝑓𝑡 (𝑆𝑡 )
]
, to obtain sublinear 𝛼−regret while opti-

mizing for approximation parameter 𝛼 . Note that the parameter 𝛼

absorbs the approximation factor for combinatorial bandits and the

fraction of rounds spent by the algorithm towards fairness. With

𝐾 = 1, the definition coincides with the fairness-aware regret by

Patil et al. [46] when the algorithm spends an optimal number of

rounds towards fairness. We now provide a framework that works

for a broad class of stochastic combinatorial bandit settings.

4 FAIR-CMAB: A FRAMEWORK TOWARDS FAIR
COMBINATORIAL MAB ALGORITHM

Our proposed framework works in episodes each of fixed length

𝐻 . For each episode E, the algorithm computes the fraction of

time required to satisfy the fairness guarantees in a given episode.

Our fairness framework essentially creates a sequence of intervals

𝐼0, 𝐼1, 𝐼2, . . . ,with predefined lengths that separate pulls for ensuring

fairness and learning, respectively. Let us further define

𝜂𝑑 =
1

𝑑
max

(⌈∑
𝑖 ⌈𝑟𝑖𝑑⌉
𝐾

⌉
,max

𝑖
⌈𝑟𝑖𝑑⌉

)
. (1)

Thus, the terms 𝜂𝑑 and𝑑𝜂𝑑 denote the minimum fraction and the

minimum number of pulls required to satisfy fairness guarantees

for 𝑑 rounds, respectively, which we explain later in connection to

Makespan scheduling [39].

Further, we create the lengths of the intervals as follows. The

initial interval 𝐼0 is considered of length 𝐻𝜂𝐻 . Apart from 𝐼0, every

odd interval 𝐼2ℓ−1, ℓ = 1, . . . ,𝑚, is of length (ℓ + 1)𝐻𝜂 (ℓ+1)𝐻 −
ℓ𝐻𝜂ℓ𝐻 , and is called a fairness-aware interval where the framework

primarily selects the arms to satisfy the fairness requirement for

the next episode that follows. Here, index ℓ represents the index

of the episode, which starts after the initial pulls for 𝐻𝜂𝐻 rounds,

and𝑚 =

⌈
𝑇−𝐻𝜂𝐻

𝐻

⌉
represent the last episode. It should be further
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noted that to compute the length of the intervals for Fair-CMAB
we require 𝐾 as an input which is not fixed for non-monotone and

non-budgeted CMAB setting. For such a setting, we provide 𝐾 = 𝑁

as an input to the algorithm (for the fairness intervals).

On the other hand, the even intervals 𝐼2ℓ , ℓ = 1, . . . ,𝑚, are called

the learning intervals, and are of length 𝐻 − |𝐼2ℓ−1 | = 𝐻 − (ℓ +
1)𝐻𝜂 (ℓ+1)𝐻 + ℓ𝐻𝜂ℓ𝐻 . In the even intervals, the framework primar-

ily pulls the arms that are suggested by any learning algorithm

Learn(·) (without worrying about the fairness constraints). These

intervals can be better understood by Figure 1. Note that substitut-

ing 𝐾 = 𝑁 in fairness (odd) rounds does not hamper the learning

of base algorithm as we are calling the base algorithm only in even

intervals.

𝐼0 𝐼1 𝐼2 𝐼3 𝐼4 𝐼𝑚

2𝐻𝜂2𝐻 −𝐻𝜂𝐻 3𝐻𝜂3𝐻 −2𝐻𝜂2𝐻

𝐻𝜂𝐻 𝐻−(2𝐻𝜂2𝐻 −𝐻𝜂𝐻 ) 𝐻−(3𝐻𝜂3𝐻 −2𝐻𝜂2𝐻 )

𝑡 = 𝜂𝐻𝐻

𝑡 = 𝑇

Figure 1: Intervals with fairness and learning phases along
the timeline.

We note that if 𝑇 is known, then we could divide the entire

time horizon into two intervals namely 𝐼1 and 𝐼2 of length𝑇𝜂𝑇 and

𝑇 (1−𝜂𝑇 ) rounds such that pulls done in interval 𝐼1 would have been
sufficient for all times in 𝐼2 to satisfy anytime fairness guarantees

(albeit after 𝑇𝜂𝑇 time). However, unknown 𝑇 requires us to solve

the problem separately for each episode until the stopping time.

Doubling trick [7, 9], where the estimate of time doubles every

time when the algorithm exceeds the estimated time from previous

rounds might adversely affect the fairness requirement as it will

lead to exponential growth of fairness rounds. This would lead to

high regret in last round if the stopping time is before the end of the

episode. For instance, we would incur linear regret if the stopping

time is just at the end of the fairness time-slot in the last epoch.

Therefore, we propose a fixed length episode strategy for achieving

anytime fairness over an unknown time horizon 𝑇 . Next, connect

𝜂𝑑 in equation (1) to the makespan of the job scheduling problem

on identical machines with preemption [39].

Connection to Makespan Scheduling: The makespan problemmin-

imizes the time to complete 𝑁 jobs on 𝐾 machines with preemption

with each job 𝑖 having a processing time 𝑝𝑖 . Analogously, jobs cor-

respond to arms, machines to the number of arms pulled, and as

we enforce fairness for 𝐻 rounds, 𝑝𝑖 = ⌈𝑟𝑖𝐻⌉ represents the time

required to meet fairness guarantees for the 𝐻 rounds.

Definition 3. Then Makespan on identical machines with pre-
emption is given by [39]:

Makespan(𝑁,𝐾, 𝑝) = max

{∑
𝑖 𝑝𝑖

𝐾
,max

𝑖
𝑝𝑖

}
.

This definition directly leads to the value of 𝑑𝜂𝑑 in Equation (1).

Therefore, any preemptive scheduling algorithm that achieves the

optimal makespan will guarantee that after running the algorithm

for 𝐻𝜂𝐻 number of rounds, each arm will be pulled at least ⌈𝑟𝑖𝐻⌉
times which forms the foundation of our framework.

5 THE ALGORITHM : FAIR-CMAB
Asmentioned earlier, the algorithm runs in episodes of equal size,𝐻

until the time horizon 𝑇 . The algorithm divides the entire duration

into three sets of intervals, namely, the initial interval (fairness),

odd intervals (fairness), and even intervals (learning). The length

of the initial interval is given by 𝐻𝜂𝐻 . Our episodes of length 𝐻

start after this initial interval and the indexing of the episode is

denoted by ℓ . For each ℓ = 1, · · · ,𝑚, ℓ𝑡ℎ fairness interval is of

the length (ℓ + 1)𝐻𝜂 (ℓ+1)𝐻 − ℓ𝐻𝜂ℓ𝐻 which forms a decreasing

sequence. Similarly, length of the ℓ𝑡ℎ learning interval is given

as (1 − (ℓ + 1)𝜂 (ℓ+1)𝐻 + ℓ𝜂ℓ𝐻 )𝐻 . Thus, each pair of fairness and

learning interval forms an episode of length 𝐻 . During the fairness

intervals, the algorithm uses Longest Remaining Processing Time

(LRPT) algorithm to pull arms [25] whereas in the learning intervals

the algorithm invokes the existing combinatorial MAB algorithm

based on the problem instance [2, 3, 40, 41, 43, 57]. In LRPT, the

algorithm pulls the arms that have the highest remaining pulls to

satisfy the fairness constraint and this is specified in Algorithm

1. Here, 𝑝𝑖 denotes the fairness requirement of arm 𝑖 , |𝐼ℓ | denotes
the duration for which LRPT is called for, and 𝑇 is used to indicate

that the algorithm should stop as soon as the algorithm reaches

the last round. For each LRPT call, 𝑝′
𝑖
𝑠 are carefully crafted such

that anytime fairness guarantees are maintained and the duration

of LRPT is minimized to ensure the optimal value of 𝛼 in the regret

with respect to fairness rounds.

Algorithm 1 LRPT(𝑝, |𝐼ℓ |)

Require: Processing time vector (𝑝 = {𝑝𝑖 }𝑁𝑖=1), number of time

steps for which LRPT to run: |𝐼ℓ |.
1: Initialize 𝑛

𝑓

𝑖
= 0 for each arm 𝑖 ∈ [𝑁 ], 𝑡𝑓 = 1

2: while 𝑡𝑓 ≤ |𝐼ℓ | 𝑎𝑛𝑑 𝑡 ≤ 𝑇 do

3: 𝑆𝑡 ← Pull 𝐾 arms with highest value of 𝑝𝑖 − 𝑛𝑓𝑖
4: 𝑡𝑓 = 𝑡𝑓 + 1
5: Update 𝑛

𝑓

𝑖
= 𝑛

𝑓

𝑖
+ 1,∀𝑖 ∈ 𝑆𝑡

6: end while
7: 𝐸 = {𝑖 |𝑝𝑖 − 𝑛𝑓𝑖 < 0}
8: Return 𝐸

The Fair-CMAB Framework presented in Algorithm 2 begins

with the initialization of key parameters, including the fairness

vector 𝑟 = {𝑟𝑖 ∈ (0, 1

2𝜅 )}
𝑁
𝑖=1

, episode length 𝐻 , the number of

arms 𝑁 , and the cardinality constraint 𝐾 . In the next step, the

initial interval of length𝐻𝜂𝐻 is computed to determine the fairness

time slots in the initial interval (Line 2). The algorithm then calls

the Longest Remaining Processing Time (LRPT) scheduling with

𝑝𝑖 = ⌈𝑟𝑖𝐻⌉ such that all arms satisfy fairness requirement untill 𝐻

rounds (Line 3). This ensures anytime fairness guarantees during

interval 𝐼1 if 𝜂𝐻 ≤ 1

2
.

The algorithm then alternates between fairness and learner slots

(Lines 4–16). In the fairness slots, each arm receives a minimum

number of pulls as per its fairness quota, ensuring the algorithm

maintains anytime fairness. In the learner slots, the algorithm calls

a learning procedure. The sets 𝐿,𝑈 , and 𝐸 are created to distinguish

between the arms that might have received extra pulls because of

the ceiling factor in the previous rounds. The 𝑝′
𝑖
𝑠 of the arms in
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Algorithm 2 Fair-CMAB Framework

Require: Fairness vector(𝑟 ): 𝑟𝑖 ∈
(
0, 1

2𝜅

)
∀𝑖 ∈ [𝑁 ], episode length

𝐻 , number of arms 𝑁 , and cardinality constraint 𝐾 .

1: Compute 𝜂𝐻 from equation 1, ℓ = 0, |𝐼ℓ | = 𝐻𝜂𝐻 ,
2: 𝐸𝑙 = LRPT({⌈𝑟𝑖𝐻⌉}𝑁𝑖=1, |𝐼ℓ |)
3: 𝑡 = 𝐻𝜂𝐻 + 1, ℓ = ℓ + 1
4: while 𝑡 ≤ 𝑇 do
5: 𝐿 = {𝑖 | ⌈𝑟𝑖 ℓ𝐻⌉ < ⌈𝑟𝑖 (ℓ − 1)𝐻⌉ + ⌈𝑟𝑖𝐻⌉}
6: 𝑈 = {𝑖 | ⌈𝑟𝑖 ℓ𝐻⌉ = ⌈𝑟𝑖 (ℓ − 1)𝐻⌉ + ⌈𝑟𝑖𝐻⌉}
7: 𝑝ℓ

𝑖
= ⌊𝑟𝑖𝐻⌋ ∀𝑖 ∈ 𝐿 and 𝑝ℓ

𝑖
= ⌈𝑟𝑖𝐻⌉ ∀𝑖 ∈ 𝑈

8: 𝑝ℓ
𝑖
= 𝑝ℓ

𝑖
− 1 ∀𝑖 ∈ 𝐸ℓ

9: |𝐼ℓ | = (ℓ + 1)𝐻𝜂 (ℓ+1)𝐻 − ℓ𝐻𝜂ℓ𝐻
10: 𝐸𝑙 = LRPT({𝑝ℓ

𝑖
}𝑁
𝑖=1
, |𝐼ℓ |)

11: 𝑡 = 𝑡 + |𝐼ℓ |
12: 𝑡𝑖 = 0

13: while 𝑡𝑖 ≤ 𝐻 − |𝐼ℓ | and 𝑡 ≤ 𝑇 do
14: Call Learn(·)
15: 𝑡𝑖 = 𝑡𝑖 + 1
16: 𝑡 = 𝑡 + 1
17: end while
18: ℓ = ℓ + 1
19: end while

their respective sets are updated accordingly for the next fair slot.

This alternating process continues until the time limit 𝑡 ≤ 𝑇 while

ensuring that both fairness and learning objectives are achieved.

It should be noted that while our algorithm employs 𝑇 , it is only

used as a stopping criterion. No parameters within the algorithm

explicitly depend on 𝑇 .

6 THEORETICAL ANALYSIS
We now provide the theoretical analysis of our algorithm by first

proving anytime fairness guarantees for 𝑡 > 𝐻𝜂𝐻 .

Theorem 1. Fair-CMAB is 𝑟 -fair ∀ 𝑡 > 𝐻𝜂𝐻 for any CMAB algo-
rithm if 𝑟𝑖 ∈

[
0, 1

2𝜅 − 𝜖
]
and 𝐻 ≥ 1

𝜖 .

We first prove the following lemmas:

Lemma 1. When 𝑟𝑖 ∈
[
0, 1

2𝜅 − 𝜖
]
and 𝐻 > 1

𝜖 , then 𝜂𝐻 ≤
1

2
.

Proof. We have ⌈𝑟𝑖𝐻⌉ ≤ 𝑟𝑖𝐻 + 1. Therefore:

𝜂𝐻 ≤ max

{∑
𝑟𝑖

𝐾
+ 𝑁

𝐾𝐻
,max

𝑖
{𝑟𝑖 +

1

𝐻
}
}

≤ max

{
𝑁

2𝜅𝐾
− 𝑁𝜖
𝐾
+ 𝑁

𝐾𝐻
,
1

2𝜅
− 𝜖 + 1

𝐻

}
≤ 1

2

□

Lemma 2. All fair slots are bounded by 𝐻𝜂𝐻 , i.e.

ℓ𝐻𝜂ℓ𝐻 − (ℓ − 1)𝐻𝜂 (ℓ−1)𝐻 ≤ 𝐻𝜂𝐻 , ∀ℓ > 1.

Proof. This is immediate from the definition. □

For any ℓ , let 𝑝ℓ
𝑖
denote the processing time for arm 𝑖 when ℓ𝑡ℎ

call to fairness is made and 𝑛ℓ
𝑖
denote the total number of times

arm 𝑖 is pulled in that interval, then consider the following sets de-

fined in Algorithm 2: 𝑈 = {𝑖 | ⌈𝑟𝑖 ℓ𝐻⌉ = ⌈𝑟𝑖 (ℓ − 1)𝐻⌉ + ⌈𝑟𝑖𝐻⌉},
𝐿 = {𝑖 | ⌈𝑟𝑖 ℓ𝐻⌉ < ⌈𝑟𝑖 (ℓ − 1)𝐻⌉ + ⌈𝑟𝑖𝐻⌉}, and 𝐸ℓ = {𝑖 |𝑝ℓ

𝑖
−

𝑛ℓ
𝑖

< 0}. Note that 𝐸ℓ denotes the set of arms that are pulled

extra despite their processing time is finished. This might hap-

pen because in the last round of LRPT, less than 𝐾 arms had

their processing time left or we are calling LRPT more number

of times than required. Further, let 𝑠 𝑗 = |𝐸 𝑗 |, then let us define

𝜂ℓ to be the number of rounds that are required to complete pro-

cessing times 𝑝ℓ
𝑖
and is given by 𝜂ℓ = max

{⌈∑
𝑖 𝑝

ℓ
𝑖

𝐾

⌉
,max𝑖 {𝑝ℓ𝑖 }

}
=

max

{ ⌈∑
𝑖∈𝑈 ⌈𝑟𝑖𝐻 ⌉+

∑
𝑖∈𝐿 ⌊𝑟𝑖𝐻 ⌋−𝑠ℓ−1
𝐾

⌉
, {⌈𝑟𝑖𝐻⌉}𝑖∈𝑈 ,

{⌊𝑟𝑖𝐻⌋}𝑖∈𝐿 , {⌈𝑟𝑖𝐻⌉ − 1}𝑖∈𝑈∩𝐸ℓ , {⌊𝑟𝑖𝐻⌋ − 1}𝑖∈𝐿∩𝐸ℓ

}
Our next important lemma proves the fact that the length of

each ℓ𝑡ℎ fair interval is sufficient to complete 𝑝ℓ
𝑖
requirement of

each arm.

Lemma 3. ℓ𝐻𝜂ℓ𝐻 − (ℓ − 1)𝐻𝜂 (ℓ−1)𝐻 ≥ 𝐻𝜂.

Proof. ℓ𝐻𝜂ℓ𝐻 = max

{⌈∑⌈𝑟𝑖 ℓ𝐻 ⌉
𝐾

⌉
, ⌈𝑟𝑖 ℓ𝐻⌉

}
= max

{⌈∑
𝑖∈𝑈 ⌈𝑟𝑖 ℓ𝐻⌉ +

∑
𝑖∈𝐿 ⌈𝑟𝑖 ℓ𝐻⌉

𝐾

⌉
, {⌈𝑟𝑖 ℓ𝐻⌉}𝑖∈𝑈 , {⌈𝑟𝑖 ℓ𝐻⌉}𝑖∈𝐿

}
= max

{ ⌈∑
𝑖∈𝑈 ⌈𝑟𝑖 (ℓ − 1)𝐻⌉ + ⌈𝑟𝑖𝐻⌉ +

∑
𝑖∈𝐿 ⌈𝑟𝑖 (ℓ − 1)𝐻⌉ + ⌊𝑟𝑖𝐻⌋

𝐾

⌉
,

{⌈𝑟𝑖 (ℓ − 1)𝐻⌉ + ⌈𝑟𝑖𝐻⌉}𝑖∈𝑈 , {⌈𝑟𝑖 (ℓ − 1)𝐻⌉ + ⌊𝑟𝑖𝐻⌋}𝑖∈𝐿

}
= max

{ ⌈∑⌈𝑟𝑖 (ℓ − 1)𝐻⌉ +∑𝑖∈𝑈 ⌈𝑟𝑖𝐻⌉ +∑𝑖∈𝐿 ⌊𝑟𝑖𝐻⌋
𝐾

⌉
,

{⌈𝑟𝑖 (ℓ − 1)𝐻⌉ + ⌈𝑟𝑖𝐻⌉}𝑖∈𝑈 , {⌈𝑟𝑖 (ℓ − 1)𝐻⌉ + ⌊𝑟𝑖𝐻⌋}𝑖∈𝐿

}
Let

∑⌈𝑟𝑖 (ℓ−1)𝐻⌉ = 𝐾𝛾ℓ−1+𝛿ℓ−1 for some 𝛿ℓ−1 < 𝐾 ,𝛾ℓ−1, 𝛿ℓ−1 ∈
Z, then:

ℓ𝐻𝜂ℓ𝐻 = max

{ ⌈
𝐾𝛾ℓ−1 + 𝛿ℓ−1 +

∑
𝑝ℓ
𝑖
+ 𝑠ℓ−1

𝐾

⌉
,

{⌈𝑟𝑖 (ℓ − 1)𝐻⌉ + ⌈𝑟𝑖𝐻⌉}𝑖∈𝑈 , {⌈𝑟𝑖 (ℓ − 1)𝐻⌉ + ⌊𝑟𝑖𝐻⌋}𝑖∈𝐿

}
≥ max

{
𝛾ℓ−1 + 1 +

⌈∑
𝑝ℓ
𝑖

𝐾

⌉
, {⌈𝑟𝑖 (ℓ − 1)𝐻⌉ + ⌈𝑟𝑖𝐻⌉}𝑖∈𝑈 ,

{⌈𝑟𝑖 (ℓ − 1)𝐻⌉ + ⌊𝑟𝑖𝐻⌋}𝑖∈𝐿

}
≥ (ℓ − 1)𝐻𝜂 (ℓ−1)𝐻 + 𝐻𝜂ℓ

Here, the second last equality follows from the fact that 𝛿ℓ−1 +
𝑠ℓ−1 ≥ 𝐾 . This is because 𝑠ℓ−1 represent the number of extra pulls

in ℓ − 1𝑡ℎ fairness round, whereas 𝛿ℓ−1 represent the number of

arms that were pulled in last slot of (ℓ − 1)𝑡ℎ fairness round, thus

𝑠ℓ−1 ≥ 𝐾 −𝛿ℓ−1. The above lemma implies that LRPT is run at least

𝐻𝜂ℓ times in every ℓ𝑡ℎ fair round. □
Proof of Theorem 1: We prove this by induction. We know

that after LRPT at 𝐼0, we have: 𝑛𝑖,𝑡 ≥ ⌈𝑟𝑖𝐻⌉ + 1∀𝑖 ∈ 𝐸0 and 𝑛𝑖,𝑡 ≥
⌈𝑟𝑖𝐻⌉∀𝑖 ∉ 𝐸0. Since |𝐼0 | + |𝐼1 | ≤ 𝐻𝜂𝐻 + 𝐻𝜂𝐻 ≤ 𝐻 (from Lemma
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2), we get anytime fairness guarantee for time in 𝐼1 i.e. 𝑛𝑖,𝑡 ≥
⌈𝑟𝑖𝑡⌉∀𝑡 ∈ 𝐼1. Now consider LRPT call at 𝐼1, from Lemma 3, we have:

𝑛𝑖,𝑡 ≥ ⌈𝑟𝑖𝐻⌉ +𝑝1𝑖 + 1 ∀𝑖 ∈ 𝐸1, 𝑛𝑖,𝑡 ≥ ⌈𝑟𝑖𝐻⌉ + ⌈𝑟𝑖𝐻⌉ ≥ ⌈𝑟𝑖2𝐻⌉ + 1∀𝑖 ∈
𝐸1 ∀𝑖, and 𝑛𝑖,𝑡 ≥ ⌈𝑟𝑖𝐻⌉ + ⌈𝑟𝑖𝐻⌉ ≥ ⌈𝑟𝑖2𝐻⌉∀𝑖 ∉ 𝐸1 ∀𝑖 .

Further, since the combined length of intervals 𝐼0, 𝐼1, 𝐼2, 𝐼3 is less

than or equal to 2𝐻 , we get 𝑛𝑖,𝑡 ≥ ⌊𝑟𝑖𝑡⌋ ∀𝑖 ∈ 𝐼1 ∪ 𝐼2 ∪ 𝐼3.
By induction hypothesis assume that after (ℓ − 1)𝑡ℎ fairness

interval, we have 𝑛𝑖,𝑡 ≥ ⌈𝑟𝑖 (ℓ − 1)𝐻⌉ + 1 ∀𝑖 ∈ 𝐸ℓ−1 and 𝑛𝑖,𝑡 ≥
⌈𝑟𝑖 (ℓ − 1)𝐻⌉ ∀𝑖 ∉ 𝐸ℓ−1. Then, after ℓ𝑡ℎ call to fairness round,

𝑛𝑖,𝑡 ≥ ⌈𝑟𝑖 (ℓ − 1)𝐻+⌉ + ⌊𝑟𝑖𝐻⌋ + 1 ∀𝑖 ∈ 𝐿 ∪ 𝐸ℓ
𝑛𝑖,𝑡 ≥ ⌈𝑟𝑖 (ℓ − 1)𝐻+⌉ + ⌊𝑟𝑖𝐻⌋ ∀𝑖 ∈ 𝐿 \ 𝐸ℓ

𝑛𝑖,𝑡 ≥ ⌈𝑟𝑖 (ℓ − 1)𝐻+⌉ + ⌈𝑟𝑖𝐻⌉ + 1 ∀𝑖 ∈ 𝑈 ∪ 𝐸ℓ
𝑛𝑖,𝑡 ≥ ⌈𝑟𝑖 (ℓ − 1)𝐻+⌉ + ⌈𝑟𝑖𝐻⌉ + 1 ∀𝑖 ∈ 𝑈 \ 𝐸ℓ

This immediately give us the result 𝑛𝑖,𝑡 ≥ ⌈𝑟𝑖 (ℓ)𝐻⌉ + 1 ∀𝑖 ∈ 𝐸ℓ and
𝑛𝑖,𝑡 ≥ ⌈𝑟𝑖 (ℓ)𝐻⌉ ∀𝑖 ∉ 𝐸ℓ .

Thus, any fairness interval 𝐼 𝑗 will guarantee anytime fairness

for intervals 𝐼 𝑗+1 and 𝐼 𝑗+2 rounds with 𝑗 ≥ 1. □

We note that the sum of the time spent in fairness slots is the

sum of times in the initial interval 𝐼0 and all odd intervals. This

time is at most𝐻 (⌈𝑇 /𝐻 +1⌉)𝜂⌈𝑇 /𝐻+1⌉𝐻 . We define 𝜂 as lim𝑑→∞ 𝜂𝑑 ,

which is given as 𝜂 = max

(∑
𝑖 𝑟𝑖
𝐾

,max𝑖 𝑟𝑖

)
.

Discussion on the choice of 𝐻 . For our guarantees to hold, we

require 𝐻 ≥ 1/𝜖 with 𝜖 = 1

2𝜅 −max𝑖 𝑟𝑖 , which can be precomputed

as𝜅 and 𝑟𝑖 are known. Tominimize the gap between algorithmic and

optimal fairness slots (Lemma 4), 𝐻 should be as small as possible.

A larger 𝐻 prolongs the initial phase for which anytime fairness

guarantees do not satisfy. Thus, the optimal choice is 𝐻 = 1/𝜖 .

Lemma 4. The gap between the sum of fairness slots and 𝜂𝑇 is at
most 𝑂 (𝐻 ). More formally,

𝐻 (⌈𝑇 /𝐻 + 1⌉)𝜂⌈𝑇 /𝐻+1⌉𝐻 − 𝜂𝑇 = 𝑂 (𝐻 ) . (2)

Proof. We first note that the gap between 𝜂𝐻 and 𝜂 is mainly

due to the ceilings involved in the expression of 𝜂𝐻 , and since the

ceiling is at most 1 away from the expression without ceiling, we

have 𝜂𝐻 − 𝜂 ≤ 𝑁+𝐾
𝐻𝐾

. Further, 𝐻𝜂𝐻 increases with 𝐻 . We have

𝐻 (⌈𝑇 /𝐻 + 1⌉)𝜂⌈𝑇 /𝐻+1⌉𝐻 − 𝜂𝑇
≤ (𝑇 + 2𝐻 )𝜂𝑇+2𝐻 − 𝜂𝑇
≤ 𝑇 (𝜂𝑇+2𝐻 − 𝜂) + 2𝐻𝜂𝑇+2𝐻

≤ 𝑁 + 𝐾
𝐾
+ 2𝐻𝜂𝑇+2𝐻 = 𝑂 (𝐻 ) □

With the bound on the number of fairness slots, we now provide

the regret of the proposed algorithm in the following.

Theorem 2. Suppose there is an online algorithm for CMAB with
a cardinality constraint of 𝐾 that achieves 𝛽-regret of 𝑂 (𝐿(𝑇 )) for
any𝑇 , where 𝐿(𝑇 ) is monotonically non-decreasing with𝑇 . Then, the
proposed framework Fair-CMAB at any time 𝑇 achieves (1 − 𝜂)𝛽-
regret of 𝑂 (max(𝛽𝐻, 𝐿(𝑇 (1 − 𝜂)))) for any unknown 𝑇 .

Proof. The (1−𝜂)𝛽-regret for Fair-CMAB at time𝑇 is given by:

RFair-CMAB (𝑇 ) = 𝛽 (1 − 𝜂)𝑇 𝑓 (𝑆★) −
𝑇∑︁
𝑡=1

𝑓𝑡 (𝑆𝑡 ) .

We decompose the sum of the rewards as:

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑆𝑡 ) =
∑︁

Learner

𝑓𝑡 (𝑆𝑡 ) +
∑︁

Fairness

𝑓𝑡 (𝑆𝑡 )

Given that the total time spent in the fairness times is at most

𝜂𝑇 +𝑂 (𝐻 ) (from Lemma 4), the time spent by the learner is at least

𝑇 (1 − 𝜂) −𝑂 (𝐻 ) .
Given that the learner has any-time 𝛽-regret of 𝐿(𝐻 ) for any𝐻 > 0,

we have∑︁
Learner

𝑓𝑡 (𝑆𝑡 ) ≥ 𝛽 ((1−𝜂)𝑇 −𝑂 (𝐻 )) 𝑓 (𝑆★) −𝑂 (𝐿(𝑇 (1−𝜂) −𝑂 (𝐻 )))

Since,

∑
Fairness

𝑓𝑡 (𝑆𝑡 ) ≥ 0,

RFair-CMAB (𝑇 ) ≤ 𝛽𝑂 (𝐻 ) 𝑓 (𝑆★) + O(𝐿(𝑇 (1 − 𝜂) −𝑂 (𝐻 ))) .
Since 𝐿(·) is a non-decreasing function, we have 𝐿(𝑇 (1 − 𝜂) −

𝑂 (𝐻 )) ≤ 𝐿(𝑇 (1 − 𝜂)), thus, having the regret upper bounded as

RFair-CMAB (𝑇 ) = 𝑂 (max(𝛽𝐻, 𝐿(𝑇 (1 − 𝜂)))) . □

Remark 1. We note that we can further upper regret bound above
to write RFair-CMAB (𝑇 ) = 𝑂 (max(𝐻, 𝐿(𝑇 ))) for simplicity.

Regret Comparison with Existing Works. It must be noted that

most of the existing work provides weak fairness guarantees such

as [37] which only guarantee asymptotic fairness, [56] which sat-

isfy approximate fairness, [63] which guarantee fairness only at

the end of 𝑇 rounds, and [38] ensures fairness only in expecta-

tion as opposed to our anytime fairness guarantee. Thus, their

regret bounds are incomparable to ours. While [38] claims 𝑂 (1)
regret, it includes an instance-dependent term 1/Δ2

min
in regret.

Our algorithm enforces the strongest fairness notion with instance-

independent regret. As far as the tightness of regret bounds is

concerned because Lemma 4 establishes only a constant number

of extra pulls for satisfying fairness, tightness on regret bounds

naturally follows from the base learning algorithm.

On the approximation ratio of fairness-aware algorithms. The
term 𝜂𝑇 denotes the minimum time that any algorithm needs to

satisfy fairness, derived from the makespan calculation in job sched-

uling. The offline algorithm incurs an additional approximation of

1 − 𝜂, so we have to make a comparison with the offline fairness-

aware algorithm. Relative to the optimal fairness-aware algorithm,

our regret follows that of the base learning algorithm, with only an

additional constant regret 𝑂 (𝐻 ) in fairness rounds (Lemma 4).

Since regret is measured against an optimal offline algorithm that

maximizes reward, it is no longer linear, since the offline fairness-

aware algorithm has an approximation guarantee of 𝛽 (1 − 𝜂). This
aligns with [46, Section 5. Cost of Fairness], where the approxi-

mation loss accounts for the fairness time. We establish sub-linear

fairness-aware regret for combinatorial bandits by reducing it to

the regret for fairness-unaware algorithm.

7 FAIR-CMAB: A FRAMEWORK FROM CMAB TO
FAIR-CMAB ALGORITHM DISCUSSION AND
APPLICATION

Since our proposed algorithm works on top of any online algorithm

for stochastic CMAB, we provide an overview of different settings to
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which the proposed algorithm can be applied. For semi-bandit feed-

back, Chen et al. [15] introduced a generalized framework, ComUCB1,
a UCB1-like algorithm for any general monotone reward function.

Kveton et al. [33] improved the guarantees by providing tight upper

and lower bounds of

√︁
𝐾𝑁𝑇 log(𝑇 ) and 𝐾

1

2𝑁
1

2𝑇
1

2 , respectively. We

focus here on bandit feedback settings, also summarized in Table 1.

Linear Reward Functions: Rejwan and Mansour [52] studied the

problem of selecting 𝐾 out of 𝑁 arms with linear rewards and full-

bandit feedback, proposing the CSAR (Combinatorial Successive

Accepts and Rejects) algorithm.

Restricted Non-linear Reward Functions: Agarwal et al. [1, 3] stud-
ied the scenario where the reward function over the chosen 𝐾

arms is non-linear, and the individual arm rewards are unknown.

Under the assumptions that the reward function is an element-

wise, strictly increasing function of the individual rewards obtained

by the constituent arms and the first-order stochastic dominance

assumption, their proposed CMAB-SM algorithm achieves a regret

bound of �̃� (𝐾
1

2𝑁
1

3𝑇
2

3 ). Under the assumption that good arms gen-

erate good actions, Agarwal et al. [2] develop DART, an elimination-

based algorithm that deals with non-linear rewards. This algorithm

is shown to achieve a regret bound of �̃� (𝐾
3

2𝑁
1

2𝑇
1

2 ).

General Combinatorial Reward Functions: Nie et al. [41], Fourati
et al. [19] proposed algorithms for CMAB with monotone sub-

modular reward functions with cardinality constraints, and non-

monotone submodular reward functions, respectively, with full-

bandit feedback. Nie et al. [43] extended these works to provide a

framework in which discrete offline approximation algorithms for

combinatorial optimization can be converted into sublinear𝛼-regret

methods that only require bandit feedback. The framework only re-

quires the offline algorithm to be robust to small errors in function

evaluation. This framework assumes that the offline algorithm has

an approximation ratio of 𝛼 , which was further extended in [20],

to allow for an offline algorithm with 𝛼 − 𝜖 approximation ratio

for any 𝜖 > 0. This framework allows for improved regret results

for monotone submodular reward functions with cardinality con-

straints, also studied in its special case in [21]. As another special

case, this framework includes the regret bound of non-monotone

submodular reward functions with cardinality constraints. These

cases are also summarized in Table 1.

8 EXPERIMENTAL ANALYSIS
In this section, we provide an experimental evaluation of our pro-

posed Fair-CMAB framework and compare it with the extension

of Patil et al. [46] to combinatorial bandits which we termed as

Fair-CMAB-delayed.
The algorithm in [46] ensures fairness by prioritizing arms that

would otherwise violate anytime fairness, and provides guarantees

for the case where at most one arm per round is pulled to ensure fair-

ness. However, its regret analysis relies on learning during fairness

pulls, which makes its extension to CMABwith bandit feedback and

non-linear rewards challenging. In contrast, Fair-CMAB separates
the fairness and learning phases, ensuring fairness in generalized

CMAB while maintaining strong regret guarantees. To enable a

fair comparison, Fair-CMAB-delayed integrates the approach of

Table 1: Table presents an application of Fair-CMAB for differ-
ent online stochastic combinatorial optimization problems
with full-bandit feedback. We use L=linear reward, NL=non-
linear reward with certain assumptions as in the reference,
S=sub-modular rewards; M=monotone set rewards, NM= non-
monotone set rewards; CC=cardinality constraint of 𝐾 . Col-
umn Ref gives the reference for the learner algorithm. Col-
umn 𝛼 gives the approximation ratio for Fair-CMAB. For the
regret, we skip the maximization with 𝐻 for simplicity.

CMAB Setting Ref 𝛼 Fair-CMAB Regret
L + CC [52] 1 − 𝜂 𝐾𝑁

1

2𝑇
1

2

NL + CC [1, 3] 1 − 𝜂 𝐾
1

2𝑁
1

3𝑇
2

3

NL + CC [2] 1 − 𝜂 𝐾 (𝐾𝑁𝑇 )
1

2

S + NM [19]
1

2
(1 − 𝜂) 𝑁𝑇

2

3

S + M + CC [21] 1 − 𝜂 − 1−𝜂
𝑒 𝐾

2

3𝑁
1

3𝑇
2

3

S + NM + CC [20]
1−𝜂
𝑒 𝐾

2

5𝑁
1

5𝑇
4

5

[46] by selecting up to 𝐾 arms with the highest fairness deficit

(i.e., the lowest 𝑛𝑖,𝑡 − 𝑟𝑖𝑡 at round 𝑡 + 1 if there is any arm 𝑖 with

𝑛𝑖,𝑡 − 𝑟𝑖𝑡 < 0 at round 𝑡 ) in fairness rounds, without using their

reward updates. For 𝐾 = 1, Fair-CMAB-delayed aligns with [46]

but without incorporating learning (reward updates) of the arms

during fairness pulls.

We evaluated the Fair-CMAB for a general learner algorithm so

that any setup of CMAB can be analyzed. In order to do that, the

learner slots are not accounted for the updates of the pulled arms,

while only fairness slots are accounted to capture how many times

each arm has been pulled. This allows for general results of the

proposed algorithm for any learner. However, we note that since the

arms are also selected in the learner times, the fairness violations

will be even lower.We compare Fair-CMAB and Fair-CMAB-delayed
for 𝐾 > 1 on the following two metrics:

(1) Fairness Violation: We show the anytime fairness guarantees

for both algorithms validating Theorem 1.

(2) Fairness Pulls: We compare the number of times each algo-

rithm pulls the arms just to maintain the fairness constraints.

For Fair-CMAB, these rounds correspond to the rounds in the

initial intervals and the odd intervals. Whereas for Fair-CMAB-
delayed, these rounds correspond to the rounds when any arm

𝑖 satisfies 𝑟𝑖𝑡 − 𝑛𝑖,𝑡 < 1. Note that the number of fairness pulls

control the regret guarantees (approximation ratio and regret

bound). Therefore we need lower number of fairness pulls while

achieving zero fairness violations.

We further note that since the number of fairness pulls inherently

captures the regret term, we do not necessarily need to compare

the regret. The subsequent subsections outline our experimental

setup, detailing the configurations and parameters used.

8.1 Experimental Setup
We evaluate the Fair-CMAB framework

2
over 10,000 episodes, on

100 instances, under three configurations: 1). 𝑁 = 10, 𝐾 = 1; 2).

2
The code is available at: https://github.com/MultiFair-Bandits/Stochastic_Fair_

CMAB/
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(a) 𝑁 = 10, 𝐾 = 1 (b) 𝑁 = 10, 𝐾 = 2 (c) 𝑁 = 20, 𝐾 = 5

Figure 2: Fairness violations over time.

(a) 𝑁 = 10, 𝐾 = 1 (b) 𝑁 = 10, 𝐾 = 2 (c) 𝑁 = 20, 𝐾 = 5

Figure 3: Fairness pulls over time.

𝑁 = 10, 𝐾 = 2; and 3). 𝑁 = 20, 𝐾 = 5. For each instance, the reward

means 𝜇 were drawn from a uniform distribution 𝑈 (0.5, 1) and
fairness thresholds 𝑟𝑖 were generated uniformly at random between(
0, 1

2𝜅 − 𝜖
)
. For all the instances, we kept 𝜖 = 0.01 and 𝐻 ≥ 100.

The experiments were conducted for 𝐻 ∈ {100, 200, 500, 1000},
measuring fair pulls and fairness violations over time.

8.2 Fairness Violation versus Time Horizon
Fairness violations occur when an arm is pulled fewer times than

its required fairness quota. For arm 𝑖 at time 𝑡 , a violation occurs

if ⌊𝑟𝑖𝑡⌋ > 𝑛𝑖,𝑡 or 𝑟𝑖𝑡 − 𝑛𝑖,𝑡 ≥ 1. We track the worst-performing

arm using max𝑖 (𝑟𝑖𝑡 − 𝑛𝑖,𝑡 ). Across all configurations, Fair-CMAB
maintains violations well below 0 not just 1, except for an initial

interval of length 𝐻𝜂𝐻 , confirming Theorem 1. Due to its design,

Fair-CMAB-delayed keeps fairness violations below 1, with a mean

close to 0 (see Figure 2) for the single-arm (𝐾 = 1) setting.

Fair-CMAB-delayed satisfies anytime fairness guarantees (Fig-

ure 2b, 2c), ensuring fairness violations remain close to zero and be-

low one. As𝐻 increases, fairness violations exhibit greater variance,

with consistently advance fair pulls. Conversely, as 𝐻 decreases,

advance fair pulls diminish, approaching zero while maintaining

the guarantee of no fairness violations after 𝐻𝜂𝐻 rounds.

8.3 Number of Fair Pulls versus Time Horizon
While it is important that the algorithm never violates the fairness

constraints, it is also important that the algorithm does just enough

fair pulls to keep the regret lower. We compare the number of fair

pulls for both algorithms. We note that as 𝐻 decreases, it is clear

that Fair-CMAB has lower fairness pulls (Lemma 4) and thus better

regret. This is also evident from our plots shown in Figure 3. We

note that while Fair-CMAB-delayed seems competitive, it has no

guarantees including that (i) at most𝐾 arms will reach violation, (ii)

no bound on the number of times such violations happen to bound

the learner times for regret computation. In contrast, Fair-CMAB
has provable fairness and regret guarantees.

9 CONCLUSION AND FUTUREWORK
In conclusion, our anytime Fair-CMAB framework ensures fairness

in combinatorial bandit problems across various feedback mod-

els and reward functions. It offers strong theoretical guarantees

on regret, with experimental results validating its effectiveness

and adaptability. This framework provides a flexible, fair solution

for a wide range of applications, demonstrating both fairness and

learning efficiency. Since our regret guarantees are motivated by

makespan literature defining theminimum fraction of time required

to satisfy fairness constraint, the bounds cannot be trivially applied

to the problems where arm pulling strategy is constrained by some

structures such as matroid, paths, and spanning trees. Therefore,

extending this work to handle constraints on action space is an

interesting future direction.

ACKNOWLEDGMENTS
This work is supported by Anusandhan National Research Foun-

dation (ANRF)/ Science and Engineering Research Board (SERB)-

Purdue University Overseas Visiting Doctoral Fellowship (Award

No. SB/S9/Z-03/2017-XVII (2024)), the U.S. National Science Founda-

tion under grant CCF-2149588, and ANRF under grant MTR/2022/00

0818.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

1667



REFERENCES
[1] Mridul Agarwal, Vaneet Aggarwal, Christopher J Quinn, and Abhishek K Um-

rawal. 2021. Stochastic Top-𝐾 Subset Bandits with Linear Space and Non-Linear

Feedback. In Algorithmic Learning Theory. PMLR, 306–339.

[2] Mridul Agarwal, Vaneet Aggarwal, Abhishek Kumar Umrawal, and Chris Quinn.

2021. Dart: Adaptive accept reject algorithm for non-linear combinatorial bandits.

In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 6557–6565.
[3] Mridul Agarwal, Vaneet Aggarwal, Abhishek K Umrawal, and Christopher J

Quinn. 2022. Stochastic top k-subset bandits with linear space and non-linear

feedback with applications to social influence maximization. ACM/IMS Transac-
tions on Data Science (TDS) 2, 4 (2022), 1–39.

[4] Makis Arsenis and Robert Kleinberg. 2022. Individual Fairness in Prophet Inequal-

ities. In Proceedings of the 23rd ACM Conference on Economics and Computation.
245–245.

[5] Jean-Yves Audibert, Sébastien Bubeck, and Gábor Lugosi. 2014. Regret in online

combinatorial optimization. Mathematics of Operations Research 39, 1 (2014),

31–45.

[6] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of

the multiarmed bandit problem. Machine learning 47 (2002), 235–256.

[7] Peter Auer and Ronald Ortner. 2010. UCB revisited: Improved regret bounds for

the stochastic multi-armed bandit problem. Periodica Mathematica Hungarica 61,
1-2 (2010), 55–65.

[8] Solon Barocas, Moritz Hardt, and Arvind Narayanan. 2023. Fairness and machine
learning: Limitations and opportunities. MIT press.

[9] Lilian Besson and Emilie Kaufmann. 2018. What Doubling Tricks Can and Can’t

Do for Multi-Armed Bandits. HAL (2018).

[10] Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. 2012. Regret analysis of stochastic

and nonstochastic multi-armed bandit problems. Foundations and Trends® in
Machine Learning 5, 1 (2012), 1–122.

[11] Niv Buchbinder, Kamal Jain, and Mohit Singh. 2014. Secretary problems via

linear programming. Mathematics of Operations Research 39, 1 (2014), 190–206.

[12] Nicolo Cesa-Bianchi and Gábor Lugosi. 2006. Prediction, learning, and games.
Cambridge university press.

[13] Nicolo Cesa-Bianchi and Gábor Lugosi. 2012. Combinatorial bandits. J. Comput.
System Sci. 78, 5 (2012), 1404–1422.

[14] Wei Chen,Wei Hu, Fu Li, Jian Li, Yu Liu, and Pinyan Lu. 2016. Combinatorial multi-

armed bandit with general reward functions. Advances in Neural Information
Processing Systems 29 (2016).

[15] Wei Chen, Yajun Wang, and Yang Yuan. 2013. Combinatorial multi-armed ban-

dit: General framework, results and applications. In International conference on
machine learning. PMLR, 151–159.

[16] Wei Chen, Yajun Wang, Yang Yuan, and Qinshi Wang. 2016. Combinatorial

multi-armed bandit and its extension to probabilistically triggered arms. Journal
of Machine Learning Research 17, 50 (2016), 1–33.

[17] Richard Combes, Mohammad Sadegh Talebi Mazraeh Shahi, Alexandre Proutiere,

et al. 2015. Combinatorial bandits revisited. Advances in neural information
processing systems 28 (2015).

[18] Varsha Dani, Thomas P Hayes, and Sham M Kakade. 2008. Stochastic Linear

Optimization under Bandit Feedback.. In COLT, Vol. 2. 3.
[19] Fares Fourati, Vaneet Aggarwal, Christopher Quinn, and Mohamed-Slim Alouini.

2023. Randomized greedy learning for non-monotone stochastic submodular

maximization under full-bandit feedback. In International Conference on Artificial
Intelligence and Statistics. PMLR, 7455–7471.

[20] Fares Fourati, Mohamed-Slim Alouini, and Vaneet Aggarwal. 2024. Federated

Combinatorial Multi-Agent Multi-Armed Bandits. In Forty-first International
Conference on Machine Learning.

[21] Fares Fourati, Christopher John Quinn, Mohamed-Slim Alouini, and Vaneet

Aggarwal. 2024. Combinatorial stochastic-greedy bandit. In Proceedings of the
AAAI Conference on Artificial Intelligence. 12052–12060.

[22] Yi Gai, Bhaskar Krishnamachari, and Rahul Jain. 2010. Learningmultiuser channel

allocations in cognitive radio networks: A combinatorial multi-armed bandit

formulation. In 2010 IEEE Symposium on New Frontiers in Dynamic Spectrum
(DySPAN). IEEE, 1–9.

[23] Yi Gai, Bhaskar Krishnamachari, and Rahul Jain. 2012. Combinatorial network

optimization with unknown variables: Multi-armed bandits with linear rewards

and individual observations. IEEE/ACM Transactions on Networking 20, 5 (2012),

1466–1478.

[24] Aditya Gopalan, Shie Mannor, and Yishay Mansour. 2014. Thompson sampling

for complex online problems. In International conference on machine learning.
PMLR, 100–108.

[25] Ronald L. Graham. 1969. Bounds on multiprocessing timing anomalies. SIAM
journal on Applied Mathematics 17, 2 (1969), 416–429.

[26] Riccardo Grazzi, Arya Akhavan, John IF Falk, Leonardo Cella, and Massimiliano

Pontil. 2022. Group meritocratic fairness in linear contextual bandits. Advances
in Neural Information Processing Systems 35 (2022), 24392–24404.

[27] Shivam Gupta, Ganesh Ghalme, Narayanan C Krishnan, and Shweta Jain. 2023.

Efficient algorithms for fair clustering with a new notion of fairness. Data Mining

and Knowledge Discovery 37 (2023), 1959–1997.

[28] András György, Tamás Linder, Gábor Lugosi, and György Ottucsák. 2007. The

On-Line Shortest Path Problem Under Partial Monitoring. Journal of Machine
Learning Research 8, 10 (2007).

[29] Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equality of opportunity in

supervised learning. Advances in neural information processing systems 29 (2016).
[30] Faisal Kamiran and Toon Calders. 2009. Classifying without discriminating. In

2nd international conference on computer, control and communication. IEEE, 1–6.
[31] Branislav Kveton, Zheng Wen, Azin Ashkan, Hoda Eydgahi, and Brian Eriks-

son. 2014. Matroid bandits: fast combinatorial optimization with learning. In

Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence.
420–429.

[32] Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvári. 2015. Combi-

natorial cascading bandits. In Proceedings of the 28th International Conference on
Neural Information Processing Systems-Volume 1. 1450–1458.

[33] Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvari. 2015. Tight

regret bounds for stochastic combinatorial semi-bandits. In Artificial Intelligence
and Statistics. PMLR, 535–543.

[34] Tor Lattimore, Branislav Kveton, Shuai Li, and Csaba Szepesvari. 2018. Toprank: A

practical algorithm for online stochastic ranking. Advances in Neural Information
Processing Systems 31 (2018).

[35] Tor Lattimore and Csaba Szepesvári. 2020. Bandit algorithms. Cambridge Univer-

sity Press.

[36] Adam Lechowicz, Rik Sengupta, Bo Sun, Shahin Kamali, and Mohammad Ha-

jiesmaili. 2024. Time Fairness in Online Knapsack Problems. In The Twelfth
International Conference on Learning Representations.

[37] Fengjiao Li, Jia Liu, and Bo Ji. 2019. Combinatorial sleeping bandits with fairness

constraints. IEEE Transactions on Network Science and Engineering 7, 3 (2019),

1799–1813.

[38] Qingsong Liu, Weihang Xu, Siwei Wang, and Zhixuan Fang. 2022. Combinatorial

bandits with linear constraints: Beyond knapsacks and fairness. Advances in
Neural Information Processing Systems 35 (2022), 2997–3010.

[39] Robert McNaughton. 1959. Scheduling with deadlines and loss functions. Man-
agement science 6, 1 (1959), 1–12.

[40] Rad Niazadeh, Negin Golrezaei, Joshua R Wang, Fransisca Susan, and Ashwinku-

mar Badanidiyuru. 2021. Online learning via offline greedy algorithms: Ap-

plications in market design and optimization. In Proceedings of the 22nd ACM
Conference on Economics and Computation. 737–738.

[41] Guanyu Nie, Mridul Agarwal, Abhishek Kumar Umrawal, Vaneet Aggarwal,

and Christopher John Quinn. 2022. An explore-then-commit algorithm for

submodular maximization under full-bandit feedback. In Uncertainty in Artificial
Intelligence. PMLR, 1541–1551.

[42] Guanyu Nie, Vaneet Aggarwal, and Christopher John Quinn. 2024. Stochastic

𝑘-Submodular Bandits with Full Bandit Feedback. arXiv e-prints (2024), arXiv–
2412.

[43] Guanyu Nie, Yididiya Y Nadew, Yanhui Zhu, Vaneet Aggarwal, and Christo-

pher John Quinn. 2023. A framework for adapting offline algorithms to solve

combinatorial multi-armed bandit problemswith bandit feedback. In International
Conference on Machine Learning. PMLR, 26166–26198.

[44] Alessandro Nuara, Francesco Trovo, Nicola Gatti, and Marcello Restelli. 2018. A

combinatorial-bandit algorithm for the online joint bid/budget optimization of

pay-per-click advertising campaigns. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 32.

[45] Manjish Pal, Subham Pokhriyal, Sandipan Sikdar, and Niloy Ganguly. 2023. En-

suring generalized fairness in batch classification. Scientific Reports 13, 1 (2023),
18892.

[46] Vishakha Patil, Ganesh Ghalme, Vineet Nair, and Yadati Narahari. 2021. Achieving

fairness in the stochastic multi-armed bandit problem. The Journal of Machine
Learning Research 22, 1 (2021), 7885–7915.

[47] Mohammad Pedramfar and Vaneet Aggarwal. 2025. Stochastic submodular

bandits with delayed composite anonymous bandit feedback. IEEE Transactions
on Artificial Intelligence (2025).

[48] Subham Pokhriyal, Shweta Jain, Ganesh Ghalme, Swapnil Dhamal, and Sujit

Gujar. 2024. Simultaneously Achieving Group Exposure Fairness and Within-

Group Meritocracy in Stochastic Bandits. In Proceedings of the 23rd International
Conference on Autonomous Agents and Multiagent Systems. 1576–1584.

[49] Lijing Qin, Shouyuan Chen, and Xiaoyan Zhu. 2014. Contextual combinatorial

bandit and its application on diversified online recommendation. In Proceedings
of the 2014 SIAM International Conference on Data Mining. SIAM, 461–469.

[50] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. 2008. Learning di-

verse rankings with multi-armed bandits. In Proceedings of the 25th international
conference on Machine learning. 784–791.

[51] Anshuka Rangi and Massimo Franceschetti. 2018. Multi-Armed Bandit Algo-

rithms for Crowdsourcing Systems with Online Estimation of Workers’ Ability..

In AAMAS. 1345–1352.
[52] Idan Rejwan and Yishay Mansour. 2020. Top-𝑘 combinatorial bandits with full-

bandit feedback. In Algorithmic Learning Theory. PMLR, 752–776.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

1668



[53] Herbert Robbins. 1952. Some aspects of the sequential design of experiments.

Bull. Amer. Math. Soc. 58, 5 (1952), 527–535.
[54] Yaniv Romano, Stephen Bates, and Emmanuel Candes. 2020. Achieving equalized

odds by resampling sensitive attributes. Advances in neural information processing
systems 33 (2020), 361–371.

[55] Aleksandrs Slivkins et al. 2019. Introduction to multi-armed bandits. Foundations
and Trends® in Machine Learning 12, 1-2 (2019), 1–286.

[56] Juaren Steiger, Bin Li, and Ning Lu. 2022. Learning from delayed semi-bandit feed-

back under strong fairness guarantees. In IEEE INFOCOM 2022-IEEE Conference
on Computer Communications. IEEE, 1379–1388.

[57] Matthew Streeter and Daniel Golovin. 2008. An online algorithm for maximizing

submodular functions. Advances in Neural Information Processing Systems 21
(2008).

[58] Matthew Streeter, Daniel Golovin, and Andreas Krause. 2009. Online learning

of assignments. In Proceedings of the 22nd International Conference on Neural
Information Processing Systems. 1794–1802.

[59] Michal Valko. 2016. Bandits on graphs and structures. Ph.D. Dissertation. École
normale supérieure de Cachan-ENS Cachan.

[60] Lequn Wang, Yiwei Bai, Wen Sun, and Thorsten Joachims. 2021. Fairness of

exposure in stochastic bandits. In International Conference on Machine Learning.
10686–10696.

[61] Qinshi Wang and Wei Chen. 2017. Improving regret bounds for combinatorial

semi-bandits with probabilistically triggered arms and its applications. Advances
in Neural Information Processing Systems 30 (2017).

[62] Raymond Chi-WingWong, AdaWai-Chee Fu, and KeWang. 2003. MPIS: maximal-

profit item selection with cross-selling considerations. In Third IEEE International
Conference on Data Mining. IEEE, 371–378.

[63] Huanle Xu, Yang Liu, Wing Cheong Lau, and Rui Li. 2020. Combinatorial Multi-

Armed Bandits with Concave Rewards and Fairness Constraints. In International
Joint Conference on Artificial Intelligence. IJCAI, 2554–2560.

[64] Julian Zimmert, Haipeng Luo, and Chen-Yu Wei. 2019. Beating stochastic and ad-

versarial semi-bandits optimally and simultaneously. In International Conference
on Machine Learning. PMLR, 7683–7692.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

1669


	Abstract
	1 Introduction
	2 Related Work
	2.1 Stochastic Combinatorial Bandits
	2.2 Fairness in Stochastic and CMAB with Semi-Bandit Feedback

	3 Problem Formulation
	3.1 Fairness Requirement:
	3.2 Regret

	4 Fair-CMAB: A Framework towards fair combinatorial MAB algorithm
	5 The Algorithm : Fair-CMAB 
	6 Theoretical Analysis
	7 Fair-CMAB: A framework from CMAB to Fair-CMAB Algorithm Discussion and application
	8 Experimental Analysis
	8.1 Experimental Setup
	8.2 Fairness Violation versus Time Horizon
	8.3 Number of Fair Pulls versus Time Horizon

	9 Conclusion and Future Work
	Acknowledgments
	References



