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ABSTRACT
Accurate economic simulations often require many experimental
runs, particularly when combined with reinforcement learning. Un-
fortunately, training reinforcement learning agents in multi-agent
economic environments can be slow. This paper introduces Econo-
Jax, a fast simulated economy, based on the AI economist [38].
EconoJax, and its training pipeline, are completely written in JAX.
This allows EconoJax to scale to large population sizes and perform
large experiments, while keeping training times within minutes.
Through experiments with populations of 100 agents, we show how
real-world economic behavior emerges through training within 15
minutes, in contrast to previous work that required several days.
We additionally perform experiments in varying sized action spaces
to test if some multi-agent methods produce more diverse behavior
compared to others. Here, our findings indicate no notable differ-
ences in produced behavior with different methods as is sometimes
suggested in earlier works. To aid further research, we open-source
EconoJax on Github at: https://github.com/ponseko/econojax.
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1 INTRODUCTION
Reinforcement learning [32] provides an attractive framework for
simulating real-world behavior using learned agents in multi-agent
environments. Rather than fixing agents to specific strategies, re-
inforcement learning agents may freely explore the environment
and seek economic equilibria without manually implementing cer-
tain strategies, which would bias the results. These agent-based
models allow for rich, diverse, and interactive simulations in which
economic policy questions may be answered [34, 38].

However, reinforcement learning is known to be sample ineffi-
cient [15], delivering significantly less information per datapoint
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compared to practices such as supervised or self-supervised learn-
ing. Furthermore, in online reinforcement learning, data collection
occurs concurrently with the learning process, causing a further
increase in computational requirements. Consequently, reinforce-
ment learning agents commonly require days of training, even in
simplified, unrealistic simulations.

Over the past decade, we have seen significant performance im-
provements in deep learning by leveraging efficient GPU’s [18].
Although this partly aids deep reinforcement learning agents in
their training, real-time environment interactions needed for online
learning remain costly. In the last few years, however, tools have
been built that allow for faster environment interaction by taking
advantage of GPU’s. Of particular interest are WarpDrive [20], and
JAX [4], which both provide methods of writing environments to
run on GPU accelerated hardware. WarpDrive, however, requires
the developer to write specialized CUDA code, which may be diffi-
cult to master. In contrast, JAX code is written in regular Python
code, albeit with some conditions to the coding style. Importantly,
we can also write the reinforcement learning agent code in JAX and
unify all code (environment and agent) under one framework. This
code can then be compiled by JAX as a single training loop pipeline
that operates fully on accelerated hardware, yielding substantial
performance improvements, sometimes over a 1000 times [23].

In recent years, the scientific community has made a push to
reintroduce existing environments in JAX to address the sample
efficiency problem [3, 8, 9, 21, 23–25, 27, 29]. However, a similar
initiative has not yet emerged for economic agent-based modeling
environments. Such an effort could yield significant benefits, as it
would allow for richer, more realistic environments, while keeping
agent training feasible.

In this work, we introduce EconoJax, a multi-agent economic
environment simulating a simplified economy modeled after the AI
economist [38], written in JAX. EconoJax is a vector-based environ-
ment with similar functionalities to the AI economist. Population
agents gather resources and convert these into coins to maximize
their individual utility. The agents interact by trading resources in
exchange for coinswith other agents. Simultaneously, a government
agent sets tax rates at predefined intervals to maximize equality
among agents while preserving productivity in the economy.

We experiment with population sizes of 100 agents, which re-
quires roughly 13 minutes of training, and highlight real-world
economic behavior emerging in EconoJax, such as realistic tax
schedules and the equality-productivity-tradeoff, without manually
implementing actions for agents. In comparison, such experiments
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Figure 1: Overview of EconoJax and its different components, actions- and observation spaces. Population agents act via
gathering resources, converting these into coin, and trading on the marketplace. The government agent acts by setting tax rates
at specific intervals. The escrow inventories are used as a temporary inventory for items that are used in active market orders.
Observations marked with "stats", indicate that the government does not observe the state for each individual agent, but rather
the mean, standard deviation, and median of the population.

took many days of training in the original AI economist framework
due to a more complex state representation. Due to its increased
performance, while still allowing for real-world economic behavior
to occur, EconoJax provides a foundation for economic modeling
researchers to build richer and more realistic simulations.

EconoJax can also flexibly scale to larger population sizes and ac-
tion spaces. By increasing the number of available resources, agents
have the option to specialize in more diverse behavior to optimize
their own utility. This makes EconoJax an interesting testbed for
multi-agent RL research. We explore the effect of various multi-
agent methods on agent behavior, noting that we observe a roughly
equal spread in behavior for agents that are trained individually,
compared to agents that share all their network parameters.

The contributions of this paper are as follows:
• We present EconoJax, a scalable economic simulation writ-
ten in JAX. EconoJax, inspired by the AI economist, provides
a simplified and substantially faster interface for reinforce-
ment learning training, highlighting how economic simula-
tions may benefit from JAX.

• We conduct experiments to demonstrate how real-world
economic behavior emerges in EconoJax, similar to the AI
economist.

• We use EconoJax for additional experiments comparing dif-
ferent multi-agent learning methods in varying sizes of ac-
tion spaces.

• We release the source code for EconoJax, along with the
reinforcement learning agent code. This lowers the bar to
extend or experiment with EconoJax and may inspire further
research in economic simulations and multi-agent reinforce-
ment learning.

The remainder of this paper is organized in the following man-
ner: In the next section, Section 2, we give a brief overview of
reinforcement learning, an introduction to JAX, and discuss related

work. Section 3 details of EconoJax, including its agents and their
respective action and observation spaces. Subsequently, Section 4
displays the outcomes of experiments conducted in EconoJax in-
volving 100 agents. Next, in Section 5, we experiment with different
multi-agent methods to showcase their effect on produced policies
in varying action space sizes. In Section 6 we discuss limitations and
future work. Finally, our conclusions are summarized in Section 7.

2 PRELIMINARIES
Reinforcement Learning
Reinforcement Learning is a machine learning method for finding
policies that attempt to maximize some reward by interacting with
an environment [32]. Such environments are typically modeled
as a Markov Decision Process (MDP) [2], defined as a tuple (S,
A, 𝑝,R, 𝛾 ). Here, S is the set of all states, A the set all possible
actions available to the agents, 𝑝 is the transition function which
maps states and actions into a probability distribution of next states
𝑝 (𝑠′ |𝑠, 𝑎) : S𝑥A𝑥S ↦→ [0, 1], R is the reward function, mapping
transitions into rewards 𝑟 : S𝑥A𝑥S ↦→ R, and 𝛾 is the discount
factor that governs the effect of future rewards on the agent.

More informally, reinforcement learning provides us with a learn-
ing framework consisting of an environment and an agent (or multi-
ple agents). The environment starts in a state 𝑠 ∈ S that is (partially)
observable to the agent(s). The agents then produce an action 𝑎

from the available set of actions A, which triggers the transition of
the environment into a new state. The agents are then also provided
a reward 𝑟 , which is a measure of how "good" the new state is. This
process is repeated with the goal of finding an optimal policy for
the agent(s) to follow in the environment.
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JAX
JAX is a python library for accelerator oriënted programming [4],
providing convenient function transformations, just-in-time com-
pilation, and a NumPy interface. Just-in-time-compilation support
allows JAX functions to be compiled with XLA [30], such that these
functions may efficiently run on platforms such as CPU’s, GPU’s
or TPU’s. Furthermore, JAX offers transformations that can easily
vectorize, parallelize, or differentiate Python JAX functions. The
built-in functionality to differentiate functions (autograd) allows
JAX to be used as a deep learning framework, similar to PyTorch
and TensorFlow. As such, a large ecosystem of neural network
libraries have been built around JAX [11–13, 16].

JAX allows all the aforementioned functionality on functions
which are written in plain Python. In turn, these typically difficult
practices (e.g. running code on a GPU, vectorization, or paralleliza-
tion), are now significantly more accessible and can dramatically
speed up performance in machine learning workflows. Importantly,
it allows us to write reinforcement learning environments in plain
Python that can easily run on the GPU.

Unfortunately, while JAX functions are written in plain Python,
they have some restrictions. The most notable of these is that JAX
transformed functions must be functionally pure, disallowing any
side-effects. This feels unintuitive to many developers that write
object-oriented code and rely heavily on changing an objects state,
which is not allowed in functionally pure code. JAX does provide
a NumPy-style interface such that most JAX restrictions can be
addressed via an API that is familiar to most Python developers.
However, when starting with JAX, it is clear that a different style
of coding is required, which can feel restrictive.

The restrictions imposed by JAX often do not set hard limits
on what is possible. This paper exemplifies this by converting the
AI economist into a similar environment written in JAX. In the
next section, we will list more libraries that have created new, or
recreated existing environments in JAX, and by extension, allow
for much faster training times.

Related Work
As JAX has increased in popularity, more environments have been
reimplemented in the framework. As such, we have JAX based
environment suites featuring classic environments such as Gymnax
and Jumanji [3, 21], as well as suites that focus on multi-agent rein-
forcement learning [6, 29, 35], partial observability [24], Physics en-
gines [8], and board games [17]. Furthermore, larger, single environ-
ments, rather than suites, are also built in JAX, such as Craftax [25]
and Navix [27] (MiniGrid).

Agent-based model environments coupled with multi-agent re-
inforcement learning training could provide interesting insights
into (hypothetical) policies and their effect on society. The AI econ-
omist [38] demonstrated this by highlighting how reinforcement
learning could be used to study the effects of different tax schedules
in a simplified economy. They further showed that this would then
allow for these tax schedules to be learned as well. This framework
was used in a similar fashion to study US state policies for com-
batting COVID-19 [34]. More complex economic simulations have
recently been built as well, modeling governments, banks, house-
holds and firms [7]. Other works have studied, using reinforcement

learning, how fictitious regions can best negotiate agreements to
combat climate change [37].

Recently, an agent-based modeling framework was built in JAX
to model the foraging behavior of large populations of organ-
isms [5]. However, to the best of our knowledge, no simulator
for an economy has yet been released in JAX.

3 ECONOJAX
In this section, we explain the design of EconoJax, an economic
simulation modeled after the AI economist [38], created in JAX. The
EconoJax source code, alongwith the experiment code and PPO [31]
agent, is available on GitHub: https://github.com/ponseko/econojax,
allowing researchers to modify EconoJax for their own research.

Overall design
EconoJax is a simulation environment for a simple economy mod-
eled after the AI economist framework [38]. Similarly to the envi-
ronments created in the AI economist, EconoJax closely follows the
Gymnasium API [33] (with modification inspired by Gymnax [21])
and is thus formally an MDP, typically used for reinforcement
learning research.

Like the AI economist, EconoJax features two types of agents
– a set of 𝑛 population agents, and a single government agent.
The population agents are able to gather resources, convert these
resources into coins, and trade with each other. Their goal is to
maximize their individual utility, a function of coin and performed
labor. Meanwhile, the government agent is able to set tax rates
such that taxes can be collected and redistributed at set intervals. Its
goal is to maximize the equality and productivity of the population.
Unlike the AI economist, EconoJax does not feature a 2D grid world
in which the population agentsmove. Instead, agents do not move
and alternatively receive a simplified vector representation (1D)
as input. Such a vector representation allows for faster training
without compromising realism. In Section 4, we highlight how
real-world economic behavior still emerges in EconoJax.

In the following two sections, we dive deeper into the actions
and reward functions of both types of agents, along with the built-
in parameters of EconoJax to alter the environment. A complete
overview of the action and observation space of both agents is
shown in Figure 1.

Population Agents
Population agents represent economic actors that optimize to their
own happiness, represented as utility. This utility grows by obtain-
ing coins and decreases by performing labor. Similarly to a real
economy, agents have various actions of obtaining coins, all of
which provide a set amount of labor when performed. Population
agents can perform one action per timestep, which may be collect-
ing resources, converting these resources into coins, or interact
with other agents by trading resources in exchange for coins.

Reward function. In the default EconoJax implementation, pop-
ulation agents are tasked with maximizing their individual dis-
counted utility. Similar to the AI economist, we model utility as
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Figure 2: Productivity and equality measured at the end of an episode during training. The shaded areas represent the standard
deviation of 15 training runs, in each of which 10 different environments ran in parallel. We see productivity increases over
time due to the population agents learning. Introducing taxes manages to significantly improve equality in the population, but
trades this for a small bit of productivity. Government utility (c) is measured as productivity · equality, weighted equally. Near
the end of training, the government found appropriate tax rates such that the population has close to optimal productivity,
while achieving higher equality.

isoelastic utility [1], minus their obtained labor 𝐿:

𝑢𝑖,𝑡 =
𝐶
1−𝜂
𝑖,𝑡

− 1
1 − 𝜂

− 𝐿𝑖,𝑡 (1)

Here, 𝐶𝑖,𝑡 is the total coin in the inventory of agent 𝑖 at timestep
𝑡 and 𝜂 (𝜂 ≥ 0, 𝜂 ≠ 1) is a constant determining the concavity of
the utility function – the isoelastic utility function will increase at
a slower rate the more coin an agent already has obtained, and a
high 𝜂 increases this effect. We set 𝜂 as 0.27 in all our experiments,
mirroring the AI economist. The final agent reward on a specific
timestep is given by the change in utility at every timestep:

𝑟𝑖,𝑡 = 𝑢𝑖,𝑡+1 − 𝑢𝑖,𝑡 (2)

Collecting resources. AnEconoJax environment contains resources
that agents can collect. The amount of different types of resources
can be set to any positive number such that the agents may special-
ize in different types, allowing users to flexibly scale the economy.
This is an abstraction of the wood and stone resources in the AI
economist. The amount of resources obtained by an agent when
gathering resources is determined by an agents’ skill level 𝑆𝐺𝑖, 𝑗 ,
where 𝑗 is the resource id. The skill levels are set at environment ini-
tialization (uniform between 0 and 1 by default) and fixed through-
out the episode. When attempting to gather a resource, the exact
amount of resources gathered is then given by ⌊𝑆𝐺𝑖, 𝑗 + 𝜌⌋, where
𝜌 is a random number between 0.0 and 1.1, chosen uniformly. As
such, low-skilled agents may still successfully gather a resource if
lucky and highly-skilled agents may gather multiple resources in a
single action. Gathered resources are stored in the agents personal
inventory for further use by one of the other actions.

Crafting. When agents have obtained a set amount of required
resources, they can convert these resources into coins. The amount
of required resources is set by environment parameters 𝑅𝜅 and 𝑅𝑑 ,
where 𝑅𝜅 describes the number of resources required per resource,
and 𝑅𝑑 describes the amount of different resources required. For

instance, an environment initialized with 5 different resources and
𝑅𝜅 = 2 and 𝑅𝑑 = 3, means an agent is required to have 2 of each of
3 resources in their inventory before they can craft. In case multiple
different resources may be used for crafting, the resources used
are prioritized by the amount the agent has in its inventory. The
amount of coins obtained by crafting is determined by the skill
level of an agent 𝑆𝐶𝑖 , scaled by a constant. 𝑆𝐶𝑖 is initialized at
environment initialization (uniform between 0 and 1 by default)
and fixed throughout the episode.

Trading. Rather than crafting coin, agents are also able to sell
their resources to other agents in exchange for coins, allowing
for interaction between agents. To facilitate trading, agents can
place buy or sell orders on a marketplace. Orders are active for
a certain amount of time, and at each timestep all current orders
are evaluated. In case there exist buy orders with a value higher
or equal to a sell order, these orders are matched – resources and
coin are exchanged. In case orders could be matched to multiple
other orders, high-value orders (high bids / low asks) are evaluated
first. Ties are then first broken by the age of the order and lastly
at random. In order to facilitate trade, coins and resources that are
currently used for orders are temporarily placed in agents escrow,
rather than their usual inventory.

Optionally, an additional NO-OP action may be added to the
action space of population agents to allow them to skip performing
an action and thus collect no labor.

Government Agent (Planner)
The government agent sets tax rates in fixed tax brackets with the
goal of maximizing equality and productivity. These two measures
are seen as important optimization goals for taxation (and the
redistribution of those taxes) [26], but this objective may be altered
in EconoJax. Tax rates are set every period (default: 100 timesteps).
At the end of each period, tax is collected on the earnings from
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the previous period. The collected taxes are then redistributed
uniformly among agents, and new tax rates may be set.

Reward function. As stated, the government utility (social wel-
fare) is determined by the productivity and equality in the environ-
ment:

𝑢𝑔 = Eq(𝐶𝑡 ) · Prod(𝐶𝑡 ), (3)

Eq(𝐶𝑡 ) = 𝜔 (1 − gini(𝐶𝑡 )) + 1 + 𝜔, 0 ≤ 𝜔 ≤ 1. (4)

Here, 𝜔 is the equality weight, determining how much equality
weights on social welfare (defaults to 1, weighing productivity
and equality equally). prod(𝐶𝑡 ) is the total amount of coins in the
environment:

Prod(𝐶𝑡 ) =
∑︁
𝑖

𝐶𝑖,𝑡 , (5)

and gini(𝐶𝑡 ) is the gini index [10], a well-known measure of equal-
ity. Similarly to the population agents, the final reward for the
government agent is the difference in 𝑢𝑔 between timesteps, as in
Equation 2.

Setting tax rates. We divide an environment episode into periods
of a fixed number of time steps. At the start of every period, the
government can set new tax rates for the upcoming period. In
the same timestep, taxes of the previous period are collected and
redistributed uniformly among all agents. Tax rates may be set at 20
intervals of 5% in predetermined tax brackets (0%, 5%, 10% ... 100%).
For example, given tax brackets [50;100], the government can set
three tax rates for each of the intervals: [0, 50), [50, 100), [100,∞],
on 20 different levels. Given three tax rates such as (10%, 30%,
50%), an agent that earned 130 coin in the previous period will pay
0.10 · 50 + 0.30 · 50 + 0.50 · 30 = 35 coins in taxes. A fraction of these
taxes (1/𝑛) will immediately be returned to the agent due to the
redistribution.

Action masking
We use action masking to prevent invalid actions. For example,
an agent can only sell a resource if it has at least one unit of that
resource in its inventory. Action masking assigns a zero-probability
to any not-available action and thereby improves training times
as agents cannot perform pointless actions. Although the actions
of the government only have an effect at some timesteps, it does
observe all intermediate steps, enabling models that use historical
data to benefit from these observations.

4 EXPERIMENTS
In this section, we discuss results of experiments similar to those
of the AI economist and demonstrate how real-world economic be-
havior emerges in EconoJax such as specialization, the productivity-
equality tradeoff, and realistic tax schedules and market prices. We
compare the free market setting (no government agent) to an envi-
ronment with the government agent enabled, attempting to max-
imize equality and productivity, weighing both of those factors
equally.

1We trained the AI economist agents for 150 million steps. By then, results had not fully
converged yet, but training for longer was hindered by large memory requirements.
EconoJaxwas trained for 5million timesteps (10million in experiments with population
sizes of 100).

Training EconoJax environments with a population of 100 agents
took only about 13 minutes on a single NVIDIA A100 GPU. In Ta-
ble 1, we compare EconoJax to the AI Economist by training with
only 4 agents. In this setting, EconoJax finishes training in roughly
4 minutes. In contrast, reproducing the AI economist results for the
same sized population, using the available RLlib [22] implementa-
tion, took a full week to complete roughly 150 million training steps
on a 16 Intel Xeon E5-2630v3 cores @ 2.40GHz (32 threads),
before often running out of memory, disallowing us to complete
the full 1 billion training steps required. Due to the difference in
hardware and observation space (2D vs 1D observations), this is
not a fair direct comparison. However, this >2400× performance
improvement in a population of the same size, does provide a
clear indication of the substantial decrease in the computational
requirements of EconoJax. These reductions allow researchers to
experiment with less hardware and enable future expansions of
EconoJax for enhanced realism while still keeping training times
feasible.

Experimental details
We have experimented in EconoJax with population sizes of 100,
far exceeding the population sizes of 4 and 10 experimented with
in the AI economist. We trained all our agents using PPO [31],
with network sizes of two layers with 128 nodes per layer and
tangent activation functions. In these experiments, all population
agents shared weights for both the policy and value network. Both
population and government agents are able to train simultaneously,
in contrast to the two-stage training process required in the AI
economist. The results of our experiments are obtained by averaging
over 10 different environment seeds during training. Additionally,
we repeated training 5 times for 3 different (but similar) population
skill distributions and highlight the standard deviation over these
15 runs in shaded areas. The population skill levels are initialized
via a Pareto distribution with added random noise. This ensures
that most agents are at least reasonably skilled in one action.

The complete list of hyperparameters of the agents, as well as
the environment parameters used in these experiments, are listed
in Table 2.

Table 1: Training times in hours for both EconoJax (averaged
over 30 runs) and the AI economist (averaged over 6 runs).
For the AI economist, we used the available RLlib implemen-
tation, using 32 CPU threads. For this comparison, we have
had to use significantly different hardware. Therefor, the two
environments cannot be directly compared. In turn, this ta-
ble only gives a rough indication of the performance benefits
of EconoJax. In a same sized population, EconoJax trains its
agents over 2.400 times faster compared to the AI economist.
This is in large part due to the simplified state representation
of EconoJax and the GPU based training powered by JAX.

AI Economist (CPU) EconoJax (GPU)
pop. size: 4 pop. size: 4

Until convergence1 168.28 0.07

Per million steps 1.12 0.01
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Table 2: Hyperparameters for our PPO agents (top), and
EconoJax environment parameters used for our experiments
(bottom) in Section 4. Both government and population
agents used the same hyperparameters during training. En-
tropy coefficient is linearly annealed over 90% of training
steps, whereas learning rate annealling happens over the full
training duration. Agent skill levels in our experiments, are
set such that most agents are at least reasonably skilled at
one action, via a pareto distribution. Random normal noise
is then added to the skills levels for a less "static" population.

Hyperparameter Value

Training Timesteps 1e7
Learning Rate 0.0005 (annealed)
Discount Factor (𝛾 ) 0.999
Clip parameter 0.2
Entropy Coefficient 0.1 (annealed)
Value Function Coefficient 0.25
Value Clip Parameter 10.0
GAE 𝜆 0.95
Rollout Length 150
Number of Epochs, Minibatches 6, 6
Number of Layers, Nodes 2, 128

Parameter Description

Population size 100
Number of resources 2
Episode length (in steps) 1000
Tax Period Length (in steps) 100
Allow NOOP Action True
Starting Coin 15
Trade Order Expire time 30
Possible trade prices [2, 4, 6, 8, 10]
Maximum active orders per agent 15
Craft Resources Required (𝑅𝜅 ) 2
Craft Diff. Resources Required (𝑅𝑑 ) 2
Labor Cost Crafting 1
Labor Cost Gathering 1
Labor Cost Trading 0.05
isoelastic utility 𝜂 0.27
equality weight (𝜔) 1

Results
Figure 2 visualizes the productivity and equality during training of
10 million steps (100.000 tax periods). Introducing taxes increases
equality among the population, but this comes at the cost of produc-
tivity. This is the result of the productivity-equality trade-off – taxes
cause some agents to perform less total labor as they no longer
experience an increase in utility. Nevertheless, the government has
managed to find tax schedules that overall cause minimal decrease
in productivity (Figure 2a). As a result, the government manages
to improve on its goal compared to a free market, as shown in Fig-
ure 2c. Note that, because the population and government agents
train simultaneously, an increase in equality does not produce a
clear decrease in productivity. This is because the population agents

are becoming more efficient during training, causing a natural in-
crease in productivity regardless of taxation.

On average, at the end of training, population agents achieve
similar levels of utility in both economic systems, as depicted in
Figure 3. However, the median utility, which could be considered a
more accurate indicator of overall economic happiness, improves
notably with the implementation of taxes, reflecting the increase
in equality shown in Figure 2b.
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Figure 3: Population mean and median episode returns dur-
ing training. The shaded areas represent the standard de-
viation of 15 training runs, in each of which 10 different
environments ran in parallel. At the end of training, the
utility of the population is roughly equal in both economic
systems. However, the median of the population is substan-
tially higher when taxes are introduced – indicating that a
larger share of the population prefers the systems with taxes
in place.

As stated above, default EconoJax uses fixed tax brackets thresh-
olds, allowing the government to set rates within these brackets. For
these experiments, we used three brackets that resemble the Dutch
tax brackets for 2025, scaled down by a factor 100. The resulting
tax schedules, proposed by the government agent, are shown in
Figure 4. Interestingly, the EconoJax government agent produces a
progressive tax schedule, common in many countries around the
world. We often observed this pattern in our experiments, including
those with different population sizes and skill distributions. How-
ever, while less common, degressive tax systems or "M" shaped
systems were sometimes also generated in different runs. In those
runs, the government found an optima by using the tax system to
push the population into working. We should note that all of these
results rely heavily on the choices made in the environment, which
we will discuss further in Section 6.

We further observed that, after training, the government pro-
duced steady tax rates, not changing the rates within a single en-
vironment episode. This is reasonable, given that the economy re-
mained stable – during the simulation, there was neither an influx
nor an outflow of people, and skill levels did not change. Similarly,
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Figure 4: Average produced tax brackets produced by the
government agent. The tax rates are the average tax rates
produced for three different population groupswith different
(but similar) skill distributions. For each skill distribution,
we retrained agents on 5 different seeds and evaluate over 15
different environment seeds each. The error bars indicate the
standard error. We observe a progressive tax system, which
is common in many countries around the globe, and was not
naturally produced in the AI economist.

the population agents also stabilized into a specialized role. Focus-
ing on different tasks like buying and crafting, or gathering and
selling.We also observed a realistic market signal in the average sale
prices for the resources. That is, resources for which a smaller part
of the population had a high skill level became more expensive on
average. We show this, along with specialized action distributions
in Figure 6.

5 MULTI-AGENT METHODS
In this section, we perform additional experiments in EconoJax
with an increasing number of resources. By increasing the number
of resources, the possible variety in agent behavior grows, which
allows us to test the effect of different multi-agent methods in terms
of their diversity.

For these experiments, we inspect three common methods for
multi-agent RL: 1) centralized training, sharing all network pa-
rameters among all agents. Agents will behave differently due to
the different private observations given to the network for each
agent; 2) Independent training, each agent training their own set of
network parameters; 3) In actor-critic methods, where RL agents
train a value- and policy network separately, we can mix both prior
methods by training individual policy networks and a central value
network. Methods utilizing this technique are often referred to as
centralized training, decentralized execution (CTDE) methods. For
this last method, we only consider the naive version in which the
value network observes the same type of observation as the policy
network (with larger batches due to the network observing the
observation for each agent). Although there are more sophisticated
CTDE methods [19] that may obtain higher performance, EconoJax
agents are tasked with mimicking the real world and enhancing
their value network observation arguably degrades their realism.
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(a) Agent Returns (r=4)
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Figure 5: Agent returns with various standard multi-agent
practices for different amount of resources in EconoJax.
Higher resources create a larger action space and more pos-
sibilities for agents to produce diverse behavior. Our results
indicate that centralized training produces roughly the same
behavior compared to training individual networks.

We used PPO [31] as the learning algorithm for all three of our
methods. The independent varient is then sometimes referred to
as iPPO, and the sharing of the value network as MAPPO [36]. In
these experiments, we only consider population agents and dis-
abled taxes. The parameters of the previous experiments shown
in Table 2 are reused with a few exceptions: First, we vary the
number of resources and set 𝑅𝑑 to min(1, 𝑙𝑜𝑔2 (num resources)).
Next, we initialize all skills with a normal distribution around 1.0
with a standard deviation of 1.0 and allow agents to increase their
skill. Whenever an agent gathers or crafts, the respective skill is
increased by 0.5%. This 0.5% bonus shrinks as the agent approaches
the maximum skill level of 5. Additionally, we slightly simplified
the action space by allowing the agents to only place trade orders
for three prices: 3, 6 and 9. Lastly, we increase the network size to
256 nodes per layer for all shared networks.
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Figure 6: Top: three action distributions of different agents in
the same simulation, showcasing specialization in different
tasks, that are beneficial due to their skill level. These three
agents gather and sell, buy and craft, or only trade / perform
no labor. The bottom figure shows prices in an environment
episode, averaged over 15 environments. These environments
were initialized with more agents (roughly 2x) proficient
in gathering resource 1. As we would expect, the average
trading price for this resource is noticeably lower.

Figure 5 showcases the effect of the different methods in Econo-
Jax with 4, and 12 different resources – in which the agents have
a total of 30 and 86 discrete actions, respectively. We can see that
even in larger action spaces, different learning methods achieve
similar returns. Intuitively, however, we expect individually trained
policies to be more diverse [14], as they only learn from their own
observations and rival other agents. In turn, we would assume that
this highly influences the outcome of the simulation. Instead, our
experiments indicate that centralized learning may well be capable
of diverse learning diverse behavior.

Naturally, returns alone could arrive at similar levels via dif-
ferent policies. As such, we additionally measured the spread of
the action distributions of each agent, where we binnend action
types belonging to specific resource types (e.g. binning all sell
resource 1 actions). When averaging these action distributions
over multiple evaluations, we again find no noticeable difference
between the different multi-agent learning methods.

We note that, in order to produce more heterogeneous policies
in centralized trained agents, some works enhance the observations
with an agent id [28]. We included this method in our experiments
and again found no noticeable differences in action distributions
or final returns as shown in Figure 5. In fact, the learning pattern
almost exactly mirrors that of centralized training without agent
ids.

We believe that, given that the state contains sufficient infor-
mation for specialized behavior (in the case of EconoJax likely by
observing the skill levels), centralized training should be effective,
even in large action spaces. Centralized training offers the advan-
tage of reduced computational demands as well as allowing the
population to grow dynamically without the need to heavily retrain
agents.

6 DISCUSSION & FUTUREWORK
EconoJax allows for fast economic simulations when compared to
the AI economist. However, many steps can still be taken to improve
the realism of the simulation. Due to the increased performance,
faster iterations during development are possible, and as such, we
hope EconoJax inspires researchers to use it as a stepping stone for
developing more realistic simulations.

The experiments conducted in this paper highlight emergent
real-world economic behavior. However, this behavior is signifi-
cantly affected by manually set parameters. In particular, the utility
function of the agents has a tunable parameter, and the coins and
labor obtained by each action are set manually as well. All these
options heavily influence the simulation. As such, in addition to
more functionality added to EconoJax, a necessary improvement
would be to align these parameters with the real world, for example
by learning them from real data. Nevertheless, due to the manually
chosen parameters, care must be taken when building and using
simulations such as EconoJax. There is a risk that individuals might
unintentionally or deliberately present certain outcomes as gen-
uine economic effects, even though the simulation was designed to
produce those effects. However, we believe that the current level of
realism in EconoJax is not advanced enough to pose a significant
ethical threat to society.

We experimented with different multi-agent methods and action
space sizes and observed that centralized training may provide
adequate diverse behavior even in action spaces of size 86. Future
work may experiment with even larger experiments and provide a
better metric to measure diversity.

7 CONCLUSION
This paper presented EconoJax, a multi-agent economic simulation
written in JAX. EconoJax is a simulation environment in which
real-world economic behavior naturally occurs without manually
programming specific policies and is largely based on the economy
built in the AI economist [38]. In contrast to the AI economist,
EconoJax allows for fast training of large populations. Compared
to their RLlib CPU-based implementation, we saw training time
improvements of over 2.400 times. We conducted experiments with
population sizes of 100 and found real-world economic behavior
occuring such as specialization, the productivity-equality tradeoff,
and realistic tax schedules andmarket prices. EconoJax can provide a
stepping stone for the development of more realistic economic sim-
ulations. We further showcased how different multi-agent learning
methods did not have a significant effect on the policies produced
after training on varying action space sizes.
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