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ABSTRACT
We consider voting on multiple independent binary issues. In addi-

tion, a weighting vector for each voter defines how important they

consider each issue. The most natural way to aggregate the votes

into a single unified proposal is issue-wise majority (IWM): taking

a majority opinion for each issue. However, in a scenario known as

Ostrogorski’s Paradox, an IWM proposal may not be a Condorcet

winner, or it may even fail to garner majority support in a special

case known as Anscombe’s Paradox.
We show that it is co-NP-hard to determinewhether there exists a

Condorcet-winning proposal even without weights. In contrast, we

prove that the single-switch condition provides an Ostrogorski-free

voting domain under identical weighting vectors. We show that ver-

ifying the condition can be achieved in linear time and no-instances

admit short, efficiently computable proofs in the form of forbidden

substructures. On the way, we give the simplest linear-time test

for the voter/candidate-extremal-interval condition in approval vot-

ing and the simplest and most efficient algorithm for recognizing

single-crossing preferences in ordinal voting.

We then tackle Anscombe’s Paradox. Under identical weight

vectors, we can guarantee a majority-supported proposal agreeing

with IWM on strictly more than half of the overall weight, while

with two distinct weight vectors, such proposals can get arbitrarily

far from IWM. The severity of such examples is controlled by the

maximum average topic weight �̃�𝑚𝑎𝑥 : a simple bound derived from

a partition-based approach is tight on a large portion of the range

�̃�𝑚𝑎𝑥 ∈ (0, 1). Finally, we extend Wagner’s rule to the weighted

setting: an average majority across topics of at least
3

4
’s precludes

Anscombe’s paradox from occurring.

KEYWORDS
Condorcet; Anscombe; Ostrogorski; Multiple Referenda; Complex-

ity; Forbidden Substructures; Restricted Domains; Single-Crossing

ACM Reference Format:
Carmel Baharav, Andrei Constantinescu, and Roger Wattenhofer. 2025. Con-

dorcet Winners and Anscombe’s Paradox Under Weighted Binary Voting.

In Proc. of the 24th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23, 2025,
IFAAMAS, 9 pages.

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

1 INTRODUCTION
There are numerous scenarios in which people must decide on a

slate of binary issues and come up with a single outcome for each

topic. When political parties form a platform, they must aggregate

their base’s opinions and provide a unified set of stances on nu-

merous separate issues. Similarly, when voters head to the ballot

box for local elections, they typically vote yes or no on a series of

initiatives. The election results in one outcome for each individual

topic. On a smaller scale, a group of flatmates might decide on a

series of unrelated topics and generate a plan for living together.

For example: Should the kitchen be cleaned once a week or twice a

week? Should we get the red couch or the yellow couch?

The most natural way to decide the final outcome in all of these

scenarios is to take the majority opinion on each individual topic

and aggregate them into a unified party platform, legislative agenda,

or roommate contract. However, this approach can yield a surpris-

ingly undesirable outcome: a majority of the voters may actually be

more unhappy with this result than if the opposite decision were

made on every issue (known as Anscombe’s Paradox [1]). How can

this arise? Consider a setting with 5 voters and 3 independent bi-

nary issues. The following table illustrates the preferences of each

voter on each of the 3 issues: +1 is in favor and −1 is against:
Issue 1 Issue 2 Issue 3

𝑣1 +1 -1 -1
𝑣2 -1 +1 -1
𝑣3 -1 -1 +1
𝑣4 +1 +1 +1
𝑣5 +1 +1 +1

Now, assume each voter would only vote in favor of proposals

that they agree with on more than half of the issues (in the paper,

a voter will abstain when agreeing with a proposal on exactly

half of the issues). Taking the majority on each topic yields the

proposal (+1, +1, +1). However, voters 1, 2, and 3 all disagree with

a majority of this proposal. Therefore, if we posed this proposal for

a vote, a majority of voters would vote against it. If, instead, we

posed the opposite proposal (−1,−1,−1), then voters 1, 2, and 3

would support it, and it would win the majority vote. Hence, in this

scenario, the proposal comprising the minority opinion on each

topic wins the majority vote, whereas the proposal comprising the

majority opinions fails to get majority support.

An equivalent view on the previous scenario positions Anscombe’s

paradox in a broader context: instead of assuming a vote on a

single proposal with people voting for/against it, let us assume

that the vote happens between two competing proposals 𝑝 and

𝑝′ and each voter votes for whichever of 𝑝 and 𝑝′ agrees with
their views on more topics, abstaining in case of equality. Seen

as such, Anscombe’s paradox is the situation where an issue-wise
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majority (IWM) proposal 𝑝 loses the majority vote against 𝑝′ = 𝑝 ,

defined as the opposite proposal of 𝑝 . A less extreme variant of the

paradox, known as Ostrogorski’s paradox [32] happens when an

IWM proposal 𝑝 loses against some proposal 𝑝′, not necessarily 𝑝 .
Settling on the IWM proposal in such cases can lead to daunting

situations where one of its opposers calls a final vote between 𝑝

and 𝑝′ that “surprisingly” unveils general dissatisfaction with what

was otherwise a perfectly democratically chosen outcome.

Consequently, multi-issue aggregation mechanisms need to bal-

ance the tension between two majoritarian processes: majority on

the individual topics and majority when proposals are compared to

one another. In terms of the first, the chosen proposal should ideally

stay somewhat close to IWM. In terms of the second, the chosen

proposal should not be easily refuted by calling a vote against some

other proposal.

Even when voters consider the issues to be of equal importance

in their decision-making, we get paradoxical situations. However, in

reality, voters rarely consider all issues to be equally important and

often disagree on their importance; e.g., a Pew Research study from

June 2023 indicated that in the United States, there were massive

differences in perceived issue importance along partisan lines [33].

Some voting advice applications already attempt to account for

personalized issue-importance, such as Smartvote [3]. Data from

these applications can not only help assess how the current parties

are aligning with the populace [5], it can also suggest potential new

party platforms. Such pre-existing infrastructure to get data on both

voter opinions and issue importance underscores the pertinence of

issue weights to modeling this problem setting.

1.1 Our Contribution
We study the aggregation of opinions on multiple independent

binary issues with respect to two measures of majoritarianism:

agreement with issue-wise majority and success in pairwise pro-

posal comparisons. Our analysis considers two weighting models:

external weights and internal weights. In the former, the policy-

maker sets a weight to each issue reflecting its relative importance,

and voters use weighted agreement when comparing any two pro-

posals. The latter is the same, but each voter is free to choose their

own weighting vector. We use the “unweighted setting” to refer to

the edge case where issues are equally-weighted.

1.1.1 Condorcet winners. In the first part of the paper, we focus on

the complexity of determining a Condorcet-winning proposal: a pro-
posal that does not lose in a direct vote against any other proposal.

Under external weights, we find that any Condorcet winner has to

be an IWM proposal, while this does not extend to internal weights.

However, even in the unweighted setting with an odd number of

voters, where the IWM proposal is unambiguous, checking whether

this proposal is a Condorcet winner is co-NP-hard (answering an

open question in [13]).

An Ostrogorski-free domain. To mitigate this hardness result,

it would be appealing to identify a large set of instances for which

IWM proposals are Condorcet winners (i.e., Ostrogorski’s paradox

does not occur). If membership to this set could also be efficiently

verified, this would allow for practically certifying “safe instances”

where issue-wise majority is the right choice. We achieve this by

the single-switch condition of Laffond and Lainé [24]: a preference

matrix over ±1 is single-switch if it admits a single-switch presenta-
tion — a way to permute and potentially negate some columns such

that +1 entries on each row form a prefix or a suffix. They show that

for the unweighted case, this condition implies that Ostrogorski’s

paradox does not occur. We extend and simplify their analysis to

show that the same holds under external weights (but not always

for internal weights). We then provide a linear-time algorithm for

checking whether the preference matrix is single-switch and prove

that no-instances admit short proofs of this fact in the form of small

forbidden subinstances (that can also be identified in linear time by

a black-box reduction to the recognition problem which we have

not encountered before).

Secondary implications. Along the way, in this part, we make

multiple secondary contributions: (i) we uncover an interesting

topological connection: the set of single-switch presentations of a

single-switch matrix can be compactly represented as the union of

two mirror-image Möbius strips; (ii) our recognition algorithm for

single-switch matrices proceeds by reducing to checking whether

the columns of a matrix can be permuted so that the ones on each

row form a prefix or a suffix — while a linear-time algorithm is

known for this [15],
1
it relies on rather complex machinery — we

instead give a much simpler direct algorithm with the same guaran-

tees; (iii) our simpler algorithm can be adapted to yield the simplest

and at the same time most efficient algorithm for checking the

single-crossing condition in ranked social choice [16]. Similarly to

the single-switch condition, the latter also admits a characteriza-

tion in terms of small forbidden substructures [10], and finding

such forbidden substructures can be achieved within the same time

complexity using our black-box technique, a result which to the

best of our knowledge is new.

1.1.2 Representative majority-supported proposals. Settling on a

Condorcet-winning proposal would be ideal, especially under ex-

ternal weights where such proposals are by default IWM proposals,

but in the absence of Condorcet winners, a compromise is needed.

In fact, the hardness of checking whether an IWM proposal is a

Condorcet winner can be seen positively: it is computationally de-

manding to find the proposal that defeats it, so we need not fear a

vote being called against the defeating proposal. Hence, it is rea-

sonable to relax the demanding Condorcet condition: the chosen

proposal should, at the least, not lose against its opposite — or, in

the language of our first formulation of Anscombe’s paradox above,

should garner majority support. In the second part of the paper,

we explore existence guarantees for majority-supported propos-

als that are as close as possible to an IWM proposal 𝑝𝐼𝑊𝑀 . So far,

this has been studied in the unweighted model [13, 20]: a weakly

majority-supported proposal agreeing in strictly more than half of

the issues with 𝑝𝐼𝑊𝑀 exists and can be found in polynomial time,

while achieving better guarantees is NP-hard. The word “weakly”

can be dropped if majority is strict/unambiguous on at least one

issue, i.e., some column of the preference matrix has differing num-

bers of +1’s and −1’s. We will be interested in the more complex

weighted case.

External weights. We provide a matching guarantee to the un-

weighted case, showing that there always exists a weakly majority-

supported proposal with strictly more than half the total weight in

1
Under the name of recognizing voter/candidate-extremal-interval preferences.
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topics agreeing with 𝑝𝐼𝑊𝑀 . Under a simple condition on certain

higher-weight issues, we can also drop the word “weakly.”

Internal weights. In sharp contrast, with as few as two different

weight vectors, we construct families of instances where the dis-

tance between every weakly majority-supported proposal and the

unique IWM proposal gets arbitrarily large. The severity of such

examples is controlled by the maximum average topic weight �̃�𝑚𝑎𝑥 :

we give a simple bound derived from a partition-based approach

that is tight on a large portion of the range �̃�𝑚𝑎𝑥 ∈ (0, 1).
More paradox-free instances. Finally, we generalize Wagner’s

Rule of Three-Fourths [36] for both external and internal weights:

if the average weighted majority on the issues is at least
3

4
, then

Anscombe’s Paradox cannot occur. Without loss of generality, if

+1 is a majority opinion on each topic, this translates to the total

weight of +1’s in the preference matrix being at least
3

4
of the total

weight. A stronger condition precludes Ostrogorski’s paradox under

external weights: if on each column the relative weight of +1’s is
at least

3

4
of that column’s total weight. This surprisingly simple

check is a counterpart to the single-switch condition, once again

giving a convenient characterization for a whole class of instances

in which returning an IWM proposal is always a good choice.

1.2 Further Related Work
Variations on the question of how best to reach consensus on a

series of issues have been studied thoroughly. We first go over

models where all topics are considered equally important.

Approval voting is a popular mechanism that is frequently used

for single-winner and multi-winner elections alike [7, 18]. Here,

each participant indicates their approval for a subset of candidates.

In contrast to our setting, not expressing the approval of a candidate

does not give the same signal as voting for the “no” stance on an

issue (which is a vote for the logical negation of the issue) [23].

Another related field of study is judgment aggregation, where

a series of judges have viewpoints on multiple topics, but there is

external logical consistency required between the topics [29]. As in

our problem, a reasonable method of reaching consensus is to take

the majority opinion on each topic. However, the outcome may fail

to be logically consistent — this is the Discursive Dilemma, and can

occur with as few as 3 judges and 3 topics [22]. There has been

some investigation into conditions that avoid this paradox, like

List’s unidimensional alignment [28],2 and other similar paradoxes

under the name of compound majority paradoxes [30].
Our problem can also be viewed as a special instance of voting in

combinatorial domains: multiple referenda with separable topics [9].

Multiple works explored generalizations of Anscombe’s paradox

and gave further impossibility results [4, 21], e.g., relating to the

Pareto optimality of aggregation rules [31].

Significant work has also been done to characterize when such

paradoxes cannot occur.Wagner proposed the Rule of Three-Fourths

[36], preventing Anscombe’s paradox, as well as a generalization

[37]. Laffond and Lainé showed that if no two voters disagree on

too many issues, then Anscombe’s is prevented [25], and for single-
switch preferences, Ostrogorski’s does not occur [24].

2
The unidimensional alignment condition might appear to closely resemble the single-

switch condition, as it essentially requires that the transposed preference matrix be

single-switch. However, this is not equivalent, as rows and columns play different

roles — issue-wise majority aggregates along columns, not rows.

We now survey proposals to augment various voting systems

with weights, allowing voters to express their degrees of interest

or investment in the topics. Storable voting allows participants to

delay using their vote in a given election, and accumulate votes to

use in later elections that they have more stake in [12]. Quadratic

voting proposes a somewhat similar system in which people are

given an allotment of vote credits, and before a given election can

buy a certain number of votes [26]. Both of these systems main-

tain that voters will use more votes for elections in which they

feel strongly and believe they are likely to be pivotal in. Uckelman

introduces a framework using goalbases to express cardinal (nu-

meric) preferences over a combinatorial voting domain [35]. This,

however, loses information by abstracting away the separability of

issues: for us, the cardinal preferences are induced by the weighted

Hamming distance. Lang also considers augmenting combinatorial

voting with preference weights and provides several computational

complexity results [27]. Satisfaction approval voting [8] modifies

approval voting by spreading a voter’s total weight equally over all

of the candidates they approve of. Finally, there is recent interest

in studying how voters have varying stakes in elections and how

to accommodate these stakes to limit distortion [11, 19].

2 MODEL AND NOTATION
For any non-negative integer𝑚, write [𝑚] := {1, . . . ,𝑚}. Given a

real number 𝑥 , write sgn(𝑥) ∈ {−1, 0, 1} for its sign. Note that for
any two reals 𝑥,𝑦, we have that sgn(𝑥 · 𝑦) = sgn(𝑥) · sgn(𝑦).

We consider a setting with 𝑛 voters and 𝑡 independent, binary

issues/topics. The decision space for each issue is B := {±1}. Each
voter 𝑖 ∈ [𝑛] is modeled as a dimension-𝑡 vector 𝑣𝑖 ∈ B𝑡

indicating

for each issue 𝑗 ∈ [𝑡] the opinion/preference 𝑣𝑖, 𝑗 ∈ B of voter 𝑖

on issue 𝑗 . We call the matrix P = (𝑣𝑖, 𝑗 )𝑖∈[𝑛], 𝑗∈[𝑡 ] the preference
profile. We also write P = (𝑐1, . . . , 𝑐𝑡 ), where 𝑐1, . . . , 𝑐𝑡 ∈ B𝑛

are

the columns of the matrix.

For each issue 𝑗 ∈ [𝑡], we are consistent with previous litera-

ture [13, 20, 36, 37] and define the majority𝑚 𝑗 ∈ [0, 1] on issue 𝑗

to be the fraction of voters that prefer +1 on it; i.e., the number of

+1’s in 𝑐 𝑗 , divided by 𝑛. If𝑚 𝑗 > 0.5, then the majority opinion on

issue 𝑗 is +1; if𝑚 𝑗 < 0.5, then it is −1, and if𝑚 𝑗 = 0.5, then both

+1 and −1 are majority opinions on issue 𝑗 .

A proposal is a vector 𝑝 ∈ B𝑡
that consists of a decision for each

issue. We write 𝑝 for the complement of proposal 𝑝 , which simply

flips each bit of 𝑝; i.e., 𝑝 = −𝑝 . An issue-wise majority (IWM) is a
proposal 𝑝 where the decision on each topic is a majority opinion

for the topic.

We study two weighting models: external weights and internal
weights. In the former, an externally supplied vector of non-negative

weights 𝑤 = (𝑤1, . . . ,𝑤𝑡 ) summing up to 1 is available, denoting

the importance of each issue as seen collectively by the voters.

The internal weights model generalizes this by having each voter

𝑖 ∈ [𝑛] report an individual vector of weights𝑤𝑖 = (𝑤𝑖,1, . . . ,𝑤𝑖,𝑡 );
i.e., there need no longer be consensus on the importance of any

fixed issue. For internal weights, we write𝑊 for the matrix with

rows 𝑤1, . . . ,𝑤𝑛 . We call the voting instance the pair I = (P,𝑊 )
for internal weights and I = (P,𝑤) for external weights. We will

also talk about the unweighted model, which is simply external

weights with 𝑤 = (1/𝑡, . . . , 1/𝑡), and directly write I = P for it.
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For the remainder of this section, we assume external weights —

the internal weights model requires substantial additional notation

so we postpone it to later on.

For any positive integer𝑚, given two vectors 𝑢, 𝑣 ∈ B𝑚 and a

vector of weights𝑤 ∈ [0, 1]𝑚 with unit sum,wewrite𝑑𝐻 (𝑢, 𝑣,𝑤) :=∑𝑚
𝑗=1𝑤 𝑗 · I(𝑢 𝑗 ≠ 𝑣 𝑗 ) for the𝑤-weighted Hamming distance between

𝑢 and 𝑣 . We omit the𝑤 argument when referring to the unweighted

Hamming distance. For convenience, we write ⟨𝑢, 𝑣⟩𝑤 :=
∑𝑚

𝑗=1𝑤 𝑗 ·
𝑢 𝑗 ·𝑣 𝑗 for the standard𝑤-weighted inner/dot-product. One can easily

show that ⟨𝑢, 𝑣⟩𝑤 = 1 − 2 · 𝑑𝐻 (𝑢, 𝑣,𝑤).
Fix an instance I = (P,𝑤) in the external weights model. For

each voter 𝑖 with vote 𝑣𝑖 we define their individual preference re-
lation ≽𝑖 between proposals. In particular, given two proposals

𝑝, 𝑝′ ∈ B𝑡
, voter 𝑖 weakly prefers 𝑝 over 𝑝′, written 𝑝 ≽𝑖 𝑝′,

iff 𝑑𝐻 (𝑣𝑖 , 𝑝,𝑤) ≤ 𝑑𝐻 (𝑣𝑖 , 𝑝′,𝑤). Note that this is equivalent to

⟨𝑣𝑖 , 𝑝⟩𝑤 ≥ ⟨𝑣𝑖 , 𝑝′⟩𝑤 ⇐⇒ ⟨𝑣𝑖 , 𝑝 − 𝑝′⟩𝑤 ≥ 0. We write ≻𝑖 and
≈𝑖 for the strict and symmetric parts of ≽𝑖 , respectively. We define

the collective preference relation ≽I between proposals: given two

proposals 𝑝, 𝑝′ ∈ B𝑡
, the voters collectively weakly prefer 𝑝 over

𝑝′, written 𝑝 ≽I 𝑝′, iff |{𝑖 ∈ [𝑛] : 𝑝 ≻𝑖 𝑝′}| ≥ |{𝑖 ∈ [𝑛] : 𝑝′ ≻𝑖 𝑝}|.
Note that this is equivalent to

∑𝑛
𝑖=1 sgn(⟨𝑣𝑖 , 𝑝 − 𝑝′⟩𝑤) ≥ 0. Wewrite

≻I and ≈I for the strict and symmetric parts of ≽I , respectively.
A proposal 𝑝 ∈ B𝑡

is a Condorcet winner if for any other proposal

𝑝′ ∈ B𝑡
we have 𝑝 ≽I 𝑝′.

For a voting instance I, Ostrogorski’s paradox occurs if some

IWM proposal 𝑝IWM is not a Condorcet winner, Anscombe’s para-

dox occurs if for some IWM proposal 𝑝IWM we have 𝑝IWM ≻I
𝑝IWM, and the Condorcet paradox happens if there is no Condorcet-

winning proposal.

Full Version. The full version of the paper [2] contains the

material omitted due to space constraints.

3 COMPLEXITY OF DETERMINING A
CONDORCETWINNER

In this section, we prove that it is co-NP-hard to determine whether

an instance I admits a Condorcet-winning proposal, even in the

unweighted setting with odd 𝑛:

Theorem 1. Deciding whether an instance I = P admits a Con-
dorcet winner is co-NP-hard in the unweighted setting with odd 𝑛.

This could be surprising given the following observation of [24]

for the unweighted model, which we extend to external weights:

Lemma 2. Consider an external-weights instanceI such that 𝑝 ∈ B𝑡

is a Condorcet winner for I. Then, 𝑝 is an IWM for I.

Proof. Assume the contrary, then there is an issue 𝑗 ∈ [𝑡] such
that 𝑝 𝑗 is not amajority opinion on issue 𝑗 . Consider the proposal 𝑝∗

obtained from 𝑝 by flipping 𝑝 𝑗 . Then, 𝑝
∗ ≻I 𝑝, a contradiction. □

Lemma 2 shows that one can restrict the search space for Con-

dorcet winners to IWM proposals. In the unweighted setting with

odd 𝑛, there is a single such proposal, which we can assume with-

out loss of generality to be 1 ∈ B𝑡
. Nevertheless, even under these

conditions, we will show that checking whether 1 is a Condorcet
winner is co-NP-hard, or, equivalently, checking whether 1 is not a
Condorcet winner is NP-hard. The latter occurs if and only if there

is a proposal 𝑝 ∈ B𝑡
such that 𝑝 ≻I 1, which, recall, means that

strictly more voters 𝑖 ∈ [𝑛] prefer 𝑝 ≻𝑖 1 than 1 ≻𝑖 𝑝 . Hence, it
suffices to prove that the following problem is NP-hard:

Problem “MAJOR”
Input: Instance I = P in the unweighted setting with odd

𝑛 such that 1 is the issue-wise majority.

Output: Does there exist a proposal 𝑝 ∈ B𝑡
s.t. 𝑝 ≻I 1?

To show its hardness, we need the following auxiliary problem:

Problem “UNANIM”
Input: Voting instance I = P in the unweighted setting.

Output: Does there exist a proposal 𝑝 ∈ B𝑡
s.t. 𝑝 ≻𝑖 1 for

all 𝑖 ∈ [𝑛] (to be read “𝑝 unanimously defeats 1”)?

UNANIM is NP-hard [14, Theorem 2], but the proof in [14] is

relatively complicated: we give a simpler one in the full version by

noting the equivalence to choosing a subset of columns of P that

sum up to a negative amount on each row (we also give a similar

reformulation of MAJOR for the interested reader).

Lemma 3. MAJOR is NP-hard.

Proof. We reduce from the NP-hard problemUNANIM. Consider

an instance I = P of UNANIM with 𝑛 voters. If there is an issue

𝑗 ∈ [𝑡] disapproved by all voters in P, then P is a yes-instance of

UNANIM: all voters prefer the proposal with +1 in all coordinates

except the 𝑗-th to proposal 1. This case can be easily detected in

polynomial time, so we henceforth assume the contrary.

We build an instance I′ = P′
of MAJOR from P by adding 𝑛 − 1

voters approving all issues. For P′
to be a valid instance for MAJOR

we need that 2𝑛 − 1 is odd (which it is) and that 1 is the issue-wise
majority. The latter holds because at least 𝑛 − 1 + 1 = 𝑛 voters

approve of each issue: the 𝑛 − 1 added ones and at least one from

the first 𝑛 by our assumption. It remains to show that a proposal

𝑝 ∈ B𝑡
unanimously defeats 1 in P iff it majority-defeats 1 in P′

.

Assume 𝑝 ∈ B𝑡
unanimously defeats 1 in P. Then, each of the

first 𝑛 voters in P′
prefers 𝑝 to 1. Since there are only 𝑛 − 1 < 𝑛

other voters in P′
, a majority of the voters in P′

prefer 𝑝 to 1.
Conversely, assume 𝑝 ∈ B𝑡

majority-defeats 1 in P′
. Clearly,

𝑝 ≠ 1 has to hold, so all of the 𝑛 − 1 added voters prefer 1 to 𝑝 . To
counteract this, since 𝑝 ≻I′ 1, the first 𝑛 voters in P′

must prefer

𝑝 to 1, meaning that 𝑝 unanimously defeats 1 in P. □

For completeness, we put the pieces together to give a self-

contained proof of Theorem 1 in the full version.

4 AN OSTROGORSKI-FREE DOMAIN
As we have seen, at least for external weights, a Condorcet-winning

proposal has to be an issue-wise majority proposal. Yet, we proved

that determiningwhether one of them is actually Condorcet-winning

is co-NP-hard, even in the unweighted case with odd 𝑛, where there

is only one such proposal to check. To mitigate this hardness result,

it would be useful if we could identify a large set of instances for

which IWM proposals are guaranteed to be Condorcet-winning, i.e.,

Ostrogorski’s paradox does not occur. Laffond and Lainé [24] intro-

duced the single-switch condition, which achieves exactly this goal

for the unweighted setting. Furthermore, they showed that it is the
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1 2 3 4 5 6

+1 +1 +1 -1 +1 -1
+1 -1 +1 +1 -1 +1
+1 +1 -1 -1 +1 -1

(a) Profile P.

2 1 3 4 5 6

+1 +1 +1 -1 -1 -1
-1 +1 +1 +1 +1 +1
+1 +1 -1 -1 -1 -1

(b) Single-switch presentation of P.

Figure 1: The profile P in Fig. 1a is single-switch because its
columns can be permuted and flipped as in Fig. 1b to ensure
that ones on each row form a prefix or a suffix.

most general condition preventing Ostrogorski’s paradox among

conditions that do not consider the multiplicities of the votes (i.e.,

conditions defining a domain) or whether a vote is negated or not

(i.e., they only look at the set {{𝑣𝑖 , 𝑣𝑖 } | 𝑖 ∈ [𝑛]} and not at how

many times each 𝑣𝑖 or 𝑣𝑖 is repeated). In particular, if an instance

in the unweighted model is not single-switch, then it is possible

to add copies of some of the votes 𝑣𝑖 (or their negations 𝑣𝑖 ) so that

some issue-wise majority proposal is not a Condorcet winner. Two

important questions underpinning their condition are: (i) Does it

still guarantee the existence of a Condorcet winner in the (at least

externally) weighted setting? (ii) Is it possible to check whether it

applies in polynomial time? If not, are there short proofs of this

fact? Here, we answer all these questions in the affirmative.

A preference profile (matrix) P = (𝑐1, . . . , 𝑐𝑡 ) is single-switch
(SSW) if we can flip (multiply by −1 all entries in) some columns

and then permute the columns to get a new profile P′
such that +1

entries on every row form either a prefix or a suffix, in which case

we say that P′
is an SSW presentation of P. We allow flipping no

columns or leaving all columns in their original place. Intuitively,

issues are arranged along a left-right axis. Left-wing voters approve

a prefix of issues, with the length depending on their tolerance,

while right-wing voters similarly approve a suffix of issues.
3
See

Fig. 1 for an illustration of the notion. A voting instance I is single-

switch if its preference profile P is single-switch.

4.1 For External Weights Single-Switch
Prevents Ostrogorski’s Paradox

We find that, assuming external-weights, the single-switch condi-

tion guarantees that all IWM proposals are Condorcet winners. To

show this, we first show that every issue-wise majority proposal

does not lose against its opposite, i.e., Anscombe’s paradox does

not occur. We do this by streamlining and adapting the argument

in [24] (which was only for the unweighted model). Because the

single-switch condition is closed under removing issues, the gen-

eral statement then follows easily by noting that, under external

weights, Ostrogorski’s paradox happens if and only if there is a

subset of issues inducing an instance where Anscombe’s paradox

happens. The details are deferred to the full version.

Theorem 4. In the external-weights model, every issue-wise majority
proposal of a single-switch instance is a Condorcet winner.

3
This shares similarities with several related concepts, such as single-peaked and single-

crossing preferences. However, unlike other notions, we allow issues to be flipped

before ordering them, as they can be logically negated without changing meaning.

4.2 Recognizing Single-Switch Profiles
The result in the previous section is particularly appealing: in the

external-weights model, if the preferences are single-switch, any

issue-wise majority proposal is a Condorcet winner. This bypasses

our previous hardness result in the case of single-switch preferences.

However, this is only useful provided one can quickly tell whether a

given profile P is single-switch or not. In this section, we show that

this can be determined in linear time, i.e., 𝑂 (𝑛𝑡). For yes-instances,
our algorithm also determines an SSW presentation P′

(implicitly

also the permutation and flips used to obtain it). Given P′
, we also

characterize the set of all SSW presentations as the union of two

“orbits” around P′
and its column-reversal. These orbits can be

attractively interpreted topologically as two mirror-image Möbius

strips. To begin, we need the following observation following easily

from the case 𝑛 = 1. See the full version for the proof.

Lemma 5. Consider a profile P admitting an SSW presentation P′ =
(𝑐1, . . . , 𝑐𝑡 ). Then, P′

𝑟 := (𝑐2, . . . , 𝑐𝑡 , 𝑐1) is also a SSW presentation
of P. Furthermore, any 𝑡 (circularly) consecutive columns in P′′

:=

(𝑐1, . . . , 𝑐𝑡 , 𝑐1, . . . , 𝑐𝑡 ) form an SSW presentation of P.

Hence, any SSW presentation P′
of a profile P corresponds

to a set of 2𝑡 such presentations that we call the orbit 𝑂P′ of P′
.

Formally, these are the 2𝑡 profiles that can be obtained by taking 𝑡

(circularly) consecutive columns in P′′
in the above. Note that the

orbits of any two SSW presentations either coincide or are disjoint,

so the set of all orbits partitions the set of SSW presentations of

P. Also, the 2𝑡 profiles in 𝑂P′ are pairwise distinct, which can

be easily seen by considering the case 𝑛 = 1, under which P′′
is

circularly equivalent to a list of 𝑡 minus ones followed by 𝑡 ones.

This reasoning additionally allows us to assign to each orbit a

representative, namely the profile with all −1’s on the first row:

Corollary 6. Every orbit contains exactly one profile where the first
row is all −1’s.

Orbits can be understood through a topological lens: For the

orbit 𝑂P′ of P′ = (𝑐1, . . . , 𝑐𝑡 ) take an 𝑛 × 𝑡 rectangular piece of

paper and write the columns 𝑐1, . . . , 𝑐𝑡 on the front and 𝑐1, . . . , 𝑐𝑡
on the back, such that for each 𝑖 ∈ [𝑡], column 𝑐𝑖 on the front aligns

with column 𝑐𝑖 on the back. Then, give the paper a length-wise

half-twist and glue the left and right sides to form a surface known

as a Möbius strip: see Fig. 2. Cutting along the width of the strip

between any two columns recovers an 𝑛 × 𝑡 piece of paper with

one SSW presentation on one side and its opposite on the other

side. In high-level terms, each orbit is topologically a Möbius strip.

To check whether a profile P is single-switch, by Corollary 6,

it suffices to check for presentations with all −1’s in the first row:

all other presentations are generated by the orbits of such presen-

tations. There is a simple strategy to achieve this: flip columns in

P to make the first row all −1’s, and then check whether columns

in the resulting profile can be permuted to ensure that ones on

each row form a prefix or a suffix. This amounts to recognizing

single-switch-no-flips profiles: A profile P is single-switch-no-flips
(SSWNF) if its columns can be permuted to get a new profile P′

such that +1 entries on every row form either a prefix or a suffix,

in which case we say that P′
is an SSWNF presentation of P.

Recognizing single-switch-no-flips profiles. Telling whether
a profile P = (𝑐1, . . . , 𝑐𝑡 ) is single-switch-no-flips can be achieved
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Figure 2: Möbius strip of orbit 𝑂P′ for P′ = (𝑐1, . . . , 𝑐10). We
start with a rectangular piece of paper of length 10 and write
(𝑐1, . . . , 𝑐10) on the (green) front side and (𝑐1, . . . , 𝑐10) on the
(red) backside. We then give the paper a length-wise half-
turn and glue the endpoints (bold strip). This gives raise to a
surface with a single continuous side.

by appending a negated copy of P underneath [15] and running

a solver for the Consecutive Ones Problem (C1P), which can be

solved in 𝑂 (𝑛𝑡) time [6], implying the same about our problem.

However, such solvers are complicated and notoriously error-prone:

most available implementations fail on at least some edge cases

[17]. Moreover, reducing to C1P does not utilize the additional

structure present in our problem and hence does not shed light

on the structure of all solutions, as we set out to do. We give a

much simpler algorithm achieving the 𝑂 (𝑛𝑡) time-bound: Find an

index 𝑥 maximizing𝑑𝐻 (𝑐1, 𝑐𝑥 ). Then, sort (using Counting Sort) the
columns based on their Hamming distance from 𝑐𝑥 to get a profile

P′ = (𝑐′
1
, . . . , 𝑐′𝑡 ) where𝑑𝐻 (𝑐𝑥 , 𝑐′𝑖 ) ≤ 𝑑𝐻 (𝑐𝑥 , 𝑐′𝑖+1) for 𝑖 ∈ [𝑡−1] (i.e.,

ties in Hamming distance can be broken arbitrarily). We claim that

either P′
is the unique SSWNF presentation of P (up to reversing

the order of the columns), or there is no such presentation, so we

can easily check in additional 𝑂 (𝑛𝑡) time whether the candidate

solution works. All required claims are shown in the full version:

Theorem 7. There is a simple𝑂 (𝑛𝑡) algorithm computing (or decid-
ing the inexistence of) an SSWNF presentation of a profileP. Moreover,
if it exists, this presentation is unique up to reversing column order.

The full version also provides a much ampler discussion of re-

lated work for this sub-problem, including the relation between our

algorithm and previous algorithms for recognizing single-crossing
preferences. As a bonus, it gives a similar simpler, more efficient

algorithm for recognizing single-crossing preferences, running in

time 𝑂 (𝑛𝑡
√︁
log𝑛), improving state of the art [16, Algorithm 4].

Putting it together. To decide whether a profile P is single-

switch, we flip columns in P to get a profile P′
with only −1’s

in the first row and then use the algorithm in Theorem 7 to find

an SSWNF presentation P′′
of P′

(and hence also P). If it exists,

this presentation is unique up to column reversal, so we can also

characterize the set of all SSW presentations of P by unioning the

orbits of P′′
and its column-reversal. Note that these two orbits

may coincide for pathological input profiles P.

Theorem 8. There is an𝑂 (𝑛𝑡) algorithm computing (or deciding the
inexistence of) an SSW presentation of a profile P. If the algorithm
returns a presentationP′′, letP′′

𝑟 beP′′ with the order of the columns
reversed, then the set of all SSW presentations of P is 𝑂P′′ ∪𝑂P′′

𝑟
.

4.3 Forbidden Subprofiles Characterization of
Single-Switch Preferences

Whenever the single-switch condition is not satisfied, it would be

useful if there were a short proof of this fact: a small subprofile

that is not single-switch. Formally, a profile/matrix P contains

a profile/matrix P′
as a subprofile/submatrix if we can remove

(possibly zero) rows and columns from P to get P′
up to permuting

rows and columns. Note that existence is not immediate: there could

exist arbitrarily large matrices not satisfying the condition but all

of whose proper submatrices do. We show that this is not the case:

either the condition holds, or there is a 3 × 4 or 4 × 3 submatrix

witnessing that this is not the case, as in the following:

Theorem 9. A profile P is single-switch if and only if it does not
contain as a subprofile P𝑎

1
,P𝑎

2
and any profile that can be obtained

from them by flipping rows and columns:

P𝑎
1
=


-1 -1 -1 -1
+1 +1 -1 -1
+1 -1 +1 -1

 P𝑎
2
=


-1 -1 -1
+1 -1 -1
-1 +1 -1
-1 -1 +1


We prove Theorem 9 in the full version by combining a similar

characterization for single-switch-no-flips profiles given in [34] (un-

der the name voter/candidate-extremal-interval preferences) with
our insight that to go to the no-flips version it suffices to make one

row all −1’s. Henceforth, we call the 3 × 4 and 4 × 3 preference pro-

files in the theorem above forbidden subprofiles. Then, the theorem
says that P is single-switch if and only if it contains no forbidden

subprofiles. Note how this implies that single-switch profiles are

relatively rare: the probability that a random binary 𝑛 × 𝑡 matrix is

single-switch tends to zero as 𝑛 and 𝑡 tend to infinity.

Finding forbidden subprofiles. So far, we have seen that non-

membership to the class of single-switch preferences admits short

proofs, but can such proofs also be constructed efficiently? Given

some no-instance, it is straightforward to determine which forbid-

den subprofiles occur in it in time 𝑂 (𝑛3𝑡4 + 𝑛4𝑡3). In contrast, our

recognition algorithm runs in time 𝑂 (𝑛𝑡), but does not identify a

forbidden subprofile. We will now assume our 𝑂 (𝑛𝑡) recognition
algorithm as a black box and show how to identify a forbidden

subprofile for a given no-instance P in time 𝑂 (𝑛𝑡).
Let us first describe an 𝑂 (𝑛2𝑡 + 𝑛𝑡2) approach: one at a time,

try to remove each row and each column of P, i.e., 𝑛 + 𝑡 removal

attempts; if doing somakes the resulting profile a yes-instance, undo

the removal, and otherwise let it persist. At the end, the ensuing

no-instanceP′
is a subprofile ofP whose proper subprofiles are yes-

instances, so P′
is a forbidden subprofile, completing the argument.

We now modify the previous idea to run in time𝑂 (𝑛𝑡) by remov-

ing multiple rows/columns at a time.Wewill first only remove rows,

and then, starting from the resulting profile, only columns. The
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reasoning for columns is entirely analogous, so we only describe

the procedure for rows: partition the rows into 5 groups𝐺1, . . . ,𝐺5,

each of size roughly 𝑛/5. Because all forbidden subprofiles are of

size 3×4 or 4×3, any occurrence of a forbidden subprofile in P only

uses rows from at most 4 of the 5 groups. Consequently, we can

find a group𝐺𝑖 such that removing all rows in𝐺𝑖 from P keeps the

property that P is a no-instance. Doing so requires at most 5 calls

to the recognition algorithm, so it can be done in overall time𝑂 (𝑛𝑡).
Ignoring for brevity the cases where 𝑛 is not divisible by 5, this

reasoning shows how to reduce 𝑛 to 4𝑛/5 in time 𝑂 (𝑛𝑡). Applying
the same reasoning iteratively until 𝑛 goes below 5 takes total time

𝑂 (𝑛𝑡) because the geometric series

∑∞
𝑖=0 (4/5)𝑖 converges.

Theorem 10. Given a non-single-switch profile P, a forbidden sub-
profile of P can be determined in time 𝑂 (𝑛𝑡).

We note that the previous idea applies more broadly; e.g., for

single-crossing preferences, which admit a characterization in terms

of two small forbidden subinstances [10], our 𝑂 (𝑛𝑡
√︁
log𝑛) recog-

nition algorithm can be bootstrapped to also produce a forbidden

subinstance for no-instances within the same time bound. A formal

statement and more details can be found in the full version.

5 ANSCOMBE’S PARADOX
When preferences are not single-switch, determining whether an

IWM proposal is a Condorcet winner is co-NP hard. In light of

this, we focus on the most diabolical subset of Ostrogorski paradox

instances: those inducing Anscombe’s paradox (where an IWM

proposal is defeated by its complement, or, equivalently, an IWM

proposal fails to get majority support). If Anscombe’s paradox oc-

curs, a natural question is: “How close can we get to any given

IWM while still requiring that the proposal gets majority support?”

We first explore this question under external weights, i.e., in

instances I = (P,𝑤) where all voters share the same, unit-sum

weights vector𝑤 . Then, we introduce the necessary notation and

study it for internal weights. Finally, we give a simple characteriza-

tion of a broad swath of instances that avoid Anscombe’s paradox

entirely for internal weights. We assume throughout that 𝑡 > 1, as

Anscombe’s paradox does not occur with one topic, and without

loss of generality that 𝑚 𝑗 ≥ 0.5 for all 𝑗 ∈ [𝑡] (i.e., that +1 is a

majority opinion on all topics).

Formally, some voter 𝑖 supports (approves of) a proposal 𝑝 if

𝑑𝐻 (𝑣𝑖 , 𝑝,𝑤) < 1/2, opposes (disapproves of) 𝑝 if 𝑑𝐻 (𝑣𝑖 , 𝑝,𝑤) > 1/2,
and is indifferent to 𝑝 if 𝑑𝐻 (𝑣𝑖 , 𝑝,𝑤) = 1/2. A proposal is strictly
majority-supported if more people support it than oppose it and

weakly majority-supported if no more people oppose it than sup-

port it. Our definition of majority support matches [13] but differs

from [20] (where indifferent voters count towards the proposal’s

support).

5.1 External Weights
In the unweighted case, it is straightforward to argue that for any

IWM, there exists a weakly majority-supported proposal within

distance ≤ 1

2
+ 1

2𝑡 because at least one proposal in every complemen-

tary pair (𝑝, 𝑝) gets weak majority support (and at least one pair

satisfies the distance bound for both proposals). A slightly better

guarantee of distance < 1

2
holds by a more difficult proof [13, 20].

For external weights, the complementary pairs argument no longer

gives a bound close to
1

2
if no subset of topic weights sum up close

to
1

2
. One may hope to reduce to the unweighted case by splitting

topics into multiple equal-weight topics and use the < 1

2
bound

there, but the resulting majority-supported proposals may have

different values for an original topic’s clones, making it hard to

translate to proposals in the original instance. Despite these set-

backs, we surprisingly find that the < 1

2
guarantee still holds for

external weights. Our proof, deferred to the full version, simplifies

and adapts the argument in [13]. We also guarantee strict majority

support if there is a strict majority in at least one relevant topic,
roughly meaning topics with high enough weight to be the tipping

point in a vote (see the full version for a formal definition).

Theorem 11. For any I = (P,𝑤) and 𝑝𝐼𝑊𝑀 , there is a weakly ma-
jority supported proposal 𝑝 with 𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 ,𝑤) < 1/2. If majority
is strict in any relevant topic, “weak” can be replaced with “strict”.

5.2 Internal Weights
We now explore a model where individuals can have unique weight

vectors, expressing not only diverse preferences on issue outcomes

but also differing opinions on relative topic importance.

Internal Weights Model. In the internal weights model, an

instance I = (P,𝑊 ) consists of a preference profile P and a weight

profile𝑊 with rows𝑤1, . . . ,𝑤𝑛 where each weight vector𝑤𝑖 corre-

sponds to voter 𝑖 , is non-negative, and sums to 1. The average weight
vector is defined as �̃� := 1

𝑛

∑𝑛
𝑖=1𝑤𝑖 . Zero entries in the average

weight vector correspond to issues that no voters placed any weight

on (and hence can be ignored). We assume no such topics exist with-

out loss of generality. We define the majority for a given topic 𝑗 to

be𝑚 𝑗 :=
1

𝑛�̃�𝑗

∑𝑛
𝑖=1𝑤𝑖, 𝑗 · I(𝑣𝑖, 𝑗 = +1). This is the fraction of voter

weight placed on that issue that prefers +1. Note that this agrees
with our previous definition for external weights (where it was just

the fraction of voters that prefer +1 on that topic). The average ma-

jority for a given preference profile is defined as �̃� :=
∑𝑡

𝑗=1 �̃� 𝑗𝑚 𝑗 .

This naturally weights consensus on issues proportionally to how

important those issues are to the population.

Under external weights, we could give a constant upper bound

(Theorem 11) on the minimum distance of somemajority-supported

proposal from an IWM, independent of the weight profile. As we

will see in Theorems 12 and 13, the severity of Anscombe’s Paradox

under internal weights is closely related to the maximum average

topic weight �̃�𝑚𝑎𝑥 (the maximum entry in �̃� ). Formally, we will

upper bound the worst-case IWM distance 𝑔ℓ for instances with
maximum average topic weight �̃�𝑚𝑎𝑥 = ℓ ∈ (0, 1) and selections

of 𝑝𝐼𝑊𝑀 for the instance:

𝑔ℓ := max

I=(P,𝑊 ), 𝑝𝐼𝑊𝑀

𝑠.𝑡 .�̃�𝑚𝑎𝑥=ℓ

(
min

𝑝 weakly majority-supported

𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 , �̃�)
)

We first give a simple upper bound on 𝑔ℓ for ℓ ∈ (0, 1) derived
from a partition-based algorithm. Surprisingly, we then show that

this seemingly weak upper bound is tight for a large portion of

the range �̃�𝑚𝑎𝑥 ∈ (0, 1). Our lower-bound constructions more

strongly imply the existence of instances where all weakly majority-

supported proposals are far from all IWM’s. Fig. 3 provides a sum-

mary of the bounds we give on 𝑔�̃�𝑚𝑎𝑥
.
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Figure 3: A summary of our bounds on 𝑔�̃�𝑚𝑎𝑥
.

Partition-based upper bounds. Theorem 12 guarantees both

the existence of reasonable majority-supported proposals and pro-

vides an algorithm to efficiently recover them.

Theorem 12. We have the following upper bounds on 𝑔ℓ :
• If ℓ ∈ (0, 1/3), then 𝑔ℓ ≤ 1/2 + ℓ/2;
• If ℓ ∈ [1/3, 1/2], then 𝑔ℓ ≤ 1 − ℓ ;
• If ℓ ∈ (1/2, 1), then 𝑔ℓ ≤ ℓ .

In each case, we can compute a weakly majority-supported proposal
𝑝 with 𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 , �̃�) at most the given bound in polynomial time.

The full proof is deferred to the full version, but the intuition

is as follows: for any proposal, either it or its complement will

get weak majority support (potentially both), and for any 𝑝𝐼𝑊𝑀 ,

𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 , �̃�) = 1 − 𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 , �̃�). Therefore, we construct

𝑝 that keeps max{𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 , �̃�), 𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 , �̃�)} small. This is

ultimately equivalent to the partition optimization problem with

the 𝑡 entries in the average weight vector as inputs. Our bounds

are constructive and give the pair (𝑝, 𝑝) achieving the bound.

Lower bounds. By definition, 𝑔ℓ ≤ 1, so the upper bounds in

Theorem 12 might seem fairly weak. However, in Theorem 13, we

show that they are actually tight for many values of ℓ . This implies

that when �̃�𝑚𝑎𝑥 is large, 𝑔�̃�𝑚𝑎𝑥
can get arbitrarily close to 1.

Theorem 13. The following lower bounds for 𝑔ℓ hold:
• If ℓ = 1/(2𝑘 + 1) with 𝑘 ∈ Z≥0, then 𝑔ℓ ≥ 1/2 + ℓ/2;
• If ℓ ∈ (1/2, 1), then 𝑔ℓ ≥ ℓ .

We conjecture that the upper bounds in Theorem 12 are tight

for the remaining values of ℓ , but leave this to future work. The

proof of Theorem 13 is deferred to the full version, but we provide

the construction for ℓ ∈ (1/2, 1) and some intuition here. In the

instance below, we choose 𝑥 large enough such that �̃�𝑚𝑎𝑥 = ℓ and

the first issue holds a strict majority of the weight for all voters.

There are 𝑥 copies of the first voter, and 𝑥 + 1 copies of the second.

P =
(𝑥) ×

(𝑥 + 1) ×

[
+1 +1
-1 +1

]
W =

(𝑥) ×
(𝑥 + 1) ×

[
𝑥+1
𝑥 · ℓ 1 − 𝑥+1

𝑥 · ℓ
𝑥

𝑥+1 · ℓ 1 − 𝑥
𝑥+1 · ℓ

]
In this instance, all voters are essentially “single-issue voters”

on the first topic, but the second type of voters split their weight

slightly more evenly between the two topics. +1 is the weighted

majority opinion on the first topic, but any proposal with +1 for that
topic will not get majority support because voters of the second type

will oppose it. Notably, 1 is the unique IWM in our constructions,

implying there is no majority-supported proposal close to any IWM.

Theorem 13 quashes any hope of improving on Theorem 12

and proving a similar result to the external weights setting (where

𝑔ℓ < 1/2 held for any weights profile). Once voters can have distinct
weight vectors, increasing �̃�𝑚𝑎𝑥 can make the distance between

all majority-supported proposals and IWM proposals arbitrarily

large. We conclude this section by characterizing a group of voting

instances in which Anscombe’s Paradox will not occur.

Condition precluding Anscombe’s Paradox. We find that

generalizations of Wagner’s Rule of Three-Fourths hold in both the

external and internal weights settings:

Theorem 14. If �̃� ≥ 3/4 then Anscombe’s paradox will not occur.
Additionally, if 𝑚 𝑗 ≥ 3/4 for all 𝑗 ∈ [𝑡] in the external weights
setting, then Ostrogorski’s paradox will not occur.

Our proof (deferred to the full version) followsWagner’s original

proof strategy of counting agreement with an IWM in an instance in

twoways: column-wise and row-wise, but is modified to account for

weights. We get the second part of our claim by using the fact that,

under external weights, Ostrogorski’s paradox occurs if and only if

there is a subset of issues inducing an instance where Anscombe’s

paradox occurs.

6 CONCLUSION AND FUTUREWORK
We explored how best to represent the will of voters on multiple,

separable issues when optimizing for two potentially conflicting

ideals: agreement with issue-wise majority and success in pairwise

proposal comparisons. Additionally, we augmented previous multi-

issue voting models to account for non-uniform and individualized

issue importance. We demonstrated that determining whether an

IWM is a Condorcet winner is co-NP hard, but provided an effi-

ciently checkable condition under which Ostrogorski’s paradox

does not occur. We then examined instances where an IWM loses

to the opposing proposal (i.e., Anscombe’s paradox occurs) and

showed how our two weighting models alter our ability to recon-

cile the two objectives. While we now have a rich understanding of

the interaction of these two majoritarian ideals, one could optimize

for different notions of representation in the proposal selection. It

would be interesting to study variants of maximizing total voter

“satisfaction” — the total weight voters have on topics that they

agree with the final proposal on (a weighted version of an objective

proposed in [20]). On the technical side, our work leaves open a

number of interesting questions and gaps: (i) Our Theorem 11 for

external weights is only existential. In contrast, in the unweighted

setting, [13] also provide a polynomial-timemethod to derandomize

the probabilistic argument. Extending this approach to the weighted

setting appears generally more challenging but likely feasible in

pseudo-polynomial time with slightly more involved techniques.

(ii) Paper [13] also shows a hardness result for the unweighted case:

telling whether a proposal achieves more agreement with an IWM

than guaranteed by the probabilistic argument is NP-hard. It would

be interesting to get a similar result for every fixed weights vec-

tor𝑤 . (iii) We have only succeeded in proving that our bounds in

Theorem 12 are tight for some portion of the range �̃�𝑚𝑎𝑥 ∈ (0, 1).
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