
Indifferential Privacy: A New Paradigm and Its Applications to
Optimal Matching in Dark Pool Auctions

Antigoni Polychroniadou

J.P. Morgan AI Research, J.P. Morgan

AlgoCRYPT CoE

New York, USA

antigoni.polychroniadou@jpmorgan.com

T.-H. Hubert Chan

University of Hong Kong

Hong Kong, China

hubert@cs.hku.hk

Adya Agrawal

J.P. Morgan Chase

Bengaluru, India

adya.agrawal@jpmchase.com

ABSTRACT
Public exchanges like the New York Stock Exchange and NASDAQ

act as auctioneers in a public double auction system, where buyers

submit their highest bids and sellers offer their lowest asking prices,

along with the number of shares (volume) they wish to trade. The

auctioneer matches compatible orders and executes the trades when

a match is found. However, auctioneers involved in high-volume

exchanges, such as dark pools, may not always be reliable. They

could exploit their position by engaging in practices like front-

running or face significant conflicts of interest—ethical breaches

that have frequently resulted in hefty fines and regulatory scrutiny

within the financial industry.

Previous solutions, based on the use of fully homomorphic en-

cryption (Asharov et al., AAMAS 2020), encrypt orders ensuring

that information is revealed only when a match occurs. However,

this approach introduces significant computational overhead, mak-

ing it impractical for high-frequency trading environments such as

dark pools.

In this work, we propose a new system based on differential

privacy combined with lightweight encryption, offering an efficient

and practical solution that mitigates the risks of an untrustworthy

auctioneer. Specifically, we introduce a new concept called Indif-

ferential Privacy, which can be of independent interest, where a

user is indifferent to whether certain information is revealed after

some special event, unlike standard differential privacy. For exam-

ple, in an auction, it’s reasonable to disclose the true volume of a

trade once all of it has been matched. Moreover, our new concept

of Indifferential Privacy allows for maximum matching, which is

impossible with conventional differential privacy.
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1 INTRODUCTION
Dark pools are private trading venues designed for institutional in-

vestors to execute large trades anonymously, concealing details such

as price and identities until after the transaction. Orders, which

include the trade direction (buy or sell), volume, and price, are

matched by the operator when they have opposite directions and

compatible bid and ask prices. While they help prevent price swings

from large orders, there are trust concerns. Operators may engage

in front running, using insider knowledge of upcoming trades to

execute their own trades first and profit from the price movement.

Additionally, dark pool operators, often large financial institutions,

may prioritize their own trades over clients’, creating a conflict of

interest. The lack of transparency also makes it difficult to detect

manipulative practices, raising concerns about fairness. Several

dark pool operators have been fined for misconduct, including mis-

leading investors and failing to maintain proper trading practices.

Notable examples include Barclays ($70 million) and Credit Suisse

($84.3 million) in 2016 for misrepresenting their dark pool opera-

tions, Deutsche Bank ($3.7 million in 2017) for similar issues, ITG

($20.3 million in 2015) for conflicts of interest, and Citigroup ($12

million in 2018) for misleading clients about trade execution [21].

While dark pools aim to prevent the leakage of large orders, op-

erators still gain privileged access to clients’ hidden orders, creating

potential for conflicts of interest or misuse of sensitive data. Recent

research has focused on cryptographically protecting order informa-

tion. These systems allow users to submit orders in encrypted form,

enabling dark pool operators to compare orders without revealing

their contents, only unveiling them when matches occur. This ap-

proach ensures greater security and mitigates risks associated with

operator access to sensitive trade information.

Asharov et al. [1] introduced a secure dark pool model using

Threshold Fully Homomorphic Encryption (FHE), which combines

two cryptographic techniques: FHE, allowing computations on en-

crypted data without decryption, and Threshold Cryptography,

where a secret (such as a decryption key) is split among multiple

parties. In this approach, data is encrypted with a public key, and

computations are performed on the encrypted data by an untrusted

party. Decryption requires a threshold number of participants to

combine their key shares. In Asharov et al. [1] model, orders are

encrypted under a public key, and the operator matches them di-

rectly on the encrypted data. Once a match is found, the orders are

decrypted by the clients using their decryption shares, ensuring

that no single entity, including the operator, can access the sensitive

order details. Throughout the process, the orders remain encrypted,

preventing any single party from accessing both the data and the

decryption key. However, FHE is known for being computationally
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heavy, and adding a threshold mechanism increases the complexity.

Optimizing this for real-time or large-scale applications is still an

active research area. Moreover, the need for multiple parties to

collaborate on decryption and sometimes computation can intro-

duce significant communication overhead. As a result, the process

takes nearly a full second to complete a single match, significantly

impacting performance.

A recent development, Prime Match [18], introduces a solution

to protect the confidentiality of periodic auctions run by a market

operator. PrimeMatch allows users to submit orders in an encrypted

form, with the operator comparing these orders through encryption

and only revealing them if a match occurs. The auctions capture

the trade direction (buy or sell) and the desired volume, but ex-

clude price. Prime Match represents the first financial tool based on

secure multiparty computation (MPC). In the high-stakes, highly

competitive financial sector, MPC is gaining significant traction as a

crucial enabler of privacy, with J.P. Morgan successfully deploying

Prime Match in production.

However, in continuous double auctions without excluding the

price, such as those in dark pools, where the computational complex-

ity surpasses that of simpler periodic auctions like Prime Match,

secure computation techniques fall short. They cannot support

high-frequency trading within acceptable timeframes, limiting the

feasibility of these methods for enhancing privacy in dark pools

and the broader financial sector, where speed and efficiency are

critical.

In this work, we pose the question: Can we achieve a privacy-

preserving solution to dark pools with efficiency comparable to non-

private dark pool protocols? We propose a system that combines

differential privacy with encryption, providing a more efficient

alternative to secure MPC and FHE. Differential Privacy achieves

privacy by adding noise to the results of queries or computations

on datasets. The level of noise is determined by a privacy parame-

ter, which quantifies the trade-off between privacy and accuracy.

By leveraging differential privacy, our dark pool approach ensures

that individual orders are obfuscated while still allowing for effec-

tive matching. This method conceals the most critical aspect of

dark pools—the volumes of orders—thus preserving the primary

objective of dark pools, which is to hide large trades.

In summary, integrating differential privacy with encryption

offers a streamlined, efficient solution that balances privacy and

computational feasibility, making it an attractive practical alterna-

tive to impractical methods like MPC and FHE.

1.1 Our Contributions:
Problem Statement: The dark pool consists of 𝑛 agents (clients),

and an operator who receives the orders from the clients. Each

order takes one of two forms: (1) Buy Order: (buy, 𝑝, 𝑥), where 𝑥 is

the quantity/volume, and 𝑝 is the highest price the buyer is willing

to pay per share. (2) Sell Order: (sell, 𝑝, 𝑥), where 𝑝 is the lowest

price the seller is willing to accept per share. A buy order can be

matched to a sell order if the buying price is at least the selling

price. Our objective is to design matching protocols that maximize

the total number of matches while preserving user data privacy.

Specifically, we aim to conceal the quantity 𝑥 of the orders during

the process. Our key contributions are as follows:

(1) Practical Dark Pool Solution: We propose an efficient so-

lution for continuous double auctions (such as dark pools)

that conceals both bid and ask quantities, effectively reduc-

ing reliance on trusted auctioneers while ensuring privacy

guarantees.

(2) Novel Privacy Concept: We introduce indifferential pri-

vacy, a new extension of differential privacy tailored to this

context, which can be of independent interest with potential

applicability beyond auctions and dark pools.

(3) Maximum Matching: Our new notion of indifferential pri-

vacy allows us to achieve the optimal maximum matching

which is impossible to achieve under conventional differen-

tial privcy [11].

(4) Efficiency and Implementation: Our system significantly

outperforms previous privacy-preserving auction models,

which often struggled with practicality and hindered their

adoption in production.We show that our solution rivals non-

private auction protocols in terms of performance, making

it viable for real-world deployment.

High-Level Idea of our techniques: To preserve privacy while

matching buy and sell orders, each order is viewed as containing

𝑥 units, with users submitting 𝑥 + 𝑛𝑜𝑖𝑠𝑒 orders to the server based

on indifferential privacy. The orders are represented as nodes in a

bipartite graph, with sell orders from sellers 𝑆𝑖 on the left and buy

orders from buyers 𝐵𝑖 on the right. See Figure 1 for an example. The

server ranks the nodes based on price 𝑝 , where higher prices for

buyers and lower prices for sellers are considered more favorable,

referred to as "extreme" prices. The algorithm then constructs a

bipartite graph, with edges connecting buy and sell nodes if the

buying price meets or exceeds the selling price.

In particular, the algorithm constructs and maintains a bipartite

graph, where edges exist between buy and sell nodes when their

prices are compatible, i.e., the buying price is at least equal to the

selling price. As matches are made, isolated nodes (the gray nodes in

Figure 1)—those without neighbors, such as when their price cannot

be met—are promptly removed from the graph. In the maximum

matching problem, the goal is to identify a set of edges where no

two edges share a node, thereby maximizing the total number of

matches. As mentioned above, nodes with the most popular price

on one side of the graph are naturally connected to nodes with the

least popular price on the opposite side. These pairs, referred to

as polar opposite nodes, form the basis of an iterative matching

strategy that guarantees an optimal matching solution.

Our approach maintains this optimal matching even when users

submit a number of noise-injected fake (the red nodes in Figure 1)

orders to obscure the true amounts of their order. To achieve this,

we introduce in-differential privacy (detailed in Section 2.1) and

orders are not only sorted by price but also arranged such that each

user’s true orders are followed by their corresponding fake orders.

Unlike traditional differential privacy, our new in-differential

privacy concept allows for selective disclosure of information post-

match, aligning with realistic scenarios. For instance, in the context

of a dark pool trading environment, it becomes acceptable to reveal

the actual quantity of a trade once it has been fully matched, as

it no longer poses a risk to privacy. To establish this new privacy

framework, we integrate graph refinement techniques, ensuring
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Figure 1: Maximum Matching Example. The figure illustrates a
bipartite graph and its maximum matching where nodes are first

sorted by price, followed by the user’s genuine orders and then

their fake orders. This arrangement ensures optimal matching, max-

imizing the number of successful pairings according to algorithm 1.

that the protocol not only protects user data but also facilitates an

efficient and optimal matching process, in the presence of noise.

Implementation: We present an end-to-end implementation of

our system. While previous FHE-based solutions processed fewer

than one order per second, our system dramatically outperforms

them, handling between 600 and 850 orders per second (according to

Table 2), depending on the input volume. Furthermore, we provide

an analysis of the overhead introduced by our privacy-preserving

mechanism compared to the non-private version. While privacy

inevitably incurs some cost and does not come for free, our system’s

overhead remains minimal and practical, making it highly suitable

for high-frequency trading environments.

1.2 Related Work
The works of [5, 6, 15] leverage secure multiparty computation

(MPC) with multiple operators instead of a single one. While this

method is computationally faster than fully homomorphic encryp-

tion (FHE), it comes with significant communication overhead due

to the necessary interactions among multiple operators. Moreover,

the practicality of this approach is limited, as most current dark

pool systems operate with a single operator. Importantly, MPC can

only guarantee the privacy of orders if the dark pool operators

do not collude, raising concerns in scenarios where collusion is

feasible. Given these challenges, it is crucial to focus on solutions

that emphasize single-operator architectures, which can streamline

communication and enhance privacy.

The work of Massacci et al. [14] proposes a distributed exchange

based on a multi-step functionality, including a dark pool compo-

nent. Their experiments show that the system can support up to

ten traders. Notably, their model does not conceal orders; instead, it

discloses an aggregated list of all pending buy and sell orders, which

sets it apart from our solution. Moreover, there are existing works

proposing private dark pool constructions utilizing blockchain tech-

nology [2, 10, 17], our focus diverges from this area. Furthermore,

all these solutions experience slowdowns due to the reliance on

computationally intensive public key cryptographic mechanisms.

The work of Hsu et al. [11] also considered a private matching

problem under the notion of joint differential privacy, where the
view of the adversary consists of the output received by all users

except the user whose privacy is concerned. Since the notion is

still based on the conventional approach of using divergence on

the adversarial views for neighboring inputs, their privacy notion

can only lead to an almost optimal matching. In contrast, our new

notion can achieve the exact optimal matching.

The authors in [20] employ differential privacy in a distinct and

simplified setting of volume matching [3, 8, 18], where prices are

predetermined and fixed, to obfuscate aggregated client volumes

and conceal the trading activity of concentrated clients. In their auc-

tion mechanism, the obfuscated aggregate volumes are published

daily, enabling buyers to make informed matching decisions based

on this publicly available inventory.

2 PRELIMINARIES
We first describe the problem setting and the adversary model.

Problem Setup. The order of each user 𝑖 has a type 𝜏𝑖 ∈ buy, sell,
a price 𝑝𝑖 ∈ R+, and a positive quantity 𝑥𝑖 ∈ Z+. An input configu-

ration𝐶 := (𝜏𝑖 , 𝑝𝑖 , 𝑥𝑖 ) : 𝑖 ∈ [𝑛] consists of users’ orders. One unit of
a buy order can be matched to one unit of a sell order if the buying

price is at least the selling price. The goal is to design matching

protocols that maximize the total number of matched units while

preserving the privacy of users’ data.

Adversarial Model. The server can observe the most amount of

information, which is modeled as an adversary that is semi-honest,

i.e., it will follow the protocol and try to learn about users’ data.

Observe that when one unit of a buy order is matched to a sell

order, the identities of both the buyer and the seller, as well as

their bidding prices, must be revealed. Here are possible privacy

concepts.

• Given the bid (𝜏𝑖 , 𝑝𝑖 , 𝑥𝑖 ) of a user 𝑖 , the type 𝜏𝑖 and the price 𝑝𝑖
are public information, but the number 𝑥𝑖 of units is private.

However, the identity of the user 𝑖 is known, and because it

is placing a bid, it is also known that 𝑥𝑖 ≥ 1.

We will develop a new privacy notion that only hides the

value of 𝑥𝑖 when the bid cannot be fully executed. This the-

oretical privacy guarantee will mainly focus on this new

notion.

• In practice, perhaps a user may not even want its presence

in the system to be known if no unit of its bid is executed.

We will later describe how this can be easily achieved by

encrypting the user id, but this is not the main technical

focus.

Definition 2.1 (Neighboring Input Configurations). Two
input configurations 𝐶 and 𝐶 are neighboring if except for one user 𝑖 ,
all orders of other users are identical, and for user 𝑖 , only the quantity
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may differ by at most 1, i.e. |𝑥𝑖 − 𝑥𝑖 | ≤ 1. We denote 𝐶 ∼𝑖 𝐶 in this
case.

We review some basic probability tools that are commonly used

in differential privacy [9]. A divergence is used to quantify how

close two distributions on the same sample space are to each other.

Definition 2.2 (Symmetric Hockey-Stick Divergence). Given
distributions 𝑃 and 𝑄 on the same sample space Ω and 𝛾 ≥ 0, the
symmetric hockey-stick divergence is defined as:

HS𝛾 (𝑃 ∥𝑄) := sup

𝑆⊆Ω
max{𝑄 (𝑆) − 𝛾 · 𝑃 (𝑆), 𝑃 (𝑆) − 𝛾 ·𝑄 (𝑆)}.

Remark 2.3. The hockey-stick divergence is related to the well-
known (𝜖, 𝛿)-differential privacy inequality.

Specifically, HS𝑒𝜖 (𝑃 |𝑄) ≤ 𝛿 if and only if for all subsets 𝑆 ⊆ Ω,
𝑄 (𝑆) ≤ 𝑒𝜖 · 𝑃 (𝑆) + 𝛿 and 𝑃 (𝑆) ≤ 𝑒𝜖 ·𝑄 (𝑆) + 𝛿 .

Definition 2.4 (Differential Privacy). Suppose when a match-
ing protocol is run on a configuration 𝐶 , the adversary can observe
some information that is denoted by some random object View(𝐶).
Then, the protocol is (𝜖, 𝛿)-differentially private if for all neighboring
input configurations 𝐶 and 𝐶 ,

HS𝑒𝜖 (View(𝐶) |View(𝐶)) ≤ 𝛿 .

Note that the maximum number of matched units can differ by 1

for neighboring input configurations. Therefore, to use the conven-

tional notion of differential privacy, the matching protocol cannot

guarantee that an optimal number of matched units is returned. In

fact, it is not hard to see that to achieve (𝜖, 𝛿)-DP, the protocol will
need to match the number of units that is about𝑂 ( 1𝜖 log

1

𝛿
) smaller

than the maximum possile value.

Truncated geometric distribution. Let 𝑍 be an even integer,

and 𝛼 > 1. The truncated geometric distribution Geom𝑍 (𝛼) has
support with the integers in [0..𝑍 ] such that its probability mass

function at 𝑥 ∈ [0..𝑍 ] is proportional to 𝛼−|
𝑍
2
−𝑥 |

. Specifically, the

probability mass function at 𝑥 ∈ [0..𝑍 ] is
𝛼 − 1

𝛼 + 1 − 2𝛼−
𝑍
2

· 𝛼−
��𝑍
2
−𝑥

��
.

Fact 2.5 (Geometric Distribution and DP). For 𝜖 > 0 and 0 ≤
𝛿 < 1, suppose 𝑁 is a random variable with distribution Geom𝑍 (𝑒𝜖 ),
where 𝑍 ≥

⌈
2

𝜖 ln
1

𝛿

⌉
is even. Then, for any integer 𝑛,

HS𝑒𝜖 (𝑛 + 𝑁 ∥𝑛 + 1 + 𝑁 ) ≤ 𝛿 .

2.1 Indifferential Privacy: A Relaxed Notion
High-Level Goal. We would like to design a protocol that always

returns the optimal number of matched units, but we will relax the

conventional notion of differential privacy such that the bidding

quantity 𝑥𝑖 of a user 𝑖 does not need privacy protection if the order

is fully executed.

Closest Refinement Pair. To describe this new privacy notion, we

will need some technical notation. The recent work [7] considers

finite sample spaces which are sufficient for our purposes.

Definition 2.6 (Refinement). Suppose Ω0 and Ω1 are sample
spaces and F ⊆ Ω0 × Ω1 is a binary relation, which can also be
interpreted as a bipartite graph (Ω0 ∪ Ω1, F ). Given a distribution

P0 on Ω0, a refinement P̂0 of P0 (with respect to F ) is a distribution
on F such that for every 𝑖 ∈ Ω0, P0 (𝑖) =

∑
𝑗 :(𝑖, 𝑗 ) ∈F P̂0 (𝑖, 𝑗).

A refinement for a distribution on Ω1 is a distribution on F defined
analogously.
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Figure 2: Refinement Pair. The figure shows an example of a

bipartite graph (Ω0,Ω1;F ), where each node has a probability

mass. Each subfigure shows the probability distribution refinement

on each side.

Definition 2.7 (Closest Refinement Pair). Given distributions
P0 and P1 on sample spaces that are equipped with some relation F
and a divergence notion D, the divergence between P0 and P1 with
respect to F is defined to be:

DF (P0∥P1) = inf

(P̂0 ,̂P1 )
D(P̂0∥P̂1),

where the infimum is taken over all refinements P̂0 and P̂1 of P0
and P1, respectively.

Remark 2.8. As we shall see, in our dark pool application, the
relation F in Ω0 × Ω1, is actually much simpler. In particular, each
node from one side has at most one neighbor on the other side. Hence,
for the distribution on each side, there is only one possible refinement.
Even though the concept of closest refinement pair is not needed for
this application, we still give a more general Definition 2.11 which
may be relevant in future applications.

Fact 2.9 (Universal Closest Refinement Pair [7]). Given the
above distributions P0 and P1, together with the relation F on their
corresponding sample spaces, there exists a universal refinement pair
(P̂0, P̂1) that minimizes D(P̂0∥P̂1) for all divergences D satisfying
the data-processing inequality1 (which includes the hockey-stick di-
vergence HS).

Intuition. To fit the above notation to our problem, let us consider

a pair of neighboring input configurations 𝐶0 and 𝐶1, in which the

quantities of some user 𝑖 differ by 1. For instance, in 𝐶0, the user 𝑖

has 𝑛0 > 0 units, while in 𝐶1, the user has 𝑛1 = 𝑛0 + 1 units.
For those two input configurations, the corresponding sample

spaces of the adversary’s views areΩ0 andΩ1, whichmay not be the

same, because the supports of the views for the two configurations

may be different.

Next, let us look at each point in the sample space more care-

fully. As the protocol is being executed, the adversary gains more

information step-by-step. Hence, each point 𝜎 in the sample space

is a time-series sequence 𝜎 = (𝜎1, 𝜎2, . . .).
1
A divergence D satisfies the data processing inequality if for any pair of joint dis-

tributions (𝑋0, 𝑌0 ) and (𝑋1, 𝑌1 ) , the corresponding marginal distributions satisfy

D(𝑋0 ∥𝑋1 ) ≤ D( (𝑋0, 𝑌0 ) ∥ (𝑋1, 𝑌1 ) ) .
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Definition 2.10 (Indifference Relation). Given the sample
spaces Ω0 and Ω1 of the adversary’s views corresponding to neighbor-
ing input configurations𝐶0 and𝐶1 as above, we define an indifference
relation F ⊆ Ω0 × Ω1 as follows, where a pair of time sequences
(𝜎 (0) , 𝜎 (1) ) ∈ F is related iff

• The two sequences 𝜎 (0) = 𝜎 (1) are the same; or
• The two time sequences 𝜎 (0) and 𝜎 (1) have a maximal com-
mon prefix 𝜌 such that 𝜌 implies that 𝑛0 units of user 𝑖’s order
have been matched, i.e., in 𝐶0, the order of user 𝑖 is fully exe-
cuted.

With the mathematical concepts formalized, we are ready to

introduce our new notion of privacy.

Definition 2.11 (Indifferential Privacy (IDP)). Suppose when
a matching protocol is run on a configuration 𝐶 , the adversary can
observe some information that is denoted by some random object
View(𝐶). Then, the protocol is (𝜖, 𝛿)-indifferentially private (IDP) if
for all neighboring input configurations𝐶 and𝐶 with the appropriate
indifference relation F defined,

HSF
𝑒𝜖
(View(𝐶)∥View(𝐶)) ≤ 𝛿 .

Intuition. In Definition 2.10, if we only have the first bullet 𝜎 (0) =
𝜎 (1) , then this reduces to the usual differential privacy. The second

bullet says the indifference relation specifies when the user 𝑖 is

indifferent about whether the adversary can distinguish between

the two views in a pair (𝜎 (0) , 𝜎 (1) ) ∈ F .
In our application scenario, this captures the idea that when

a user’s order is fully executed, then the privacy of its bidding

quantity no longer needs protection.

Information Theoretic vs Computational IDP.When we de-

scribe our protocol, we will use the ideal functionality of crypto-

graphic primitives and prove the privacy under Definition 2.11 that

is information theoretic. If we replace the ideal functionality with

the real-world cryptographic construct, we can achieve the follow-

ing notion of computational IDP that is analogous to SIM-CDP

introduced in Mironov et al. [16].

Definition 2.12 (Computational IDP (CIDP)). A protocol Π is
(𝜖, 𝛿)-CIDP if there exists a protocol Π′ that is (𝜖, 𝛿)-IDP such that Π
and Π′ are computationally indistinguishable.

Technical Focus. In this work, we focus on showing our proto-

col using ideal functionality of cryptographic primitives satisfies

Definition 2.11. It is straightforward to apply standard hybrid ar-

guments [16] to replace an ideal functionality with the real-world

cryptographic primitive to show that the resulting protocol satisfies

Definition 2.12.

3 INDIFFERENTIALLY PRIVATE MATCHING
PROTOCOL

We describe the components of our private matching protocol.

Bid Type. For a user 𝑖 with Id𝑖 , its bid has a type 𝜏𝑖 ∈ {Buy, Sell}
with price 𝑝𝑖 and quantity 𝑥𝑖 ∈ Z≥0.
Bid Submission. Given the bid (Id𝑖 , 𝜏𝑖 , 𝑝𝑖 , 𝑥𝑖 ) from user 𝑖 , suppose

a user wants to achieve (𝜖, 𝛿)-IDP. Then, it performs the following

during bid submission.

(1) Sample non-negative noise 𝑁𝑖 ∈ Z according to the trun-

cated geometric distribution Geom𝑍 (𝑒𝜖 ), for some even

𝑍 ≥
⌈
2

𝜖 ln
1

𝛿

⌉
.

(2) Create 𝑦𝑖 := 𝑥𝑖 + 𝑁𝑖 nodes of type (𝜏𝑖 , 𝑝𝑖 ), where the type is
known to the server.

Out of the 𝑦𝑖 nodes, 𝑥𝑖 are real nodes and 𝑁𝑖 are fake nodes.

Each node contains encrypted information of whether it is

real or fake.

The list of created nodes are sent to the server, where all real

nodes appear before the fake nodes. Observe that the server

cannot distinguish between the real and the fake nodes.

Cryptographic Assumptions. Depending on what security guar-

antee of the final protocol is needed, we can assume different prop-

erties of the ciphertext.

• To achieve just our notion of indifferential privacy, the en-

crypted information of a node can be achieved by a non-

malleable commitment scheme [12]. In practice, we can also

use a hash function such as AES.

Ideal Commitment Scheme. For ease of exposition, we
describe our protocol using an ideal commitment scheme.

A user creates a commitment of a message, which is an

opaque object whose contents the adversary cannot observe.

At a later time, the user can choose to open the commit-

ment, which must return the original message. In particular,

a cryptographic commitment scheme has these key prop-

erties: (1) Hiding: The value stays secret until revealed. (2)

Binding: The committed value can’t be changed. (3) Unforge-

ability: No one can forge or tamper with the commitment.

(4) Correctness: The committed value is always correctly

revealed.

• Assuming the shuffler model, the server does not know

which nodes come from which user. Hence, in this case,

each node also contains encrypted information about the

user ID. However, the server still knows which nodes origi-

nate from the same user, and the nodes from the same user

are sorted in a list such that real nodes appear first before

the fake nodes.

Node Popularity. In any case, the server can create an ordering on

the nodes on the buyer and the seller sides according to the price.

For a buy node, a higher price is more popular; for a sell node, a

lower price is more popular. On each side, the most or the least

popular price is known as an extreme price.
Matching Graph. The algorithm maintains a bipartite graph 𝐺 =

(B,S;𝐸), where there is an edge between a buy and a sell node if

the prices are compatible, i.e., the buying price is at least the selling

price. As some nodes are matched during the process, we assume

that the algorithm will immediately remove any isolated node that

no longer has a neighbor.

Maximum Matching Problem. Given a bipartite graph 𝐺 =

(B,S;𝐸), a matching 𝑀 ⊆ 𝐸 is a subset of edges such that no

two edges in 𝑀 are incident on the same node. The maximum
matching problem aims to find a matching 𝑀 with the maximum

number of edges. We next describe a strategy to find a maximum

matching on a bipartite graph induced by buyer and seller nodes.

Polar Opposite. Suppose the current matching graph 𝐺 has no

isolated nodes. For an arbitrary side, observe that any node on this
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side with the most popular price has an edge connected to any

node on the other side with the least popular price. We say that

two such nodes from the two sides are polar opposite of each other.

The following fact shows that an optimal matching can be returned

by iteratively matching polar opposites.

Fact 3.1. Suppose a matching graph 𝐺 has no fake or isolated
nodes, and 𝑢 and 𝑣 are any two nodes from the different sides that are
polar opposite of each other. Then, there exists a maximum matching
in 𝐺 in which 𝑢 and 𝑣 are matched.

Proof. Without loss of generality, suppose 𝑢 has the most pop-

ular price on its side, while 𝑣 has the least popular price on its

side. Suppose𝑀 is a maximum matching in which 𝑢 and 𝑣 are not

matched to each other. We will modify𝑀 without decreasing the

matching size such that 𝑢 and 𝑣 are matched to each other in the

following steps.

(1) If 𝑢 is not matched to any node, we can make 𝑢 replace any

other node on its side, because it has the most popular price.

Hence, we may assume that 𝑢 is matched in𝑀 .

(2) If 𝑣 is not matched in 𝑀 , then we can replace the partner

of 𝑢 with 𝑣 to make 𝑢 and 𝑣 matched to each other.

(3) Otherwise, we have𝑢 is matched to some 𝑣 ′ and 𝑣 is matched

to some 𝑢′. Observe that if 𝑢′ is compatible with the least

popular price on the other side, then it must be compatible

with 𝑣 ′. Hence, 𝑢 and 𝑢′ can swap partners such that 𝑢 and

𝑣 become matched.

□

Matching with Fake Nodes. With our assumption, for each node

type, we assume that the nodes are sorted such that the nodes from

the same user are together and its real nodes appear first.

In each step, the server picks nodes 𝑢 and 𝑣 from the two sides

that are polar opposite of each other. The owners of nodes 𝑢 and 𝑣

will participate in the following protocol:

(1) If the node of an owner is real, the owner will open its

commitment to reveal the node is real.

(2) If the node of an owner is fake, this implies that all real nodes

of that owner are already matched and the owner will reveal

all its fake nodes.

(3) If both the nodes 𝑢 and 𝑣 are opened to be real, the nodes 𝑢

and 𝑣 are mathced and removed from the matching graph.

(4) If one of the nodes is real and the other node is fake, the real

node will be considered in the next iteration if it still has a

polar opposite in the remaining graph.

Correctness Intuition. The protocol is outlined in Algorithm 1;

note that any arbitrary unspecified choice made by the algorithm

can either be randomized or deterministic according to some addi-

tional rules.

Lemma 3.2. Algorithm 1 returns a maximum matching between
real buy and sell nodes in the matching graph.

Proof. Comparing with the case with no fake nodes, observe

that whenever a fake node is encountered, it will be removed im-

mediately. Hence, the matching behavior is exactly the same as the

case with no fake nodes. From Fact 3.1, a maximum matching is

returned. □

Algorithm 1: Matching Protocol with Fake Nodes

1 Matching graph 𝐺 ← (B,S;𝐸)
2 𝑢 ← NULL
3 𝑀 ← ∅
4 while 𝐸 ≠ ∅ do
5 if 𝑢 = NULL then
6 From any side and any extreme price on that side,

select the next node 𝑢.
7 end
8 Select the next node 𝑣 that is a polar opposite to 𝑢.

9 The algorithm announces that an attempt is made to

match 𝑢 and 𝑣 .

10 The owners of the two nodes open their commitments

(if they have not already done so) and reveal whether

the nodes are real or fake.

11 The algorithm infers that if an owner reveals a fake

node, all the remaining nodes by the same owner are

also fake.

12 if either 𝑢 or 𝑣 is fake then
13 Any fake node and its incident edges are removed

from 𝐺 .
14 else
15 if both 𝑢 and 𝑣 are real then
16 The pair (𝑢, 𝑣) is matched and added to𝑀 ;

remove 𝑢 and 𝑣 from 𝐺 .
17 end
18 end
19 Remove any isolated node from 𝐺 .

20 If exactly one of 𝑢 and 𝑣 is still unmatched and remains

in the graph, set 𝑢 to be that node; otherwise, set 𝑢 to

NULL.
21 end
22 return matching𝑀

3.1 Privacy Analysis
We show that our dark pool auction protocol satisfies IDP.

Neighboring Input Configurations. Recall that we consider

neighboring input configurations 𝐶0 and 𝐶1 in which exactly one

user 𝑖 has different bidding quantities. Suppose in 𝐶0, the quantity

is 𝑛0 and in 𝐶1, the quantity is 𝑛1 = 𝑛0 + 1.
Adversarial View.We decompose the view space into Γ×Λ, where
Γ corresponds to the number of nodes created by user 𝑖 , and Λ
includes (i) the bid submissions by all other users, and (ii) any

random bits used to make choices in the matching procedure in

Algorithm 1. The distributions on Γ differ in 𝐶0 and 𝐶1, but in the

two scenarios, the distributions on Λ are identical and independent

of the Γ component.

Note that any other information observed by the adversary can

be recovered by a point in Γ × Λ.
Indifference Relation. We define an almost trivial relation on

Γ × Λ, namely, (𝛾0, 𝜆0) ∼ (𝛾1, 𝜆1) iff 𝛾0 = 𝛾1 and 𝜆0 = 𝜆1. This

means that the same number of nodes are submitted by user 𝑖 in the

two scenarios; moreover, all other users submit exactly the same

bids in the two scenarios, and the also the same random bits are

used in the matching process.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

1675



However, this does not mean that the views of the adversary

are the same in both scenarios, because the number of real nodes

for user 𝑖 are different in 𝐶0 and 𝐶1. Nevertheless, if the views

are different, it must be because 𝑛0 real nodes of user 𝑖 have been

matched in both scenarios, and the algorithm tries to match the next

node from user 𝑖 . This is consistent with the indifference relation

described in Definition 2.10.

Lemma 3.3. Using an ideal commitment scheme, the dark pool
auction protocol is (𝜖, 𝛿)-IDP.

Proof. Recall that from Definition 2.11, our goal is to prove an

upper bound for: HSF𝜖 (View(𝐶0)∥View(𝐶1)).
Because of the ideal commitment scheme, during the bid submis-

sion, the server can only see how many nodes are created by each

user. From user 𝑖 , the information collected at this stage is a point

in Γ. Suppose that in 𝐶0, the distribution of the number of created

nodes by user 𝑖 is 𝑃0; and in 𝐶1, the corresponding distribution is

𝑃1. Note that 𝑃0 and 𝑃1 are both distributions on Γ. From Fact 2.5,

we have: HS𝑒𝜖 (𝑃0∥𝑃1) ≤ 𝛿 .

According to the above discussion, for both 𝐶0 and 𝐶1, we have

the same distribution 𝑄 on Λ that represents other users’ bids and

the random bits used by the server during the matching process.

As argued above, a point in Γ×Λ is sufficient to recover the view

of the adversary. Hence, we have:

HSF
𝑒𝜖
(View(𝐶0)∥View(𝐶1)) = HS𝑒𝜖 ((𝑃0, 𝑄)∥(𝑃1, 𝑄)).

Moreover, observe that if (𝛾0, 𝜆0) = (𝛾1, 𝜆1) correspond to two

points in Γ × Λ under configurations 𝐶0 and 𝐶1, respectively, it

must be the case that during bid submission, exactly 𝛾0 = 𝛾1 nodes

are created by user 𝑖 . Furthermore, everything is identical in both

scenarios, except that the (𝑛0 + 1)-st node in user 𝑖’s list is fake in

𝐶0 and is real in 𝐶1. Therefore, the adversary either has identical

views in both scenarios (because at most 𝑛0 nodes in user 𝑖’s list

have been attempted to be matched), or else it must be the case

that all real nodes of user 𝑖 in 𝐶0 have been fully matched; this is

consistent with the indifference relation F .
Note that 𝑄 is independent of the Γ component. In general, the

hockey-stick divergence (as well as other commonly used diver-

gences) satisfies the property that observing the same extra inde-

pendent randomness should not change the value of the divergence.

Hence, we have: HS𝑒𝜖 ((𝑃0, 𝑄)∥(𝑃1, 𝑄)) = HS𝑒𝜖 (𝑃0∥𝑃1), which we

have already shown is at most 𝛿 . This completes the proof. □

Corollary 3.4. Replacing the ideal commitment scheme with a
real-world commitment scheme (such as [12]), the dark pool auction
protocol is (𝜖, 𝛿)-computational IDP.

4 IMPLEMENTATION AND EVALUATION
4.1 Implementation
We provide a comprehensive end-to-end implementation of our

indifferentially private dark pool auction. We have also imple-

mented a non-private auction to compare the total computation

and communication time. Our code is available at https://github.

com/adyaagrawal/idp-darkpool.

Both the non-private and Indifferentially Private (IDP) protocols

were incorporated into ABIDES [4],
2
an open-source high-fidelity

simulator tailored for AI research in financial markets such as

stock exchanges. ABIDES is ideal for this purpose, as it supports

simulations with tens of thousands of clients interacting with a

central server for transaction processing, along with customizable

pairwise network latencies to simulate real-world communication

delays. We run the simulations on a personal x64-based Windows

PC equipped with a single Intel Core i5-10210U processor running

at 1.6 GHz and 16 GB of DDR4 memory.

ABIDES employs the cubic network delay model, where the

latency is determined by a base delay (within a specified range)

and a jitter that influences the percentage of messages arriving

within a designated timeframe, thereby shaping the tail of the delay

distribution. Our experiments were conducted using three distinct

network settings: local (client machines in NYC), global (client

machines from NYC to Sydney), and very wide network (client

machines across the world). For each setting, we configured the

base delay according to Table 1 while employing the ABIDES’s

default parameters for jitter.

Network Setting Base Delay (ms)
Local (Within NYC) 0.021 - 0.1

Global (NYC to Sydney) 21 - 53

Very Wide Network (Across the World) 10 - 100

Table 1: Base delay for different network configurations.

In our non-private implementation, clients submit their orders

without concealing their identities. These orders are organized

into two doubly linked lists: one for buy orders and another for

sell orders. Our implementation follows the maximum matching

algorithm explained in Section 3. Once matches are identified, they

are sent back to the clients for execution.

For our IDP implementation, clients generate an array of sorted

orders, with a few randomly numbered fake ones to ensure indif-

ferential privacy. They commit to their identity and whether the

order is real or fake using the Cryptodome library in Python based

on AES. The maximum matching algorithm is employed and if the

match contains the order that the individual client has placed, the

client opens the commitment to the server to reveal whether the

order is real or fake. Then, the server requests the client to reveal

the identity or tries to find a new match. Once both the parties have

opened their identity and revealed it to the server, the orders are

executed and the next round of matching starts.

4.2 Experimentation
Performance comparison with non-private implementation.
To evaluate the performance of our order matching system, we

compared the total time required to match orders using both the

non-private and Indifferentially Private (IDP) implementations in

all three different network settings. We conducted experiments

with a range of parties each generating 2
3
orders, starting from 4

parties (2
5
orders) and extending up to 1024 parties (2

13
orders).

2
ABIDES has also been used in simulating privacy preserving federated learning

protocols such as the most recent work of [13].
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(b) Global setting.

25 26 27 28 29 21
0

21
1

21
2

21
3

Total Orders (Powers of Two)

2 7

2 5

2 3

2 1

21

23

25

To
ta

l T
im

e 
(s

ec
on

ds
)

Total Time Taken vs Total Orders
Non Private Auction
Indifferentially Private Auction

(c) Very Wide Network setting.

Figure 3: Comparison of Time Taken Across Different Settings.

The data generation process is designed to ensure that each set

of randomly generated orders consistently achieves a matching

rate of 70% to 80%.
3
For instance, each client generates 8 sorted

orders, with 5 to 7 being real and 1 to 3 being fake. The prices for

buy orders are randomly selected between 99 and 101, while sell

orders are priced between 98 and 100.

From Figure 3, we can see that the total time taken using indiffer-

ential privacy auction does not deviate greatly from the non-private

real world implementation. In Table 2 we also mention the orders

per second for two different scenarios.

Performance comparison with FHE implementation. Consid-
ering throughput as the number of orders per second, FHE-based

solutions can only process around 0.07 orders per second, as shown

in Table 4 of [15] for 40 orders, using threshold fully homomorphic

encryption (tFHE) implemented via the GPU FHE library of [3].

Moreover, the actual runtime is even longer, as Table 4 does not

account for the additional overhead from threshold decryption and

key management, which increases with the number of clients (as

highlighted in Table 2 of [1]).

For context, according to [1], running a comparison on encrypted

data for a large amount of orders, 2
13

orders, takes 7.6 seconds on

CPU, while our system processes and matches all orders in 13.32

seconds in total (see Table 2), not just performing a comparison

on a single order. The FHE-based solution requires at least one

comparison operation per matching attempt, adding to its compu-

tational burden. Furthermore, the FHE-based timings from [15] are

measured on GPUs; actual performance on CPUs would be even

slower, whereas our experiments are conducted entirely on CPUs.

This illustrates that FHE solutions are an overkill, even with the

benefit of GPU acceleration, while our approach offers a practical

solution. Last but not least, as shown in Table 4 of [15], the latest

multi-operator solution, based on secure multiparty computation,

is capable of processing only 26 orders per second, even on high-

performance hardware.

Scalability with larger datasets. In the experiments above, we

compared the run-times of our protocol with a real-world auction

protocol for up to 1,024 clients, each submitting 8 orders (resulting

in a total of 2
13

orders). We have also extended our experiments to

include scenarios where both the number of orders per client and

the total number of clients double incrementally, scaling up to a

total of 262K orders. Our results show that the differentially private

3
When the % of matches is lower, the total running time naturally decreases, as fewer

matches result in less overhead.

Orders Non-Private Time (secs) IDP Time (secs)
40 0.019698 0.046887

2
13

3.887790 13.328184

Table 2: Comparison of Non-Private and IDP total running
times for a small (40) and large size (213) of orders. The
throughput (orders per second) for the non-private case is
2031 and 2107 and for the indifferential private case is 853 and
615 for 40 and 2

13 orders, respectively.

protocol scales linearly with the increased workload. We provide

these additional benchmarks in the full version [19] of the paper.

5 CONCLUSION
In this work, we addressed the limitations of existing privacy-

preserving auctions in high-frequency trading, such as dark pools,

where auctioneers can be untrustworthy. Previous methods, like

fully homomorphic encryption, were impractical due to their over-

head. Our approach, based on the new notion of Indifferential Pri-

vacy, provides an efficient, privacy-preserving continuous double

auction that enables maximum matching while minimizing risks.

This makes our system a practical and secure alternative addressing

both performance and security concerns in modern trading.
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