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ABSTRACT
Multi-agent reinforcement learning (MARL) requires agents to ex-
plore within a vast joint action space to find joint actions that lead
to coordination. Existing value-based MARL algorithms commonly
rely on random exploration, such as 𝜖-greedy, to explore the en-
vironment which is not systematic and inefficient at identifying
effective actions in multi-agent problems. Additionally, the concur-
rent training of the policies of multiple agents during training can
render the optimisation non-stationary. This can lead to unstable
value estimates, highly variant gradients, and ultimately hinder
coordination between agents. To address these challenges, we pro-
pose ensemble value functions for multi-agent exploration (EMAX).
EMAX is a framework to seamlessly extend value-based MARL
algorithms. EMAX leverages an ensemble of value functions for
each agent to guide their exploration, reduce the variance of their
optimisation, and makes their policies more robust to miscoordina-
tion. EMAX achieves these benefits by (1) systematically guiding
the exploration of agents with a UCB policy towards parts of the
environment that require multiple agents to coordinate. (2) EMAX
computes average value estimates across the ensemble as target
values to reduce the variance of gradients and make optimisation
more stable. (3) During evaluation, EMAX selects actions following
a majority vote across the ensemble to reduce the likelihood of mis-
coordination. We first instantiate independent DQN with EMAX
and evaluate it in 11 general-sum tasks with sparse rewards. We
show that EMAX improves final evaluation returns by 185% across
all tasks. We then evaluate EMAX on top of IDQN, VDN and QMIX
in 21 common-reward tasks, and show that EMAX improves sample
efficiency and final evaluation returns across all tasks over all three
vanilla algorithms by 60%, 47%, and 538%, respectively.
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1 INTRODUCTION
Multi-agent reinforcement learning (MARL) [2] is a common para-
digm to concurrently train autonomous agents in decision-making
tasks that require coordination between agents. To discover such
coordinated actions, agents need to explore the state space and vast
joint action space of the task. However, many value-based MARL
algorithms still rely on random exploration, such as an 𝜖-greedy
policy [38, 43] that is not systematic and so can take many iterations
to discover the optimal behaviour, in particular in states in which
multiple agents need to coordinate their actions [37]. To better
understand this inefficiency, we consider the following example
(Figure 1) in which two agents have to navigate a grid-world to
jointly pick up a heavy object. To learn to pick up the goal object,
agents need to both select the pick-up action in a state where both
agents are next to the object (Figure 1, right). Such coordination
is highly unlikely when following a random exploration policy. In
contrast, the exploration is not required to be coordinated if agents
are not next to the object (Figure 1, left) so random exploration
might not be highly inefficient in this case. This example illus-
trates that random exploration is particularly inefficient in states
in which multiple agents are required to coordinate their actions,
and demonstrates the need for more systematic exploration of such
states. Furthermore, the concurrent training of multiple agents in
MARL and the resulting non-stationarity of the policies of other
agents makes it challenging for agents to robustly learn to solve
the task, and can result in miscoordination between agents [36].

Motivated by these challenges in MARL, we propose ensem-
ble value functions for multi-agent exploration (EMAX), a general
framework to seamlessly extend any value-based MARL algorithms
by training ensembles of value functions for each agent. EMAX
systematically explores states and actions that may require multi-
ple agents to coordinate by following an upper-confidence bound
(UCB) policy [5] over the average and disagreement of value es-
timates across the ensemble. This exploration strategy prioritises
the exploration of actions that appear promising (as measured by
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Figure 1: Motivational example: Two agents (triangles) can
independently explore (left), but they must coordinate to
pick up the object (circle) and complete the task (right).

high average value estimates) and that might require coordination
between agents (as measured by high disagreement in value esti-
mates). Beyond its exploration policy, EMAX computes average
target values across the ensemble to reduce the variance of gradi-
ents and eliminate the need for additional target networks. Lastly,
EMAX selects actions during evaluation by following a majority
vote across the greedy actions of all value functions in the ensemble
to reduce the likelihood of selecting sub-optimal actions.

To evaluate the efficacy of EMAX, we first extend independent
DQN [28, 44] with EMAX and evaluate it in 11 mixed-objective
tasks, in which agents receive individual rewards but must coordi-
nate their actions in some states. In this setting, EMAX improves
the final evaluation returns of IDQN by 185% across all tasks (Sec-
tion 4.1). Afterwards, we focus on the cooperativeMARL setting and
extend IDQN as well as VDN [43] and QMIX [38] with EMAX, and
conduct an extensive evaluation of EMAX in 21 common-reward
tasks across four diverse environments. Across all common-reward
tasks, EMAX improves sample efficiency and final achieved returns
over all three vanilla algorithms (IDQN, VDN, QMIX) by 60%, 47%,
and 538%, respectively (Section 4.1). Lastly, we empirically vali-
date that all three major components of EMAX are essential for
its performance in an ablation study, and further demonstrate the
effects of the proposed exploration policy, target computation, and
evaluation policy (Section 4.2).

2 BACKGROUND
Partially observable stochastic games:We formalisemulti-agent
environments as partially observable stochastic games (POSG) [18,
23] defined by (𝐼 , 𝑆,O,A,T ,O, {R𝑖 }𝑖∈𝐼 , 𝛾). Agents are indexed by
𝑖 ∈ 𝐼 = {1, . . . , 𝑁 }, 𝑆 denotes the state space of the environment
and A = 𝐴1 × . . . ×𝐴𝑁 denotes the joint action space of all agents.
Each agent has access to its local observations 𝑜𝑖 ∈ 𝑂𝑖 . The joint
observation space is denoted O = 𝑂𝑖 × . . .×𝑂𝑁 . T : 𝑆 ×A ↦→ Δ(𝑆)
denotes the transition function of the environment and defines
a distribution of successor states given the current state and the
applied joint action. The observation transition function O : 𝑆×A×
Δ(O) defines a distribution of next joint observations received by
agents given the current state and joint action of all agents. R𝑖 : 𝑆 ×
A×𝑆 ↦→ R denotes the reward function for each agent 𝑖 . Each agent
learns a policy 𝜋𝑖 (𝑎𝑡𝑖 | ℎ

𝑡
𝑖
) conditioned on its history of observations

until time step 𝑡 , i.e. ℎ𝑡
𝑖
= (𝑜0

𝑖
, 𝑜1
𝑖
, . . . , 𝑜𝑡

𝑖
). The objective of a POSG

is for all agents to learn a joint policy 𝜋 = (𝜋1, . . . , 𝜋𝑁 ) such that

the expected discounted returns of each agent are maximised with
respect to the policies of all other agents. The discounted returns
for agent 𝑖 can be written as

E𝑎𝑡
𝑖
∼𝜋𝑖 (ℎ𝑡𝑖 ) ;a𝑡−𝑖∼𝜋−𝑖 (h𝑡−𝑖 )

[ ∞∑︁
𝑡=0

𝛾𝑡R𝑖 (𝑠𝑡 , a𝑡 , 𝑠𝑡+1)
]

(1)

where 𝛾 ∈ [0; 1) denotes the discount factor, a𝑡 = (𝑎𝑡1, . . . , 𝑎
𝑡
𝑁
) and

h𝑡 = (ℎ𝑡1, . . . , ℎ
𝑡
𝑁
) denote the joint action and observation history,

respectively, and subscript −𝑖 denotes all agents but agent 𝑖 . We also
consider the special case of common-reward environments, often
formalised as a Dec-POMDP [6, 30], in which agents collectively
maximise the cumulative discounted sum of shared rewards.

Independent deepQ-networks: Independent deepQ-networks
(IDQN) extends DQN [28] for MARL and independently learns
a value function 𝑄𝑖 [44], parameterised by 𝜃𝑖 , for each agent 𝑖 .
Agents store tuples (𝑠𝑡 , ℎ𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, ℎ𝑡+1) of experience consist-
ing of state 𝑠𝑡 , joint observation history ℎ𝑡 , applied joint action
𝑎𝑡 , received reward 𝑟𝑡 , next state 𝑠𝑡+1, and next joint observation
history ℎ𝑡+1, respectively, in a replay buffer. The value function of
agent 𝑖 is then optimised by minimising the average loss across
sampled batches of experience:

L(𝜃𝑖 ) =
[
𝑟𝑡𝑖 + 𝛾 max

𝑎𝑖 ∈𝐴𝑖

𝑄𝑖 (ℎ𝑡+1𝑖 , 𝑎𝑖 ;𝜃𝑖 ) −𝑄𝑖 (ℎ𝑡𝑖 , 𝑎
𝑡
𝑖 ;𝜃𝑖 )

]2
(2)

with 𝜃𝑖 denoting the parameters of the target network 𝑄 which are
periodically copied from 𝜃𝑖 .

Value decomposition: Independent learning serves as an ef-
fective baseline in many cooperative MARL tasks [37] but suffers
from the multi-agent credit assignment problem, i.e. agents need to
identify their individual contribution to received rewards [15, 38].
Value decomposition algorithms extend IDQN by learning a decom-
posed centralised state-action value function 𝑄tot, conditioned on
the state and joint action of all agents.1 Directly learning such a
value function is often computationally infeasible due to the expo-
nential growth of the joint action space with the number of agents,
so the centralised value function is approximated with an aggre-
gation of individual utility functions of all agents conditioned on
the local observation history. These individual utility functions of
agents estimate their contribution to the centralised state-action
value function and, thus, address the multi-agent credit assignment
problem. All functions are jointly optimised by minimising the
following loss with 𝑦tot denoting centralised target values:

L(𝜃 ) =
[
𝑄tot (𝑠𝑡 , 𝑎𝑡 ;𝜃 ) − 𝑦tot

]2 (3)

Two common value decomposition algorithms are VDN [43] and
QMIX [38] that assume a linear and monotonic decomposition of
the centralised value function, respectively.

3 ENSEMBLE VALUE FUNCTIONS FOR
MULTI-AGENT EXPLORATION

In this section, we present ensemble value functions for multi-agent
exploration (EMAX), a general framework that trains an ensemble
of value functions for each agent in value-based MARL. Formally,
each agent 𝑖 trains an ensemble of 𝐾 value functions {𝑄𝑘

𝑖
}𝐾
𝑘=1 with

1In environments, where the state is not available during training, we use the joint
observation as a proxy for the state.
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Figure 2: Illustration of the components of the EMAX algorithm. Left: UCB exploration strategy for agent 𝑖. Middle: value
estimation with value decomposition. Right: target computation with value decomposition. The value functions of individual
agents are highlighted in green, the exploration policy in red, value decomposition in blue, and target computation in orange.

𝑄𝑘
𝑖
being parameterised by 𝜃𝑘

𝑖
and conditioned on agent 𝑖’s local

observation history. EMAX leverages these ensembles of value
functions to guide the exploration of agents and stabilise their
optimisation. Figure 2 illustrates the exploration policy as well as
the value and target estimation of EMAX. We provide pseudocode
for EMAX in Appendix A.2 In the following, we denote the average
and standard deviation across the ensemble of value functions of
agent 𝑖 with parameters 𝜃𝑖 = {𝜃𝑘𝑖 }

𝐾
𝑘=1 as follows:

𝑄mean
𝑖 (ℎ𝑡𝑖 , 𝑎

𝑡
𝑖 ;𝜃𝑖 ) =

1
𝐾

𝐾∑︁
𝑘=1

𝑄𝑘𝑖 (ℎ
𝑡
𝑖 , 𝑎

𝑡
𝑖 ;𝜃

𝑘
𝑖 ) (4)

𝑄std
𝑖 (ℎ

𝑡
𝑖 , 𝑎

𝑡
𝑖 ;𝜃𝑖 ) =

√√√∑𝐾
𝑘=1

(
𝑄𝑘
𝑖
(ℎ𝑡
𝑖
, 𝑎𝑡
𝑖
;𝜃𝑘
𝑖
) −𝑄mean

𝑖
(ℎ𝑡
𝑖
, 𝑎𝑡
𝑖
;𝜃𝑖 )

)2

𝐾
(5)

Exploration policy: EMAX follow a UCB policy using the aver-
age and standard deviation of value estimates across the ensemble:

𝜋
expl
𝑖
(ℎ𝑡𝑖 ;𝜃𝑖 ) ∈ arg max

𝑎𝑖 ∈𝐴𝑖

𝑄mean
𝑖 (ℎ𝑡𝑖 , 𝑎𝑖 ;𝜃𝑖 ) + 𝛽𝑄

std
𝑖 (ℎ

𝑡
𝑖 , 𝑎𝑖 ;𝜃𝑖 ) (6)

with 𝛽 > 0 denoting a weighting hyperparameter. As measured
by the mean value estimate, this policy guides agents to explore
actions that are deemed promising. Prior work in single-agent RL
already established that the disagreement across an ensemble of
value functions can indicate epistemic uncertainty and the need for
exploration [5, 20, 22]. In this work, we argue that in MARL this
disagreement of value estimates can additionally indicate whether
state-action pairs require agents to coordinate their actions. To see
why, consider states in which multiple agents have to coordinate,
i.e. multiple agents need to select specific actions, to receive a large
reward (as in our motivational example in Figure 1, right). If any
agent deviates from this joint action, the agents receive no reward.
In such states, received rewards for a given action of agent 𝑖 will
vary significantly whenever other agents follow stochastic policies,
since the reward depends on the stochastic actions of other agents.

2Appendices are available at https://arxiv.org/abs/2302.03439.

In contrast, in states where agent 𝑖 receives identical rewards in-
dependent of the actions of other agents (as in Figure 1, left), no
such variability of rewards is experienced. Due to this variability
of rewards (or lack thereof), value estimates across the ensemble
will exhibit high disagreement in states that might require coordi-
nation, and little disagreement in states that might require no or
limited coordination. Therefore, the EMAX exploration policy sys-
tematically focuses the exploration of agents on state-action pairs
that might require coordination in contrast to common random
exploration for value-based MARL such as 𝜖-greedy policies. We
note that the disagreement diminishes throughout training as value
functions and policies converge. Once agents always succeed at
coordinating in a state with such potential, returns will no longer
be variable, and the disagreement of value estimates will reduce.
Furthermore, the disagreement of value estimates also incentivises
the exploration of states with potential for future rather than just
immediate coordination since value functions estimate expected
returns over entire episodes. We empirically validate these effects
and benefits of the EMAX exploration policy in Section 4.2.

Optimisation: To extend IDQN with EMAX, we optimise the
𝑘-th value function of agent 𝑖 by minimising the following loss:

L(𝜃𝑘𝑖 ) = E(ℎ𝑡
𝑖
,𝑎𝑡

𝑖
,𝑟𝑡
𝑖
,ℎ𝑡+1

𝑖
)∼D

[(
𝑟𝑡𝑖 + 𝛾 max

𝑎𝑖 ∈𝐴𝑖

𝑄mean
𝑖 (ℎ𝑡+1𝑖 , 𝑎𝑖 ;𝜃𝑖 )−

𝑄𝑘𝑖 (ℎ
𝑡
𝑖 , 𝑎

𝑡
𝑖 ;𝜃

𝑘
𝑖 )
)2
]

(7)

Computing target values as the average across all value estimates
of the ensemble [22] reduces the computational and memory cost
of training ensemble networks by eliminating the need for target
networks. Additionally, as we empirically show in Section 4.2, these
target values reduce the variability of gradients and improve the
stability of training. Such improved stability is particularly valuable
in MARL where the non-stationarity of the policies of other agents
can otherwise result in unstable or inefficient training [36, 37].

Evaluation policy: Value-based MARL algorithms typically ex-
ploit using the greedy policy with respect to their value function. In
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EMAX, agent 𝑖 selects its action during evaluation using a majority
vote across the greedy actions of all models in its ensemble [31]:

𝜋eval𝑖 (ℎ𝑡𝑖 ;𝜃𝑖 ) ∈ arg max
𝑎𝑖 ∈𝐴𝑖

𝐾∑︁
𝑘=1
[1]A𝑘

opt,𝑖
(𝑎𝑖 )

A𝑘opt,𝑖 = {𝑎𝑖 ∈ 𝐴𝑖 | 𝑎𝑖 ∈ arg max
𝑎′
𝑖

𝑄𝑘𝑖 (ℎ
𝑡
𝑖 , 𝑎
′
𝑖 ;𝜃

𝑘
𝑖 )} (8)

with indicator function [1]A𝑘
opt,𝑖
(𝑎) = 1 for the greedy action(s)

of the 𝑘-th value function of agent 𝑖 and 0 otherwise. Such a pol-
icy decreases the likelihood of taking poor actions because any
individual value function preferring a poor action due to errors
in value estimates does not impact the action selection as long as
the majority of models agree on the optimal action. We empirically
demonstrate the benefits of such an evaluation policy in Section 4.2.

Ensemble value functions:All aforementioned techniques rely
on value functions within the ensemble to be sufficiently diverse
early in training. To ensure such diversity, we employ three tech-
niques: (1) Ensemble models share no parameters and are randomly
initialised. (2) Each model in the ensemble is trained on separately
sampled batches of experiences [22]. (3) Each model is trained on
bootstrapped samples of the entire experience collected [31]. We
provide more details on the bootstrapping procedure in Appendix B.

Value decomposition: So far, we presented EMAX as an exten-
sion of IDQN. We now discuss the application of EMAX to value de-
composition algorithms for common-reward tasks in which agents
suffer from the multi-agent credit assignment problem. In EMAX,
this problem has the additional implication that the exploration
policy defined in Equation (6) does not distinguish which agents
need to coordinate their actions in a particular state. To make sure
that each agent explores states and actions in which that particular
agent’s coordination, rather than any agents’ coordination, is re-
quired, we integrate EMAX into value decomposition algorithms
such as VDN [43] and QMIX [38]. These algorithms enable agents
to learn individual value functions that identify their contribution
to received common rewards. In EMAX, we train an ensemble of
these utility functions for each agent. The parameters of the 𝑘-th
utility function of all agents 𝜃𝑘 = {𝜃𝑘

𝑖
}𝑖∈𝐼 will be optimised to min-

imise Equation (3). For VDN, the decomposition and target value
are defined as follows:

𝑄tot (𝑠𝑡 , 𝑎𝑡 ;𝜃𝑘 ) =
∑︁
𝑖∈𝐼

𝑄𝑘𝑖 (ℎ
𝑡
𝑖 , 𝑎

𝑡
𝑖 ;𝜃

𝑘
𝑖 ) (9)

𝑦tot = 𝑟
𝑡 + 𝛾

∑︁
𝑖∈𝐼

max
𝑎𝑖 ∈𝐴𝑖

𝑄mean
𝑖 (ℎ𝑡+1𝑖 , 𝑎𝑖 ;𝜃𝑖 ) (10)

and for QMIX is defined as follows:

𝑄tot (𝑠𝑡 , 𝑎𝑡 ;𝜃𝑘 ) = 𝑓mix
(
𝑄𝑘1 (ℎ

𝑡
1, 𝑎

𝑡
1;𝜃𝑘1 ), . . . , 𝑄

𝑘
𝑁 (ℎ

𝑡
𝑁 , 𝑎

𝑡
𝑁 ;𝜃𝑘𝑁 );𝜃mix

)
𝑦tot = 𝑟

𝑡 + 𝛾 𝑓mix
©«

max𝑎1∈𝐴1 𝑄
mean
1 (ℎ𝑡+11 , 𝑎1;𝜃1),
. . . ;𝜃mix

max𝑎𝑁 ∈𝐴𝑁
𝑄mean
𝑁
(ℎ𝑡+1
𝑁
, 𝑎𝑁 ;𝜃𝑁 )

ª®¬ (11)

For QMIX, we use a single mixing network and target mixing net-
work with parameters 𝜃mix and 𝜃mix, respectively, to aggregate the
utility estimates for all utility functions in the ensemble.

(a) LBF (b) BPUSH (c) RWARE (d) MPE

Figure 3: Visualisations of four multi-agent environments.

4 EVALUATION
We evaluate EMAX in 11 mixed-objective tasks, in which all agents
receive individual rewards, and in 21 common-reward tasks across
four multi-agent environments shown in Figure 3: level-based
foraging (LBF) [3, 37], multi-robot warehouse (RWARE) [12, 37],
boulder-push (BPUSH) [10], and multi-agent particle environment
(MPE) [25, 29]. In mixed-objective tasks, we evaluate IDQN with
and without EMAX in LBF and RWARE tasks that require a mixture
of cooperation in competition, represented by agents picking up
food either by themselves or collectively in LBF and by agents de-
livering shelves and avoiding to block each others’ path in RWARE.
In common-reward tasks, we evaluate EMAX as an extension of
IDQN, VDN and QMIX. All considered common-reward tasks re-
quire agents to cooperate to achieve high rewards. Additionally,
many of these tasks feature sparse rewards and, thus, are challeng-
ing for exploration, making them particularly suited to evaluate
the benefits of the systematic exploration of EMAX. We provide
detailed descriptions of all environments in Appendix D.1. In the
common-reward setting, we compare EMAX to additional baselines
in three value-based exploration algorithms with MAVEN [26],
CDS [21], and EMC [48], as well as independent and multi-agent
PPO (IPPO and MAPPO) that have been shown to exhibit strong
MARL performance [37, 47]. Lastly, we provide an analysis of each
component of EMAX to investigate our hypotheses on their benefits
and effects, and provide an ablation study (Section 4.2).

Evaluation metrics: We report the mean evaluation returns
as well as 95% confidence intervals computed over five runs in all
individual tasks across both settings. In common-reward tasks, we
report the returns computed over the common rewards, and in
mixed-objective tasks we report the sum of all agents’ evaluation
returns. Following the methodology of Agarwal et al. [1], we report
aggregated normalised evaluation returns3 and performance pro-
files with the interquartile mean (IQM) and 95% confidence intervals
computed over all tasks in each setting. The learning curves indi-
cate the sample efficiency of agents, and performance profiles allow
to compare the distribution of final evaluation returns indicating
the robustness of the final policies learned by each algorithm.

To evaluate the training stability of algorithms, we would like to
capture how variable and noisy gradients are during training. To
measure this variability, we detrend gradient norms by deducting
each gradient norm from its subsequent norm, and compute the
conditional value at risk (CVaR) of detrended gradient norms:

CVaR(𝑔′) = E
[
𝑔′ | 𝑔′ ≥ VaR95% (𝑔′)

]
and 𝑔′𝑡 = |∇𝑡+1 | − |∇𝑡 | (12)

3We follow the task-based normalisation procedure of Papoudakis et al. [37].
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Figure 4: Common-reward evaluation across 21 tasks. (a) Normalised evaluation returns and (b) performance profile of all
algorithms aggregated across all tasks. (c) Average and standard error of gradient stability (Equation (12)).
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Figure 5: Mixed-objective evaluation across 11 tasks. Eval-
uation returns in (a) LBF and (b) RWARE, (c) performance
profiles across all tasks, and (d) average and standard error
of gradient stability (Equation (12)).

where the value at risk (VaR) corresponds to the value at the 95%
quantile of all detrended gradient norm values. This metric corre-
sponds to the short-term risk across time suggested by Chan et al.
[7]. A larger CVaR value indicates more variability in gradients
which can indicate unstable training, while a smaller CVaR value
indicates less variability in gradients and more stable training.

Implementation details: In all experiments, agents share pa-
rameters with each other to improve sample efficiency [11, 37]. To
allow for agent specialisation, shared networks receive one-hot vec-
tors that indicate agents’ identity as additional inputs. Unless stated
otherwise, EMAX trains an ensemble of 𝐾 = 5 value functions. For
more details on chosen hyperparameters, see Appendix D.3.

4.1 Evaluation Results
Figure 5 shows the learning curves of IDQN with and without
EMAX in 11 mixed-objective tasks in LBF and RWARE with nor-
malised evaluation returns, and a performance profile at the end
of training. Across all 11 tasks, EMAX improves final evaluation
returns of IDQN by 189%, with 105% and 275% improvement in LBF
and RWARE, respectively. The performance profile also shows that
EMAX significantly improves the robustness of IDQN. Appendix E
provides learning curves in each individual task.

Following the same evaluation protocol, we evaluate EMAX on
top of IDQN, VDN, and QMIX across 21 common-reward tasks. Fig-
ure 4 visualises the learning curve and performance profile of eval-
uation returns of all algorithms. Similar to mixed-objective tasks,
EMAX substantially improves final evaluation returns of IDQN,
VDN, and QMIX in common-reward tasks, shown in Figure 4a, by
60%, 47%, and 538%, leading to higher final returns compared to
their vanilla baselines in 18, 16, and 20 out of 21 tasks, respectively.
These results arise from EMAX improving the sample efficiency
and learning stability of the vanilla algorithms, as we will show
in Section 4.2. Additionally, QMIX-EMAX is able to learn effec-
tive policies in several hard exploration tasks where QMIX fails to
achieve any reward. From the performance profile in Figure 4b we
also see that algorithms with EMAX achieve higher returns with a
higher probability at the end of training. We provide normalised
evaluation returns for each environment and learning curves in
individual tasks in Appendix F and Appendix G, respectively.

In LBF, EMAX significantly improves the performance of QMIX
whereas minor improvements can be seen for IDQN and VDN in
the common-reward setting (Figure 10a), and significant gains are
observed in the mixed-objective setting (Figure 5a). Learning curves
of individual tasks (Appendix E) show that QMIX, MAVEN, CDS
and EMC fail to achieve any rewards in several LBF tasks with
particularly sparse rewards. A similar trend can be observed in
BPUSH where, most notably, VDN-EMAX and QMIX-EMAX learn
to solve a BPUSH task in which four agents need to cooperate and
no baseline demonstrates any positive rewards (see Figure 12d).

In RWARE, prior work found that no value-based algorithm was
able to achieve notable rewards within four million time steps of
training due to the significant sparsity of rewards, and on-policy
algorithms like IPPO and MAPPO vastly outperformed value-based
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Figure 6: Exploration policy analysis in LBF 10x10-3p-5f with common rewards. (a) Mean and 95% confidence intervals of
evaluation returns, mean and standard deviation of (b) average food distances across rollouts, (c) percentages of agents selecting
the pick-up action in states that require coordination, and (d) the standard deviation of value estimates for the no-op, movement,
and pick-up actions in states that require coordination.

algorithms [37]. In contrast, IDQN-EMAX is able to achieve no-
table rewards in all RWARE tasks and outperforms all baselines,
including both IPPO and MAPPO, in four out of six RWARE tasks.
To the best of our knowledge, IDQN-EMAX is the first value-based
algorithm that outperforms on-policy algorithms such as IPPO and
MAPPO in RWARE tasks. IDQN and VDN achieve 330% and 252%
higher final evaluation returns with EMAX than their vanilla algo-
rithms, respectively, whereas QMIX with and without EMAX fail to
learn (Figure 10c). Similarly significant improvements can be seen
for IDQN in the mixed-objective setting (Figure 5b).

Lastly, we evaluate in three common-reward tasks of the MPE
environment. In contrast to other environments, MPE features con-
tinuous observations and dense rewards, and the adversary and
predator-prey tasks contain stochastic transitions due to the adver-
sarial agent being controlled by a pre-trained policy. In all three
MPE tasks, we see improvements in sample efficiency and final
performance for algorithms with EMAX compared to vanilla algo-
rithms, even if the improvements are less severe than in the other
environments that feature sparse rewards. These improvements
are particularly notable in the predator-prey and adversary tasks
that feature stochastic transitions due to pretrained policy of ad-
versary agents, indicating that EMAX is able to effectively guide
the exploration even in environments with such stochasticity.

4.2 Analysis
We now further investigate the efficacy of all components of EMAX
to study our hypotheses that (1) EMAX targets reduce the variabil-
ity of gradients during training, (2) the EMAX exploration policy
leads to more exploration of states and actions with the potential
for coordination, and (3) the EMAX evaluation policy reduces the
likelihood of selecting sub-optimal actions.

Training stability: To demonstrate that EMAX target com-
putation reduces the variability of gradients during training, and,
thus, improves stability of the optimisation, we visualise the aver-
age and standard error of the stability of gradients, as defined in
Equation (12). We observe that for IDQN with and without EMAX
across 11 mixed-objective tasks (Figure 5d) as well as for IDQN,
VDN, QMIX with and without EMAX across all 21 common-reward
tasks (Figure 4c), EMAX significantly reduces the CVaR of gradi-
ent norms for all algorithms. These results indicate more stable
optimisation and confirm our hypothesis. The difference for QMIX
in the common-reward setting is less pronounced since the base
algorithm fails to learn in several tasks, leading to training with
low gradient variability independent of target values.

Exploration policy: To validate our hypothesis that the EMAX
exploration policy leads to more exploration of states and actions
with the potential for coordination (Section 3), we train IDQN,
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Figure 7: Evaluation returns for all vanilla and EMAX algorithms with ablations of (a) the exploration policy and target
computation in LBF 10x10-4p-3f-coop, and (b) of the evaluation policy in LBF 10x10-4p-4f-coop task. We ablate the EMAX
exploration policy with an 𝜖-greedy policy (green in a), the EMAX target computation with target networks (purple in a), and
the EMAX evaluation policy by greedily following any single value function within the ensemble (b).

VDN, and QMIX with and without EMAX in the LBF 10x10-3p-5f
task with common rewards where agents need to cooperate to pick
up some of the food items. Figure 6 shows the evaluation returns
throughout training, the average distances of agents to the closest
food, and the percentage of agents selecting the pick-up action
in states where multiple agents need to coordinate their actions
to pick up food.4 These results validate our hypotheses about the
EMAX exploration policy in the tested task. We observe that agents
following the EMAX exploration policy (1) seek out states with
the potential for coordination more often compared to the base-
line following a random exploration policy, as indicated by the
lower average distance of EMAX agents to food items compared
to the baseline in Figure 6b, and (2) are more likely to select the
cooperative pick-up action in states with potential for coordina-
tion, as shown in Figure 6c. Together, these effects lead to EMAX
agents learning significantly more efficiently and achieving higher
evaluation returns compared to the baseline (Figure 6a).

To separate of the exploration policy and other components of
EMAX, we also compare to the percentage of choosing the pick-up
action in states that require coordination by greedily following any
individual value functions in the ensemble instead of following
the UCB policy. While this ablation leads to a significant improve-
ment over the vanilla algorithms, it still exhibits a lower rate of
coordinating compared to the EMAX exploration policy (Figure 6c).

Lastly, Figure 6d visualises the standard deviation of action-value
estimates across the ensemble for the no-op action, movement ac-
tions, and the pick-up action in states with the potential for cooper-
ation between agents. This plot shows that the value estimate devia-
tions across the ensemble are similar for all actions early in training
but once agents sometimes cooperate successfully and sometimes
fail to cooperate, the deviation for the pick-up action with potential
for cooperation rises higher than the deviation for other actions in
states with the potential for cooperation. Furthermore, alongside
Figure 6a we can see that once agents successfully cooperate most

4Average distances to food and cooperation rates are determined over 50 rollout
episodes of the exploration policy of baseline algorithms and EMAX every 200,000
time steps of training.

of the time (indicated by high returns), the standard deviation for
the pick-up action starts to reduce. For QMIX with EMAX, we can
see that this reduction ends in the standard deviation of action
values for the cooperative pick-up action and non-cooperative ac-
tions reaching similar levels once close-to-optimal performance
is reached since now agents almost always cooperative success-
fully. This further indicates that, as desired, EMAX incentivises
exploration of cooperative actions as long as such cooperation is
not reliably achieved yet, but this bias towards cooperative actions
diminishes as the policy starts to reliably cooperate successfully.

Ablations: To demonstrate the importance of all components of
the EMAX algorithm to its performance, we provide ablations of its
main components. First, we ablate the exploration policy and target
computation and evaluate them in the LBF 10x10-4p-3f-coop task
with common rewards (Figure 7a). In these ablations, we replace the
EMAX exploration policy with an 𝜖-greedy policy, and substitute
the target computation with target networks in which each value
function in the ensemble has its own target network. We observe
that both components significantly improve the performance of
all algorithms. Second, we ablate the EMAX evaluation policy in
the LBF 10x10-4p-4f-coop task (Figure 7b) by following the greedy
policy with respect to any of the individual value functions within
the ensemble. We highlight that no value functions were trained
for this ablation so the only difference between the ablation and
EMAX is the followed policy, not the underlying value functions.
This experiment indicates the improved robustness in performance
resulting from the EMAX evaluation policy.

Ensemble size: Training ensemble models is expensive and its
cost scales with the ensemble size 𝐾 . We report the training cost
for all algorithms and varying 𝐾 in Appendix H.1. To identify how
many models are needed for the benefits of EMAX, we train all al-
gorithms with varying𝐾 in the RWARE 11x10 task with four agents
and common rewards (Section 4.2), in which EMAX led to substan-
tial improvements for IDQN and VDN. We observe that the benefits
of EMAX saturate at 𝐾 = 5, and larger ensemble sizes (𝐾 = 8) can
result in worse performance. We hypothesise that larger ensembles
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Figure 8: Evaluation returns for varying ensemble sizes 𝐾 ∈
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might require more data to train, thus leading to diminishing ben-
efits for ensembles of many value functions. Lastly, we compare
EMAX to the baselines with larger non-ensemble networks and
find that even at comparable or larger computational budget, the
baselines perform significantly worse than EMAX (Appendix H.2).

5 RELATEDWORK
Uncertainty for exploration in RL: Using uncertainty to guide
exploration is a well-established idea in RL . One family of algo-
rithms that leverages this idea are randomised value functions [34]
that build on the idea of Thompson sampling [45] from the multi-
armed bandits literature [8, 40]. Posterior sampling RL extends
Thompson sampling by maintaining a distribution of plausible
tasks, computes optimal policies for sampled tasks, and contin-
ually updates its distribution of tasks from the collected experi-
ence [32]. This approach has extensive theoretical guarantees [33]
but is difficult to apply to complex tasks [35]. This limitation has
been addressed in subsequent works [19, 31, 35], most notably
in bootstrapped DQN [31] which approximates randomised value
functions with an ensemble of value functions. SUNRISE [20] and
MeanQ [22] also leverage an ensemble of value functions but in-
stead of sampling value functions to explore, they follow a UCB
policy using the average and standard deviation of value estimates
across the ensemble to explore. Additionally, SUNRISE computes
a weighting of values loss terms based on the variance of target
values, and MeanQ stabilises the optimisation by computing lower
variance target values as the average value estimate across the
ensemble [4]. Separately, Fu et al. [17] extend posterior sampling
to model-based RL by learning a probabilistic model of the en-
vironment, and Dearden et al. [14] applied these ideas to tabular
Q-learning to learn distributions over Q-values and approximate the
value of information of actions. Related to all these ideas, optimistic
value estimates in the face of uncertainty can be used to promote
exploration for actor-critic [13] and model-based RL [41]. All these
approaches leverage uncertainty to guide their exploration, similar
to EMAX. However, in contrast to discussed approaches, EMAX
focuses on exploration of agent coordination in environments with
multiple concurrently learning agents.

Multi-agent exploration: There exist a plethora of exploration
methods in the multi-agent setting. Several approaches provide
agents with intrinsic incentives to explore, e.g. by rewarding them

for interacting with each other as measured by influences on their
transitions or value estimates [46] or for reaching identified goal
states [24]. However, intrinsic rewards for exploration have to be
carefully balanced for each task due to the modified optimisation
objective [39]. To address this challenge, LIGS [27] trains an agent
to determine when and which intrinsic reward should be given
to each agents. Orthogonally to this line of work, experience and
parameter sharing have been leveraged to greatly improve sample
efficiency for MARL by synchronising agents’ learning and make
use of more data [11, 12]. However, there is little research using dis-
tributional and ensemble-based techniques for MARL exploration.
Zhou et al. [49] extend posterior sampling [32] for MARL, but are
limited to two-player zero-sum extensive games. We aim to close
this gap by proposing EMAX, an ensemble-based technique for
efficient exploration in MARL. We further highlight that EMAX is a
plug-and-play algorithm that can enhance any value-based MARL
algorithm, including most existing MARL exploration techniques
described in this paragraph.

6 CONCLUSION
In this paper, we proposed EMAX, a general framework to seam-
lessly extend any value-based MARL algorithm using ensembles
of value functions. EMAX leverages the disagreement of value esti-
mates across the ensemble to systematically guide the exploration
of agents towards parts of the environment that might require them
to coordinate with other agents. Additionally, EMAX computes low-
variance target values across the ensemble to stabilise MARL train-
ing that is otherwise prone to be unstable due to the non-stationarity
of the policies of other agents, and reduces the risk of miscoordina-
tion by computing optimal actions through a majority vote across
the ensemble. We empirically demonstrated the benefits of EMAX
for sample efficiency, final performance, and training stability as an
extension of IDQN, VDN, and QMIX across 11mixed-objective tasks
and 21 common-reward tasks across four environments. Further
analysis and ablations established the efficacy of the EMAX explo-
ration policy, target computation, and evaluation policy of EMAX,
and we discussed the computational cost introduced by EMAXwith
experiments indicating that comparably small ensemble models
are sufficient to achieve the demonstrated improvements. We be-
lieve that EMAX is a promising approach to improve exploration in
MARL due to its plug-and-play nature and demonstrated efficacy
in complex tasks. In this work, we design EMAX as an extension
of value-based MARL algorithms but future work could investigate
the application of EMAX to actor-critic MARL algorithms such
as IPPO and MAPPO by training an ensemble of value functions
and policies. A further limitation of the current EMAX approach is
the considerable computation cost of training ensembles of value
functions. Future work could consider the application of hypernet-
works [16] or latent-conditioned models [42] to approximate the
ensemble and, thereby, reduce the computational cost of EMAX.
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