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ABSTRACT

Consider elections where the set of candidates is partitioned into
parties, and each party must nominate exactly one candidate. The
Possible President problem asks whether some candidate of a
given party can become the winner of the election for some nom-
inations from other parties. We perform a multivariate compu-
tational complexity analysis of Possible President for a range
of Condorcet-consistent voting rules, namely for Copeland𝛼 for
𝛼 ∈ [0, 1] andMaximin. The parameters we study are the number of
voters, the number of parties, and the maximum size of a party. For
all voting rules under consideration, we obtain dichotomies based
on the number of voters, classifying NP-complete and polynomial-
time solvable cases. Moreover, for each NP-complete variant, we
determine the parameterized complexity of every possible parame-
terization with the studied parameters as either (a) fixed-parameter
tractable, (b)W[1]-hard but in XP, or (c) para-NP-hard, outlining
the limits of tractability for these problems.
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1 INTRODUCTION

Political elections are always preceded by a turbulent phase where
parties select their nominated candidates for the upcoming election.
Clearly, this process has a great influence on the outcome of the
election, and therefore it is only natural that political parties engage
in all kinds of strategic behavior when choosing their nominees.
We focus on the case which models presidential elections in the
sense that each party needs to nominate exactly one person among
its possible candidates for presidency.

A naive approach would expect each party to simply choose
its “best” candidate—however, in practice it is rarely the case that
there is a single candidate that can be considered the best in all
scenarios. Indeed, a given party may find that different candidates
have different chances of winning the upcoming election depend-
ing on the nominees of the remaining parties. Parties may elect
their nominees through primaries (an approach studied by Borodin
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et al. [5]), but a more careful process may take into account the
estimated preferences of all voters over the possible nominees, and
not only the preferences of party members.

Following the formal model of candidate nomination proposed
by Faliszewski et al. [10], we assume that the preferences of all
voters over all potential candidates are known, and in the reduced
election obtained as a result of each party nominating a unique
candidate, the preferences of each voter over these nominees are
simply the restriction of its preferences over the whole pool of can-
didates. Faliszewski et al. asked two natural questions: the Possible
President problem asks whether a given party can nominate some
candidate 𝑐 in such a way that 𝑐 can become the winner of the
election for some nominations from the remaining parties, and the
Necessary President problem asks whether some nominee 𝑐 of the
given party will be the winner irrespective of all other nominations.

In this paper we study the Possible President problem in elec-
tion systems that use some Condorcet-consistent voting rule. A can-
didate that defeats all other candidates in a pairwise comparison is
called the Condorcet winner, and voting rules that always choose
the Condorcet winner if it exists are said to be Condorcet-consistent.
We focus our investigations on the Condorcet-consistent voting
rules Maximin and Copeland𝛼 for 𝛼 ∈ [0, 1].

Condorcet-consistent voting rules are widely used in sports com-
petitions, but have also been applied by e.g., the Pirate Party in
Sweden and in Germany, and various organizations such as Debian,
Gentoo Foundation, and Wikimedia [20]. Foley [13] has suggested
to use Condorcet-consistent round-robin voting for primary elec-
tions, followed by a general election between the top two candidates,
to overcome the serious flaw in US presidential elections that the
winner may not be the preferred candidate of the majority of voters.

Related Work. Faliszewski et al. [10] dealt only with Plurality,
arguably the simplest type of elections, and derived several NP-
hardness results for both Possible andNecessary President. They
also showed that when preferences are single-peaked, Necessary
President can be decided in polynomial time. By contrast, they
found that Possible President remains NP-complete even for
single-peaked preferences, though becomes tractable if the candi-
dates of each party appear consecutively on the societal axis.

Misra [16] extended the results of Faliszewski et al. by studying
the parameterized complexity of Possible President. She exam-
ined the number 𝑡 of parties as the parameter, and proved that
the problem is W[2]-hard and in XP, and becomes fixed-parameter
tractable (FPT) with parameter 𝑡 when restricted to 1D-Euclidean
preference profiles. She also strengthened previous results by prov-
ing that Possible President for Plurality is NP-hard even if all
parties have size at most two, and preferences are both single-
peaked and single-crossing; hence, the problem is para-NP-hard
when parameterized by the size of the largest party even on a very
restricted domain. Misra asked whether Possible President for
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# voters Copeland𝛼 Copeland𝛼 Maximin Maximin
classical param. 𝑡 classical param. 𝑡

𝑛 = 2
{

𝛼 = 1: P –
}

P –
𝛼 < 1: NP-c open
(T3.1,T3.2) (T4.1)

𝑛 = 3 NP-c open P –
(T3.3) (T4.2)

𝑛 ≥ 4 even NP-c W[1]-h, XP NP-c FPT
(T3.2,T3.6) (T3.8) (T4.3) (T4.4)

𝑛 ≥ 5 odd NP-c W[1]-h, XP NP-c FPT
(T3.3) (T3.9) (T4.3) (T4.4)

Table 1: Summary of our results on the classical and param-

eterized complexity of the Possible President problem.

Our parameterized results for NP-hard cases consider pa-

rameter 𝑡 , the number of parties. “NP-c” and “W[1]-h” stand
for “NP-complete” and “W[1]-hard”, respectively. All our NP-
completeness results hold for maximum party size 𝜎 = 2.

Plurality is FPT when parameterized by the number of voters; this
questions has been answered negatively by Schlotter et al. in [19].

Possible President for voting rules other than Plurality have
been first treated by Cechlárová et al. in [6]. Namely, they dealt with
positional scoring rules (ℓ-Approval, ℓ-Veto, and Borda) and with
Condorcet-consistent rules Copeland, Llull, and Maximin. They
proved that Possible President is NP-hard for each of these rules,
even when the maximum size of a party is two; they left the com-
plexity for Copeland𝛼 with 𝛼 ∈ (0, 1) open.

Schlotter et al. [19] obtained results concerning the parame-
terized complexity of Possible President for several classes of
positional scoring rules, including Borda and nontrivial general-
izations of ℓ-Approval and ℓ-Veto. The parameters they examined
were the number of voters, the number of voter types, the number
of parties, the maximum size of a party and their combinations.

Further results concerning elections with parties that nominate
candidates have been provided by Lisowski [14]. He considered
directed graphs called tournaments whose vertices correspond to
candidates, and each directed arc (𝑎, 𝑏) indicates that a majority of
voters prefers candidate 𝑎 to candidate 𝑏. Among others, Lisowski
observed that it is possible to check whether a given party has a
possible Condorcet winner in polynomial time, while the problems
to decide whether a Nash equilibrium exists in the associated game
and whether a given party has a Condorcet winner in some Nash
equilibrium are NP-complete.

For a broader view on research related to candidate nomination,
we refer the reader to the full version of our paper [18].
Our contribution.We perform a detailed multivariate complex-
ity analysis using the framework of parameterized complexity for
Possible President for two types of Condorcet-consistent voting
rules: Copeland𝛼 for every 𝛼 ∈ [0, 1] and Maximin. Our parameters
are the following: the number 𝑛 of voters, the number 𝑡 of parties,
and the size 𝜎 of the largest party. Table 1 summarizes our results.

For Copeland𝛼 elections with 𝛼 ∈ [0, 1], we obtain a complete
computational dichotomy for the complexity of Possible Presi-
dent as a function of the number of voters:

Theorem 1.1. Let 𝑛 be a fixed integer and 𝛼 ∈ [0, 1]. Then Pos-

sible President for Copeland
𝛼
is NP-complete when restricted to

instances with 𝑛 voters and maximum party size 𝜎 = 2, if
(a) 𝑛 ≥ 3, or
(b) 𝑛 = 2 and 𝛼 < 1.

By contrast, Possible President for Copeland
1
(i.e., Llull) restricted

to instances with 2 voters is polynomial-time solvable.

It transpires that Possible President for Copeland𝛼 for arbi-
trary 𝛼 ∈ [0, 1] is para-NP-hard when parameterized by 𝑛 + 𝜎 ,
i.e., both the number of voters and the maximum party size. We
strengthen this result by showing that parameterizing the problem
with 𝑡 , the number of parties, the problem remainsW[1]-hard even
if the number of voters is a constant 𝑛 ≥ 4. Since the problem is
easily solvable in 𝜎𝑡𝑛𝑂 (1) time [19], this yields a classification of
all parameterized (NP-hard) variants of Possible President for
Copeland𝛼 , with parameters chosen arbitrarily from {𝑛, 𝜎, 𝑡}, as
either (i) FPT, (ii) W[1]-hard and in XP, or (iii) para-NP-hard.

We remark that despite this complete classification, we leave
the computational complexity open for certain constant values
of 𝑛; namely, we could not resolve the parameterized complexity of
Possible President for Copeland𝛼 for parameter 𝑡 when 𝑛 ∈ {2, 3}.

For the Maximin voting rule, we again obtain a complete di-
chotomy with respect to the number 𝑛 of voters:

Theorem 1.2. Let 𝑛 be a fixed integer. Then Possible President

for Maximin voting rule for instances with 𝑛 voters is

(a) polynomial-time solvable if 𝑛 ≤ 3;
(b) NP-complete if 𝑛 ≥ 4, even for maximum party size 𝜎 = 2.
Contrasting the Copeland𝛼 voting rule, we show that Possible

President forMaximin is FPTwhen parameterized by the number 𝑡
of parties. This tractability result is achieved by a reduction of
our problem to a special polynomial-time solvable version of the
Partitioned Subdigraph Isomorphism problem. Thus, our results
for Maximin yield a complete classification of all parameterized
(NP-hard) variants of the problem as either FPT or para-NP-hard.
In fact, we settle the complexity of the problem for each variant
where 𝑛 and 𝜎 both may be restricted to arbitrary fixed integers as
either NP-complete and FPT with 𝑡 , or polynomial-time solvable.
Techniques. Our algorithmic results use standard techniques from
parameterized complexity and algorithmic graph theory. Our hard-
ness results rely on intricate constructions, and we also develop the
technique of using so-called flat elections with three voters and𝑚
candidates where each candidate defeats exactly 𝑚−1

2 candidates;
this method might be of independent interest.

Results marked by (★) have their proofs in the full version [18].

2 PRELIMINARIES

We use the notation [𝑖] = {1, 2, . . . , 𝑖} for each positive integer 𝑖 .
We assume familiarity with basic graph theory and the frame-

work of parameterized complexity. Besides providing all neces-
sary definitions in the full version [18], we refer the reader to the
books [7, 9] for an introduction into parameterized complexity, and
to the books [2, 8] for the standard notation on graphs we adopt.
Elections. An election E = (𝐶,𝑉 , {≻𝑣}𝑣∈𝑉 ) consists of a finite
set 𝐶 of candidates, a finite set 𝑉 of voters, and the preferences
of voters over candidates. We assume that the preferences of each
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voter 𝑣 are represented by a strict linear order ≻𝑣 over 𝐶 , where
𝑐 ≻𝑣 𝑐′ means that voter 𝑣 prefers candidate 𝑐 to candidate 𝑐′. We
denote the set of all elections over a set 𝐶 of candidates by E𝐶 . A
voting rule 𝑓 : E𝐶 → 2𝐶 chooses a set of winners of the election.

Our model also includes a partition P = {𝑃1, . . . , 𝑃𝑡 } of the set𝐶
of candidates; each set 𝑃 𝑗 is interpreted as a party that has to decide
whom among its potential candidates to nominate for the election.

Formally, a reduced election arises after all parties have nominated
a unique candidate, leading to a reduced candidate set 𝐶′ ⊆ 𝐶

such that |𝐶′ ∩ 𝑃 𝑗 | = 1 for each 𝑗 ∈ [𝑡]. We can then define the
reduced election as E𝐶′ = (𝐶′,𝑉 , {≻′𝑣}𝑣∈𝑉 ) where the preference
relation ≻′𝑣 of each voter 𝑣 ∈ 𝑉 is the restriction of her original
preference relation ≻𝑣 to 𝐶′.

Now we formulate our problem of interest, as introduced in [10].

Problem Possible President for voting rule 𝑓 :
Input: An election E = (𝑉 ,𝐶, {≻𝑣}𝑣∈𝑉 ) with a set 𝑉 of voters
and a set 𝐶 of candidates, a partition P of 𝐶 into parties, and a
distinguished party 𝑃★ ∈ P.
Question: Is there a candidate 𝑝 ∈ 𝑃★ such that for some nomi-
nations of other parties leading to a reduced candidate set 𝐶′, 𝑝
is the unique winner of the reduced election E𝐶′ according to 𝑓 ?

Notice that we consider the unique winner model, i.e., we aim for
a set of nominations that yield 𝑓 (E𝐶′ ) = {𝑝} for the candidate 𝑝
nominated by the distinguished party in the reduced election E𝐶′ .
Voting rules. In this paper we shall concentrate on two Condorcet-
consistent rules. For two candidates 𝑎, 𝑏 ∈ 𝐶 , we let𝑁E (𝑎, 𝑏) denote
the number of voters who prefer candidate 𝑎 to candidate 𝑏 in elec-
tion E; we shall omit the subscript when E is clear from the context.
If 𝑁E (𝑎, 𝑏) > 𝑁E (𝑏, 𝑎) we say that candidate 𝑎 defeats candidate 𝑏
in E; if 𝑁E (𝑎, 𝑏) = 𝑁E (𝑏, 𝑎) and 𝑎 ≠ 𝑏, then candidates 𝑎 and 𝑏

are tied in E. The Condorcet winner is the candidate that defeats all
other candidates; a voting rule is Condorcet consistent, if it always
selects the Condorcet winner whenever it exists.

The Copeland𝛼 voting rule, as defined by Faliszewski et al. [11],
assigns to some candidate 𝑎 a score of 1 for each candidate de-
feated by 𝑎, and a score of 𝛼 for each candidate tied with 𝑎, so the
Copeland𝛼 -score of𝑎 isCpl𝛼E (𝑎) =

∑
𝑏 defeated by 𝑎 1+

∑
𝑏 tied with 𝑎 𝛼

in an election E. The winners of E are all candidates with the max-
imum score. The voting rule obtained for 𝛼 = 1 is called the Llull
rule, and we refer to the case 𝛼 = 0 as the Copeland rule.

In the Maximin voting rule, the Maximin-score of candidate 𝑎 in
election E over candidate set𝐶 isMME (𝑎) = min𝑏∈𝐶\{𝑎} 𝑁E (𝑎, 𝑏),
and the winners of E are again the candidates with maximum score.

Notice that Copeland𝛼 as well as Maximin winners can be com-
puted efficiently for any election. Therefore it is easy to see that
Possible President for these voting rules belongs to the class NP.

3 COPELAND
𝛼
VOTING RULE

If there are only two voters, in Section 3.1 we show that Possi-
ble President for Copeland𝛼 is polynomially solvable if 𝛼 = 1,
(Theorem 3.1), but NP-hard if 𝛼 < 1 (Theorem 3.2).

For three voters, we show in Section 3.2 that Copeland is NP-
complete (Theorem 3.3). If the number of voters is odd, then no ties
occur, and hence this result holds for Copeland𝛼 for any 𝛼 ∈ [0, 1].
The proof is quite involved, and provides a reduction from a special

variant of the NP-complete problem Maximum Matching with
Couples, using the crucial notion of flat elections.

The case with four or more voters is treated shortly in Section 3.3.
We address the complexity of Possible President for Copeland

when parameterized by the number of parties in Section 3.4.

3.1 Two Voters

Let us first show that Possible President for the Llull voting rule
is easy if there are only two voters. The key observation that yields
tractability is that the “defeat” relation is transitive for two voters:

Observation 1. In an election with two voters, if candidate 𝑎

defeats candidate 𝑏, and 𝑏 defeats candidate 𝑐 , then 𝑎 also defeats 𝑐 .

Proof. Since 𝑏 must follow 𝑎 in the preference lists of both
voters, and 𝑐 must follow 𝑏 in both lists too, we immediately know
that 𝑐 follows 𝑎 in the preference list of both voters. □

Theorem 3.1 (★). Possible President for the Llull voting rule is
polynomial-time solvable if there are only two voters.

Proof sketch. Using Observation 1, one can prove that accord-
ing to the Llull rule, some candidate 𝑝 can be a unique winner in
a reduced election E if and only if 𝑝 defeats every other nominee:
intuitively, assuming that 𝑝 is the unique winner because every
nominee other than 𝑝 is defeated by some other nominee, we arrive
at a cycle in the defeat relation, a contradiction showing that 𝑝 can
become the unique winner only by defeating all nominees.

This offers a quadratic-time algorithm to solve Possible Presi-
dent for Llull voting with two voters: we check for each candidate 𝑝
in the distinguished party 𝑃 whether 𝑝 can become the unique win-
ner, which happens if and only if every other party contains at least
one candidate that is defeated by 𝑝 .

By contrast, a reduction from 3-Coloring shows that Copeland𝛼
for 𝛼 < 1 is intractable already for two voters, even if 𝜎 = 2.

Theorem 3.2 (★). For each 𝛼 ∈ [0, 1), Possible President for

Copeland
𝛼
is NP-complete even for instances with two voters and

maximum party size 𝜎 = 2.

3.2 Three Voters

As already mentioned, for an odd number of voters no two candi-
dates can be tied, so the value of 𝛼 is irrelevant, and the Copeland
and Llull voting rules coincide. We show the following.

Theorem 3.3 (★). Possible President for Copeland isNP-complete

even for three voters and maximum party size 𝜎 = 2.

To showTheorem 3.3, wewill reduce from a special case of anNP-
complete problem Maximum Matching with Couples, described
in Section 3.2.1. We present the most important ingredient of the
reduction, the notion of flat elections in Section 3.2.2, and follow
with a sketch of the reduction in Section 3.2.3.

3.2.1 A special case of Maximum Matching with Couples. We
are going to reduce from a variant of the following problem called
Maximum Matching with Couples. This problem involves a set 𝑆

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

1860



of singles, a set 𝐶 of couples1 and a set 𝑅 of rooms. Each room has
capacity 2, meaning that it can accommodate either a couple or
at most two singles. Moreover, we need to match everyone to a
room that they find acceptable, where acceptability is described by
a bipartite graph 𝐺 = ((𝑆 ∪𝐶) ⊎ 𝑅, 𝐸). A complete matching

2 in 𝐺
is then an edge set𝑀 ⊆ 𝐸 that contains exactly one edge incident
to each vertex in 𝑆 ∪𝐶 and satisfies |𝑀 (𝑟 ) ∩ 𝑆 | + 2|𝑀 (𝑟 ) ∩𝐶 | ≤ 2
for each room 𝑟 ∈ 𝑅, where 𝑀 (𝑟 ) = {𝑥 ∈ 𝑆 ∪𝐶 : 𝑟𝑥 ∈ 𝑀} denotes
the set of singles and couples matched to 𝑟 . It is known that the
following problem is NP-complete [3, 4].
Problem Maximum Matching with Couples:
Input: Sets 𝑆 ,𝐶 , and𝑅 of singles, couples and rooms, respectively,
and a bipartite graph 𝐺 = ((𝑆 ∪𝐶) ⊎ 𝑅, 𝐸).
Question: Is there a complete matching in 𝐺?
We shall use a special case of Maximum Matching with Cou-

ples as specified in Theorem 3.4. The proof of its NP-completeness
relies on a series of simple reduction rules that transform any in-
stance into an equivalent one, achieving the properties required in
Theorem 3.4 step by step; see the full version [18].

Theorem 3.4 (★). Maximum Matching with Couples remains

NP-complete even if |𝑅 | = |𝑆 |/2 + |𝐶 |, and
• each vertex in the input graph has degree 2 or 3, and
• each room adjacent to both singles and couples is adjacent to

exactly two singles and one couple.

3.2.2 Flat elections with three voters. Working towards a reduction
from Maximum Matching with Couples to Possible President
for Copeland voting with three voters, we next present a construc-
tion for an election E𝑞 over 3𝑞 candidates for some 𝑞 ∈ N+ and with
three voters, in which every candidate defeats the same number
of candidates. We will call such elections flat, i.e., an election is
flat if all candidates receive the same Copeland-score. An election
with𝑚 candidates where𝑚 is odd can only be flat if each candidate
defeats 𝑚−1

2 other candidates. To see this, consider the tournament
underlying the election: clearly, we can only have all out-degrees
equal to some 𝑑 , if the tournament has𝑚 · 𝑑 arcs, i.e.,𝑚 · 𝑑 =

(𝑚
2
)
.

We propose a recursive construction for E𝑞 in Definition 3.5.

Definition 3.5. Let the candidate set of E1 be 𝐶1 = {𝑎, 𝑏, 𝑐}, and
let𝑤 ,𝑤 ′, and𝑤 ′′ be our three voters with preferences

𝑤 : 𝑎, 𝑏, 𝑐;
𝑤 ′ : 𝑐, 𝑎, 𝑏;
𝑤 ′′ : 𝑏, 𝑐, 𝑎.

Notice that 𝑎 defeats 𝑏, 𝑏 defeats 𝑐 , and 𝑐 defeats 𝑎. Therefore, each
of the candidates obtains a Copeland𝛼 -score of 1.

For 𝑞 ≥ 1, we are going to reuse the candidate set 𝐶𝑞 of the
election E𝑞 to construct the candidate set 𝐶𝑞+1 of E𝑞+1 by intro-
ducing three copies of each candidate 𝑐 ∈ 𝐶𝑞 which will be denoted
by 𝑐 ⊙ 1, 𝑐 ⊙ 2, and 𝑐 ⊙ 3. Let 𝐿𝑞 (𝑤), 𝐿𝑞 (𝑤 ′), and 𝐿𝑞 (𝑤 ′′) denote the
preference lists of voters𝑤 ,𝑤 ′, and𝑤 ′′, respectively, in E𝑞 . For a
list 𝐿 of candidates from𝐶𝑞 and each ℎ ∈ [3], let us denote by 𝐿 ⊙ℎ
1Although in the context of elections𝐶 denotes the set of candidates, this slight clash
of notation will not cause any confusion.
2Note that we do not require𝑀 to be a matching in the classic graph-theoretic sense,
since we allow edges in𝑀 to share endpoints in 𝑅.

the list obtained from 𝐿 by replacing each candidate 𝑐 in 𝐿 by its
ℎ-th copy 𝑐 ⊙ ℎ. Using this notation, we are now ready to define
the preferences of the voters in E𝑞+1:

𝑤 : 𝐿𝑞 (𝑤) ⊙ 1, 𝐿𝑞 (𝑤) ⊙ 2, 𝐿𝑞 (𝑤) ⊙ 3;
𝑤 ′ : 𝐿𝑞 (𝑤 ′) ⊙ 3, 𝐿𝑞 (𝑤 ′) ⊙ 1, 𝐿𝑞 (𝑤 ′) ⊙ 2;
𝑤 ′′ : 𝐿𝑞 (𝑤 ′′) ⊙ 2, 𝐿𝑞 (𝑤 ′′) ⊙ 3, 𝐿𝑞 (𝑤 ′′) ⊙ 1.

(1)

Notice that each candidate in E𝑞+1 is then of the form
(((𝑥 ⊙ ℎ1) ⊙ ℎ2) · · · ⊙ ℎ𝑞−1) ⊙ ℎ𝑞 (2)

for some 𝑥 ∈ {𝑎, 𝑏, 𝑐} and indices ℎ1, ℎ2, . . . , ℎ𝑞 ∈ [3].
We will say that two candidates 𝑐 and 𝑐′ in E𝑞+1, having the

form (2) for 𝑥 and 𝑥 ′ in {𝑎, 𝑏, 𝑐} and indicesℎ1, . . . , ℎ𝑞 andℎ′1, . . . , ℎ
′
𝑞

from [3], respectively, belong to the same group at level 𝑞′ for some
𝑞′ ∈ [𝑞], if ℎ𝑖 = ℎ′

𝑖
for each 𝑞′ ≤ 𝑖 ≤ 𝑞; accordingly, we define

a 𝑞′-level group as a maximal set of candidates that belong to the
same group at level 𝑞′. Notice that restricting the election E𝑞+1 to
a 𝑞′-level group, we obtain a copy of the election E𝑞′ .

In particular, restricting E𝑞+1 to a 𝑞-level group, that is, to the set
of candidates contained in 𝐿𝑞 (𝑤) ⊙ ℎ for some ℎ ∈ [3], we obtain a
copy of the election E𝑞 . Observing the preferences of the voters as
given in (1), the following facts are immediate:

Observation 2. For each 𝑞 ∈ N, the election E𝑞+1 has the follow-
ing properties:

• each candidate in 𝐿𝑞 (𝑤)⊙1 defeats all candidates in 𝐿𝑞 (𝑤)⊙2,
and is defeated by all candidates in 𝐿𝑞 (𝑤) ⊙ 3;
• each candidate in 𝐿𝑞 (𝑤)⊙2 defeats all candidates in 𝐿𝑞 (𝑤)⊙3,
and is defeated by all candidates in 𝐿𝑞 (𝑤) ⊙ 1;
• each candidate in 𝐿𝑞 (𝑤)⊙3 defeats all candidates in 𝐿𝑞 (𝑤)⊙1,
and is defeated by all candidates in 𝐿𝑞 (𝑤) ⊙ 2.

Furthermore, for each ℎ ∈ [3] and each 𝑐, 𝑐′ ∈ 𝐶𝑞 , candidate 𝑐 ⊙ ℎ
defeats candidate 𝑐′ ⊙ ℎ in E𝑞+1 if and only if 𝑐 defeats 𝑐′ in E𝑞 .

By Observation 2, E𝑞+1 for some 𝑞 ∈ N+ is flat if and only E𝑞 is
flat. Since E1 is flat, we obtain the following consequence.

Observation 3. For each integer 𝑞 ≥ 1, every candidate in 𝐶𝑞

defeats

|𝐶𝑞 |−1
2 =

(3𝑞−1)
2 candidates in E𝑞 , so E𝑞 is a flat election

with 3𝑞 candidates. Moreover, no candidate is preferred to another

candidate by all three voters in E𝑞 .

3.2.3 Reduction for Theorem 3.3. We present a reduction from
the variant of Maximum Matching with Couples described in
Theorem 3.4. Let 𝐺 = ((𝑆 ∪𝐶) ⊎ 𝑅, 𝐸) be the input graph.
High-level description. The main ideas of the reduction are the
way flat elections are used. First, we need a large enough set 𝑇
of teams, over which we have a flat election involving three vot-
ers. Each team in 𝑇 will be either a single, a couple or its copy, a
room, or a dummy, and will be eventually be replaced by a set of
candidates, depending on its type. We will also add a set 𝐴 ∪ 𝐵

of simple candidates, and we fix a simple candidate 𝑎1 to form the
distinguished singleton party in the constructed instance.

Based on our flat election over 𝑇 , we do three modifications:
(i) we insert the simple candidates, (ii) we substitute each team
in 𝑇 with the corresponding candidate lists, and (iii) we move our
distinguished candidate 𝑎1 “to the left” so that it gains one extra
point in the election. The crux of the reduction is to ensure that in
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the obtained election, 𝑎1 can become the unique winner if and only
if restricting the election to the relevant candidates (those that are
associated with some team in 𝑇 ) yields a flat election. By carefully
designing the candidate set corresponding to each team and their
ordering within the preference lists (used during the substitution
step), we will ensure that the relevant candidates can form a flat
election if and only if our instance of Maximum Matching with
Couples admits a complete matching.
Candidates and parties. First, we define a party 𝑃𝑟 = {𝑟, 𝑟 ′} for
each room 𝑟 ∈ 𝑅. Next, for each vertex 𝑝 ∈ 𝑆 ∪𝐶 adjacent to 𝑟 in𝐺 ,
we introduce a party 𝑃𝑟𝑝 = {𝑝𝑟 ,¬𝑝𝑟 }. Additionally, we define two
candidates 𝑝 and 𝑝′ for each 𝑝 ∈ 𝑆 ∪𝐶 ; if 𝑝 has degree 3 in𝐺 , then
these two candidates form a single party, and if 𝑝 has degree 2 in𝐺 ,
then 𝑝 and 𝑝′ both form their own singleton party. This way, we
associate four parties with each single 𝑠 ∈ 𝑆 :
• 𝑃

𝑟1
𝑠 , 𝑃

𝑟2
𝑠 , {𝑠}, {𝑠′} if 𝑁𝐺 (𝑠) = {𝑟1, 𝑟2},

• 𝑃
𝑟1
𝑠 , 𝑃

𝑟2
𝑠 , 𝑃

𝑟3
𝑠 , {𝑠, 𝑠′} if 𝑁𝐺 (𝑠) = {𝑟1, 𝑟2, 𝑟3}

where 𝑁𝐺 (𝑣) denotes the neighborhood of a vertex 𝑣 in𝐺 . Similarly,
there are four parties associated with each couple 𝑐 ∈ 𝐶:
• 𝑃

𝑟1
𝑐 , 𝑃

𝑟2
𝑐 , {𝑐}, {𝑐′} if 𝑁𝐺 (𝑐) = {𝑟1, 𝑟2};

• 𝑃
𝑟1
𝑐 , 𝑃

𝑟2
𝑐 , 𝑃

𝑟3
𝑐 , {𝑐, 𝑐′} if 𝑁𝐺 (𝑐) = {𝑟1, 𝑟2, 𝑟3}.

Next, for each couple 𝑐 ∈ 𝐶 , we introduce a copy 𝑥 for each
candidate 𝑥 associated with the couple 𝑐 , yielding a candidate set
{𝑐𝑟 ,¬𝑐𝑟 : 𝑟 ∈ 𝑁𝐺 (𝑐)} ∪ {𝑐, 𝑐′}. We write 𝐶 = {𝑐 : 𝑐 ∈ 𝐶}. With
each 𝑐 ∈ 𝐶 we associate the parties 𝑃𝑟

𝑐
= {𝑥 : 𝑥 ∈ 𝑃𝑟𝑐 } for each

𝑟 ∈ 𝑁𝐺 (𝑐), plus one or two parties formed by 𝑐 and 𝑐′, depending
on whether 𝑐 has degree two or three in𝐺 , so that altogether there
are four parties associated with 𝑐 (as for 𝑐). For practical purposes,
we extend the notation by setting 𝑁𝐺 (𝑐) := 𝑁𝐺 (𝑐) for each 𝑐 ∈ 𝐶 .

We also fix an arbitrary set 𝐷 of dummy teams whose size is the
smallest non-negative integer for which 𝜌 := |𝑅 |+|𝑆 |+2|𝐶 |+|𝐷 | = 3𝑞
for some 𝑞 ∈ N+, and introduce candidates 𝑎𝑑 , 𝑏𝑑 , 𝑐𝑑 for each 𝑑 ∈ 𝐷 ,
each of them forming its own singleton party. Since for each positive
integer 𝑛 there is a power of 3 in the interval [𝑛, 3𝑛] (this is easily
shown by induction on 𝑛), we get |𝐷 | ≤ 2( |𝑆 | + 2|𝐶 | + |𝑅 |).

We call the candidates defined so far relevant candidates, and
denote their set as𝑋 . We further define simple candidates 𝑎1, . . . , 𝑎3𝜌
and 𝑏1, . . . , 𝑏3𝜌 , each of them forming its own singleton party. We
will write 𝐴 = {𝑎1, . . . , 𝑎3𝜌 } and 𝐵 = {𝑏1, . . . , 𝑏3𝜌 }. Notice that the
maximum party size is 𝜎 = 2 in 𝐺 , and the number of parties is
|𝑅 | + 4|𝑆 | + 8|𝐶 | + 3|𝐷 | + 6𝜌 = 9𝜌 . Our distinguished party is {𝑎1}.
Teams and their lists. We refer to the set 𝑇 = 𝑆 ∪𝐶 ∪𝐶 ∪ 𝑅 ∪ 𝐷
as the set of teams. To define the preferences of our voters, 𝑣 , 𝑣 ′,
and 𝑣 ′′, we introduce for each team 𝑡 ∈ 𝑇 three lists that we call
team lists and denote by 𝐹𝑡 , 𝐹

′
𝑡 , and 𝐹 ′′𝑡 . Each of these three lists

contains the same set candidates that we associate with 𝑡 .
Let us start with defining the team lists for each room team 𝑟 ∈ 𝑅.

First, if room 𝑟 is adjacent to singles 𝑠1 and 𝑠2 and a couple 𝑐 in 𝐺 ,
then we set its team list according to (3) below (to the left). Second,
if room 𝑟 is adjacent to two or three singles, 𝑠1, 𝑠2 and possibly 𝑠3,
and no couples in 𝐺 , then we set its team list as in (4).

if 𝑁𝐺 (𝑟 ) = {𝑠1, 𝑠2, 𝑐}:
𝐹𝑟 = 𝑠𝑟1, 𝑟 , 𝑠

𝑟
2, 𝑐

𝑟 , 𝑟 ′, 𝑐𝑟 ;
𝐹 ′𝑟 = 𝑠𝑟2, 𝑠

𝑟
1, 𝑐

𝑟 , 𝑐𝑟 , 𝑟 , 𝑟 ′;
𝐹 ′′𝑟 = 𝑟, 𝑟 ′, 𝑠𝑟2, 𝑠

𝑟
1, 𝑐

𝑟 , 𝑐𝑟 ;

(3)

if 𝑁𝐺 (𝑟 ) = {𝑠1, 𝑠2, (𝑠3)}:
𝐹𝑟 = 𝑠𝑟1, 𝑟 , 𝑠

𝑟
2, 𝑟
′, (𝑠𝑟3);

𝐹 ′𝑟 = (𝑠𝑟3), 𝑠
𝑟
2, 𝑠

𝑟
1, 𝑟 , 𝑟

′;
𝐹 ′′𝑟 = 𝑟, 𝑟 ′, (𝑠𝑟3), 𝑠

𝑟
2, 𝑠

𝑟
1 .

(4)

Third, if room 𝑟 is adjacent to two or three couples, 𝑐1, 𝑐2 and
possibly 𝑐3, and no singles in 𝐺 , then we set

𝐹𝑟 = 𝑐𝑟1, 𝑐
𝑟
2, (𝑐

𝑟
3), 𝑟 , 𝑟

′, 𝑐𝑟1, 𝑐
𝑟
2, (𝑐

𝑟
3);

𝐹 ′𝑟 = 𝑐𝑟1, 𝑐
𝑟
1, 𝑐

𝑟
2, 𝑐

𝑟
2, (𝑐

𝑟
3), (𝑐

𝑟
3), 𝑟 , 𝑟

′;
𝐹 ′′𝑟 = 𝑟, 𝑟 ′, (𝑐𝑟3), (𝑐

𝑟
3), 𝑐

𝑟
2, 𝑐

𝑟
2, 𝑐

𝑟
1, 𝑐

𝑟
1 .

(5)

In lists (4) and (5), candidates written within parenthesis may not
exist, in which case they should be ignored.

Next, consider a team 𝑝 ∈ 𝑆 ∪𝐶 ∪𝐶 . We set the team lists for 𝑝
depending on the degree of 𝑝 in 𝐺 :

if 𝑁𝐺 (𝑝) = {𝑟1, 𝑟2, 𝑟3}:
𝐹𝑝 = 𝑝, 𝑝′,¬𝑝𝑟1 ,¬𝑝𝑟2 ,¬𝑝𝑟3 ;
𝐹 ′𝑝 = ¬𝑝𝑟3 , 𝑝′,¬𝑝𝑟2 , 𝑝,¬𝑝𝑟1 ;
𝐹 ′′𝑝 = ¬𝑝𝑟1 ,¬𝑝𝑟2 ,¬𝑝𝑟3 , 𝑝, 𝑝′.

(6)

if 𝑁𝐺 (𝑝) = {𝑟1, 𝑟2}:
𝐹𝑝 = 𝑝, 𝑝′,¬𝑝𝑟1 ,¬𝑝𝑟2 ;
𝐹 ′𝑝 = ¬𝑝𝑟1 ,¬𝑝𝑟2 , 𝑝, 𝑝′;
𝐹 ′′𝑝 = 𝑝′,¬𝑝𝑟1 ,¬𝑝𝑟2 , 𝑝 .

(7)

Finally, for each dummy team 𝑑 ∈ 𝐷 , we let

𝐹𝑑 = 𝑎𝑑 , 𝑏𝑑 , 𝑐𝑑 ;
𝐹 ′
𝑑
= 𝑐𝑑 , 𝑎𝑑 , 𝑏𝑑 ;

𝐹 ′′
𝑑
= 𝑏𝑑 , 𝑐𝑑 , 𝑎𝑑 .

(8)

This finishes the definition of the team lists 𝐹𝑡 , 𝐹 ′𝑡 , and 𝐹 ′′𝑡 for each
team 𝑡 ∈ 𝑇 . Observe that the sets of candidates in 𝐹𝑡 taken over
each 𝑡 ∈ 𝑇 form a partition of the set 𝑋 of relevant candidates.

Preferences. In what follows, it will be convenient to fix an or-
dering over 𝑇 and use the notation 𝑇 = {𝑡1, . . . , 𝑡𝜌 }. Consider the
election E𝑞 introduced in Definition 3.5 over 3𝑞 = 𝜌 candidates.
Since |𝑇 | = 3𝑞 , there exists a bijection𝜓 : 𝐶𝑞 → 𝑇 between candi-
dates of E𝑞 and teams in 𝑇 that maps 𝑡𝑖 ∈ 𝑇 to the 𝑖-th candidate
in the preference list of 𝑤 . Using the alias �̃�𝑖 = 𝜓−1 (𝑡𝑖 ) for each
team 𝑡𝑖 ∈ 𝑇 , the election E𝑞 can be written as

election E𝑞 : 𝑤 : �̃�1, �̃�2, . . . , �̃�𝜌 ;
𝑤 ′ : �̃�𝜋 (1) , �̃�𝜋 (2) , . . . , �̃�𝜋 (𝜌 ) ;
𝑤 ′′ : �̃�𝜋 (1) , �̃�𝜋 (1) , . . . , �̃�𝜋 (𝜌 )

(9)

for some permutations 𝜋 and 𝜋 over [𝜌].
We define the permutations 𝜑 and 𝜑 over [3𝜌] based on the

election E𝑞+1 similarly: after renaming the candidates in the elec-
tion E𝑞+1 as �̃�1, �̃�2, . . . , �̃�3𝜌 , the election E𝑞+1 can be re-written as

election E𝑞+1 : 𝑤 : �̃�1, �̃�2, . . . , �̃�3𝜌 ;
𝑤 ′ : �̃�𝜑 (1) , �̃�𝜑 (2) , . . . , �̃�𝜑 (3𝜌 ) ;
𝑤 ′′ : �̃�𝜑 (1) , �̃�𝜑 (1) , . . . , �̃�𝜑 (3𝜌 ) ;

for some permutations 𝜑 and 𝜑 over [3𝜌].
Now we are ready to give the preferences of voters 𝑣 , 𝑣 ′, and 𝑣 ′′:

𝑣 : 𝐹𝑡1 , 𝐹𝑡2 , . . . , 𝐹𝑡𝜌 , 𝑏1, 𝑏2, . . . , 𝑏3𝜌−1, 𝑎1, 𝑏3𝜌 , 𝑎2, 𝑎3, . . . , 𝑎3𝜌 ;
𝑣 ′ : 𝑎𝜑 (1) , . . . , 𝑎𝜑 (3𝜌 ) , 𝐹 ′𝑡𝜋 (1) , . . . , 𝐹

′
𝑡𝜋 (𝜌 ) , 𝑏𝜑 (1) , . . . , 𝑏𝜑 (3𝜌 ) ;

𝑣 ′′ : 𝑏𝜑 (1) , . . . , 𝑏𝜑 (3𝜌 ) , 𝑎𝜑 (1) , . . . , 𝑎𝜑 (3𝜌 ) , 𝐹 ′′𝑡𝜋 (1) , . . . , 𝐹
′′
𝑡𝜋 (𝜌 ) .

Hence, the constructed election is obtained from (9) by substituting
each candidate corresponding to some team 𝑡𝑖 with the team lists
for 𝑡𝑖 , and adding the simple candidates in the appropriate manner.

It is clear that the construction takes polynomial time, since
building the elections E𝑞 and E𝑞+1 takes time polynomial in 3𝑞 ,
and 𝑞 = log3 ( |𝑇 |). Therefore, it remains to prove its correctness.
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Connection between solvability of the input instance and

flatness of the election restricted to relevant candidates. To
prove the correctness of our reduction, let us start with the follow-
ing facts, which rely on Observation 3.
• Candidate 𝑎1 defeats 𝑏3𝜌 , all relevant candidates, and no
candidate in 𝐵 \ {𝑏3𝜌 }; additionally 𝑎1 also defeats exactly
half of the candidates in 𝐴 \ {𝑎1}. Therefore,

CplE (𝑎1) = 1 + 3𝜌 + 3𝜌 − 1
2 =

9𝜌 + 1
2 (10)

because 𝑋 is the union of 3𝜌 parties.3
• Candidate 𝑎𝑖 ∈ 𝐴 \ {𝑎1} defeats all relevant candidates, no
candidates in 𝐵, and half of the candidates in 𝐴 \ {𝑎𝑖 }. Thus,
CplE (𝑎𝑖 ) = 3𝜌 + 3𝜌−1

2 =
9𝜌−1
2 .

• Candidate 𝑏3𝜌 defeats all candidates in 𝐴 except for 𝑎1, no
relevant candidates, and half of the candidates in 𝐵 \ {𝑏3𝜌 }.
Thus, CplE (𝑏3𝜌 ) = |𝐴| − 1 +

3𝜌−1
2 =

9𝜌−3
2 .

• Candidate 𝑏𝑖 ∈ 𝐵 \ {𝑏3𝜌 } defeats all candidates in 𝐴, no
relevant candidates, and half of the candidates in 𝐵 \ {𝑏𝑖 }.
Thus, CplE (𝑏𝑖 ) = |𝐴| +

3𝜌−1
2 =

9𝜌−1
2 .

• Relevant candidates defeat all candidates in 𝐵 and no candi-
dates in 𝐴.

Due to (10), the above observations imply that 𝑎1 is the unique
winner in of the election E resulting from some nominations if and
only if all relevant nominees defeat at most 3𝜌−1

2 relevant nominees,
i.e., if the election E restricted to relevant nominees is flat. In other
words, our instance of Possible President is a “yes”-instance if
and only if there exist nominations of all parties corresponding
to singles, couples, and rooms for which the relevant election E𝑋
below reduced to these nominations becomes flat:

relevant election E𝑋 : 𝑣 : 𝐹𝑡1 , 𝐹𝑡2 , . . . , 𝐹𝑡𝜌 ;
𝑣 ′ : 𝐹 ′𝑡𝜋 (1) , 𝐹

′
𝑡𝜋 (2)

, . . . , 𝐹 ′𝑡𝜋 (𝜌 ) ;
𝑣 ′′ : 𝐹 ′′𝑡𝜋 (1) , 𝐹

′′
𝑡𝜋 (2)

, . . . , 𝐹 ′′𝑡𝜋 (𝜌 ) .
(11)

Recall that𝜓 : 𝐶𝑞 → 𝑇 is a bijection between candidates of E𝑞
and teams in 𝑇 . Comparing (9) and (11), we get the following.

Observation 4. Replacing each candidate 𝑧 in the preference lists

of 𝑤 , 𝑤 ′, and 𝑤 ′′ in the election E𝑞 with 𝐹𝜓 (𝑧 ) , 𝐹
′
𝜓 (𝑥 ) , and 𝐹 ′′

𝜓 (𝑥 ) ,

respectively, yields exactly the preference lists of voters 𝑣 , 𝑣 ′, and 𝑣 ′′

in the relevant election E𝑋 .

Observation 4 enables us to take advantage of the structure of
election E𝑞 to establish analogous properties of the constructed
instance. Using the specifics of the team list definitions, we can
show that our instance of Maximum Matching with Couples
admits a complete matching if and only if E𝑋 admits nominations
resulting in a flat election; as we have seen, the latter happens if
and only if the constructed instance of Possible President is a
“yes”-instance. See the full version [18] for the rest of the proof.

3.3 Four or More Voters

Contrasting Theorem 3.1, showing the tractability of Possible
President for Llull with two voters, a reduction from 3-Coloring
yields NP-hardness for four voters. As it is possible to add two

3Henceforth, we write CplE (𝑥 ) for the score of candidate 𝑥 whenever 𝛼 is irrelevant.

voters with opposite preferences without changing the election
outcome, Theorems 3.2, 3.3 and 3.6 imply Theorem 1.1.

Theorem 3.6 (★). Possible President for Copeland1 (i.e., Llull)
is NP-complete even for four voters and maximum party size 𝜎 = 2.

3.4 Few Parties

In this section we consider the parameterization of Possible Pres-
ident by 𝑡 , the number of parties. As we will see, intractability
persists even if the number of voters is four, and 𝑡 is a parame-
ter. Our starting point is Theorem 3.7 which shows that Possible
President for Copeland𝛼 for 𝛼 < 1 isW[1]-hard with parameter 𝑡 .

Theorem 3.7. For any constant 𝛼 ∈ [0, 1), Possible President
for Copeland

𝛼
isW[1]-hard when parameterized by 𝑡 .

Proof. We provide a reduction from theMulticolored Cliqe
problem. An instance of this problem consists of a graph𝐺 = (𝑈 , 𝐸)
with its vertex set partitioned into 𝑘 independent sets 𝑈1, . . . ,𝑈𝑘 ,
and the question is whether 𝐺 contains a clique of size 𝑘 .Multi-
colored Cliqe is W[1]-hard when parameterized by 𝑘 [12, 17].

We construct an instance of Possible President as follows. The
set of candidates is 𝐶 = 𝑈 ∪ {𝑝, 𝑝′}, our distinguished party is
𝑃 = {𝑝}, and we have further parties 𝑃 ′ = {𝑝′} and 𝑈𝑖 for each
𝑖 ∈ [𝑘]. Thus, we have 𝑡 = 𝑘 + 2 parties.

The set of voters corresponds to the set of “non-edges” in𝐺 , that
is, to 𝐸 = {𝑢𝑢′ : 𝑢 ∈ 𝑈𝑖 , 𝑢

′ ∈ 𝑈 𝑗 , 𝑖 < 𝑗, 𝑢𝑢′ ∉ 𝐸}. Namely, for each
𝑒 = 𝑢𝑢′ ∈ 𝐸, we create two voters 𝑣𝑒 and 𝑣 ′𝑒 with preferences as
in (12). We fix an arbitrary ordering over 𝐶 , and write −→𝑋 for listing
a set 𝑋 of candidates according to this order, and←−𝑋 for its reverse.

𝑣𝑒 : 𝑢,𝑢′,
−−−−−−−−−→
𝑈 \ {𝑢,𝑢′}, 𝑝, 𝑝′

𝑣 ′𝑒 : 𝑝, 𝑝′,
←−−−−−−−−−
𝑈 \ {𝑢,𝑢′}, 𝑢,𝑢′

(12)

Consider a reduced election E obtained by some nominations of
all parties. Notice that Cpl𝛼E (𝑝) = 𝛼𝑘 + 1 and Cpl𝛼E (𝑝

′) = 𝛼𝑘 , since
𝑝 defeats 𝑝′, and both are tied with every other candidate.

Assume that𝐺 admits a multicolored clique 𝑆 = {𝑢 (𝑖 ) , . . . , 𝑢 (𝑘 ) }
with 𝑢 (𝑖 ) ∈ 𝑈𝑖 for 𝑖 ∈ [𝑘]. Let each party 𝑈𝑖 nominate 𝑢 (𝑖 ) . As 𝑆
is a clique in 𝐺 , it is an independent set in the complement of 𝐺 ,
so there is no 𝑒 ∈ 𝐸 containing two vertices of 𝑆 corresponding to
two nominated candidates. Thus, each nominee from 𝑈 obtains a
Copeland𝛼 score of 𝛼 (𝑘 + 1). Since 𝛼 < 1, this is strictly smaller
than Cpl𝛼E (𝑝), so 𝑝 is the unique winner of the resulting election.

Conversely, assume for the sake of contradiction that 𝑝 is the
unique winner of some reduced election E, but the nominated can-
didates in𝑈 do not form a clique. Let 𝑢 (𝑖 ) ∈ 𝑈𝑖 be a nominee such
that there is an edge 𝑒 ∈ 𝐸 in the complement of 𝐺 between 𝑢 (𝑖 )

and some nominee𝑢 ( 𝑗 ) ∈ 𝑈 𝑗 with 𝑖 < 𝑗 ; we choose 𝑖 as the minimal
index where this happens. Then, due to the two voters correspond-
ing to 𝑒 ∈ 𝐸 we know that candidate 𝑢 (𝑖 ) defeats candidate 𝑢 ( 𝑗 ) ,
and due to our choice of 𝑖 , there is no nominated candidate that
defeats 𝑢 (𝑖 ) . Hence, Cpl𝛼E (𝑢

(𝑖 ) ) ≥ 𝛼𝑘 + 1, a contradiction to our
assumption that 𝑝 is the unique winner in E. □

We can strengthen Theorem 3.7 as follows:
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Theorem 3.8 (★). For any constant 𝛼 ∈ [0, 1], Possible President
for Copeland

𝛼
isW[1]-hard when parameterized by 𝑡 , the number

of parties, even if there are only four voters.

We prove Theorem 3.8 in two steps, first for 𝛼 < 1, and then
filling the gap with a more involved reduction for 𝛼 = 1; see the
full version [18]. Regarding elections with an odd number of voters,
we were able to prove the following:

Theorem 3.9 (★). For any constant 𝛼 ∈ [0, 1], Possible President
for Copeland

𝛼
isW[1]-hard when parameterized by 𝑡 , the number of

parties, even if there are only five voters.

Each of these results uses a reduction from Multicolored
Cliqe, but the constructions become gradually more complicated;
the proof of Theorem 3.9 necessitates also the notion of flat elections
(see the full version [18]).

We remark that Possible President is inXPwhen parameterized
by 𝑡 , assuming that winner determination can be performed in
polynomial time: there are at most 𝜎𝑡 possibilities for how parties
can choose their nominated candidates, so we can check whether
the distinguished party wins in at least one election resulting from
some nomination strategy in 𝜎𝑡𝑛𝑂 (1) time (see e.g., [19]).

4 MAXIMIN VOTING RULE

Turning to the Maximin voting rule, we investigate how the com-
plexity of Possible President for Maximin depends on the number
of voters (Section 4.1) and on the number of parties (Section 4.2).

4.1 Few Voters

We start by extending the tractability result of Theorem 3.1, dealing
with the Llull voting rule with two voters, to the Maximin voting
rule with two or three voters.

For two voters, tractability again relies on Observation 1 stating
the transitivity of the “defeat” relation. For three voters we say
that candidate 𝑎 strongly defeats a candidate 𝑏, if all three voters
prefer 𝑎 to 𝑏. It is easy to see that the “strong defeat” relation is also
transitive. This implies that some candidate is the unique winner in
a Maximin election if and only if it defeats every other candidate.

Theorem 4.1. Possible President for the Maximin voting rule is

polynomial-time solvable if there are only two voters.

Proof. The theorem hinges on the fact that a nominee 𝑝 is a
unique winner in a Maximin election E if and only if 𝑝 defeats
every other nominee. To see this, first realize that if 𝑝 defeats all
nominees thenMME (𝑝) = 2 and we haveMME (𝑐) = 0 for every
other nominee 𝑐 , so 𝑝 is the unique winner.

Now assume that 𝑝 is the unique winner of a reduced election E.
Clearly, 𝑝 cannot be defeated by any nominee, as that would yield
MME (𝑝) = 0. Neither isMME (𝑝) = 1 possible, as in this case every
other nominee 𝑐 must have Maximin-scoreMME (𝑐) = 0, i.e., has
to be defeated by at least one other nominee. However, by a similar
argument as in the proof of Theorem 3.1, this quickly leads to a
contradiction, because the “defeat” relation cannot contain cycles.

Therefore, onlyMME (𝑝) = 2 is possible, and thus 𝑝 defeats all
nominees. Hence the same quadratic-time algorithm as in Theo-
rem 3.1 solves the Possible President problem also for the Max-
imin voting rule in the case of two voters. □

Theorem 4.2. Possible President for the Maximin voting rule is

polynomial-time solvable if there are only three voters.

Proof. Again, we show that 𝑝 is a unique winner in some elec-
tion E if and only if 𝑝 defeats every other nominee in E. To see this,
first realize that if 𝑝 defeats all nominees, thenMME (𝑝) ≥ 2 and
MME (𝑐) ≤ 1 for every other nominee 𝑐 , so 𝑝 is the unique winner.

Now assume that 𝑝 is the unique winner in some election E.
Clearly, MME (𝑝) = 0 is impossible. If MME (𝑝) = 1, then every
other nominee 𝑐 must have MME (𝑐) = 0. This means that every
nominee other than 𝑝 is strongly defeated by another nominee.
However, this is not possible, as there can be no cycles in the “strong
defeat” relation due to its transitivity. Therefore, MME (𝑝) ≥ 2
must hold, and thus 𝑝 can become the unique winner in an election
resulting from some nominations if and only if each party has a
candidate that is defeated by 𝑝 . From this, the polynomial-time
solvability of the problem follows easily. □

The following theorem shows that for 𝑛 ≥ 4 voters, Possible
President for Maximin is hard even when all parties have size at
most 2. The proof of Theorem 4.3 deals with the case of even and
odd number of voters separately, providing two reductions from
3-SAT. Theorems 4.1, 4.2, and 4.3 together prove Theorem 1.2.

Theorem 4.3 (★). Possible President forMaximin isNP-complete

even for instances where the number of voters is a fixed constant𝑛 ≥ 4,
and the maximum party size is 𝜎 = 2.

4.2 Few Parties

Contrasting Theorem 3.7, we show that if the number of parties is
small, then we can efficiently solve Possible President for Max-
imin. More precisely, we provide an FPT algorithm for this problem
with parameter 𝑡 , the number of parties. This subsection is dedi-
cated to proving the following result.

Theorem 4.4 (★). There exists an algorithm that solves Possible

President for Maximin and runs in FPT time with parameter 𝑡 .

Let our input instance 𝐼 of Possible President be an election
E0 = (𝑉 ,𝐶, {≻𝑣}𝑣∈𝑉 ) whose candidate set 𝐶 is partitioned into
a family P of parties containing a distinguished party 𝑃★ ∈ P.
Our algorithm AlgMM first makes certain guesses about the prop-
erties of a hypothetical solution to 𝐼 , i.e., a nomination strategy
that allows 𝑃★ to become the unique winner in the resulting re-
duced election E. Then, after some preprocessing steps, we reduce
our problem to the following directed variant of the Partitioned
Subgraph Isomorphism problem [1, 15].
Problem Partitioned Subdigraph Isomorphism:

Input: Digraphs 𝐷 and 𝐻 with labelling 𝛾 : 𝑉 (𝐻 ) → 𝑉 (𝐷).
Question: Is there a subdigraph 𝐻 of 𝐻 that is isomorphic to 𝐷 ,
and an isomorphism 𝑓 : 𝑉 (𝐷) → 𝑉 (𝐻 ) that maps each vertex 𝑣
of 𝐷 to a vertex of 𝐻 with label 𝑣 , i.e., satisfies 𝛾 (𝑓 (𝑣)) = 𝑣?
Given an instance of Partitioned Subdigraph Isomorphism,

we may refer to 𝐷 and 𝐻 as the pattern and the host graphs, re-
spectively. We say that 𝐻 is 𝛾-isomorphic to 𝐷 if it satisfies the
requirements given in the problem definition.

It is easy to see that Partitioned Subdigraph Isomorphism
is NP-complete, e.g., by a simple reduction from Multicolored
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Cliqe; see the results by Marx [15] for much stronger lower
bounds for the undirected version. However, we will only need
to solve Partitioned Subdigraph Isomorphism in the easy special
case when all vertices of the pattern graph have indegree at most 1.

Lemma 4.5. Partitioned Subdigraph Isomorphism can be solved

in 𝑂 ( |𝑉 (𝐻 ) |2) time if the pattern graph 𝐷 has maximum indegree 1.

Proof. For a vertex 𝑣 in a digraph 𝐺 , let 𝑁 −
𝐺
(𝑣) and 𝑁 +

𝐺
(𝑣)

denote 𝑣 ’s in- and outneighbors in𝐺 , respectively. We will also use
the notation Γ𝑣 = {𝑥 ∈ 𝑉 (𝐻 ) : 𝛾 (𝑥) = 𝑣} for the set of vertices in 𝐻
with label 𝑣 for some 𝑣 ∈ 𝑉 (𝐷).

We introduce two simple rules that reduce the size of the input
instance without changing its solvability. The first rule deals with
vertices in the pattern graph that have indegree 1 and outdegree 0.

Rule A. Let (𝐷,𝐻,𝛾) be an instance of Partitioned Subdigraph
Isomorphism containing a vertex 𝑣 ∈ 𝑉 (𝐷) with 𝑁 +

𝐷
(𝑣) = ∅ and

𝑁 −
𝐷
(𝑣) = {𝑢}. Then delete 𝑣 from 𝐷 , and delete all vertices of Γ𝑢

without out-neighbors in Γ𝑣 , as well as Γ𝑣 itself from 𝐻 .

The second rule deals with vertices in the pattern graph that
have both in- and outdegree 1.

Rule B. Let (𝐷,𝐻,𝛾) be an instance of Partitioned Subdigraph
Isomorphism containing a vertex 𝑣 ∈ 𝑉 (𝐷) with 𝑁 +

𝐷
(𝑣) = {𝑤}

and 𝑁 −
𝐷
(𝑣) = {𝑢} such that (𝑢,𝑤) is not an arc in 𝐷 . First delete 𝑣

from 𝐷 and add the arc (𝑢,𝑤) to 𝐷 . Second, delete Γ𝑣 from 𝐻 , and
replace the arcs of 𝐻 contained in Γ𝑢 × Γ𝑤 with the arc set

𝐴𝑢𝑤 = {(𝑥,𝑦) : 𝑥 ∈ Γ𝑢 , 𝑦 ∈ Γ𝑤 , 𝑁 +𝐻 (𝑥) ∩ 𝑁 −𝐻 (𝑦) ∩ Γ𝑣 ≠ ∅}.

Claim 1 (★). Applying Rule A or B yields an equivalent instance

of Partitioned Subdigraph Isomorphism.

Applying Rules A and B preserves the property that all vertices
in the pattern graph have indegree at most 1. After applying Rule A
exhaustively, we obtain an instance where all vertices of the pattern
graph have in- and outdegree at most one, i.e., the pattern graph
is a disjoint union of directed cycles, paths, and isolated vertices.
In fact, since Rule A is applicable whenever the pattern graph has
a connected component that is a directed path with at least two
vertices, we know that after the exhaustive application of Rule A
we arrive at a pattern graph that is a disjoint union of directed
cycles and isolated vertices. Applying then Rule B exhaustively we
arrive at an instance 𝐼★ whose pattern graph 𝐷★ consists solely of
isolated vertices, possibly with loops. Solving such an instance 𝐼★
is easy: 𝐼★ is a “yes”-instance if and only if the host graph contains
a vertex 𝑓 (𝑣) with label 𝑣 for each 𝑣 ∈ 𝑉 (𝐷★), with 𝑓 (𝑣) having a
loop whenever 𝑣 has an incident loop in 𝐷★.

Notice that applying either of the two rules consists of the dele-
tion of vertices and, possibly, the addition of arcs to the host graph.
Starting from an instance (𝐷,𝐻,𝛾), the total time spent on the for-
mer is 𝑂 ( |𝑉 (𝐻 ) | + |𝑉 (𝐷) |) = 𝑂 ( |𝑉 (𝐻 ) |), whereas the total time
spent on the latter is at most 𝑂 ( |𝑉 (𝐻 ) |2), because no arc is added
more than once to𝐻 . Hence, the total running time is𝑂 (𝑉 |𝐻 |)2. □

We are now ready to describe the steps of AlgMM when run on
the instance (E0,P, 𝑃★); see the full version [18] for its correctness.
Step 1. Guess the candidate 𝑝 nominated by 𝑃★ in the reduced

election E, as well as its Maximin-score 𝑠★ = MME (𝑝) in E.

Step 2. For each party 𝑃 ∈ P \{𝑃★}, guess a party 𝑃 ′ ∈ P \{𝑃} for
which the nominees 𝑐 and 𝑐′ of 𝑃 and 𝑃 ′ in E, respectively,
satisfy 𝑁E (𝑐, 𝑐′) < 𝑠★. Let 𝛿 (𝑃) denote the guessed party.

Step 3. Delete every candidate 𝑐 ∈ 𝐶 for which 𝑁E0 (𝑝, 𝑐) < 𝑠★.
Step 4. For each party 𝑃 ∈ P such that 𝛿 (𝑃) = 𝑃★, delete all

candidates 𝑐 ∈ 𝑃 for which 𝑁E0 (𝑐, 𝑝) ≥ 𝑠★.
Step 5. Let 𝑋 be the set of candidates deleted in Steps 3 and 4. If

there is a party 𝑃 ∈ P \ {𝑃★} with 𝑃 ⊆ 𝑋 , then return “no.”
Step 6. Construct a digraph 𝐷 whose vertex set is P \ {𝑃★} and

contains an arc (𝑃 ′, 𝑃) if and only if 𝑃 ′ = 𝛿 (𝑃); hence, each
vertex in 𝐷 has at most one incoming arc.
Construct also a digraph 𝐻 over 𝐶 \ 𝑋 \ 𝑃★ in which (𝑐′, 𝑐)
is an arc if and only if 𝑁E0 (𝑐, 𝑐′) < 𝑠★. We set the label 𝛾 (𝑐)
of each candidate 𝑐 to be the party containing 𝑐 .

Step 7. Solve Partitioned Subdigraph Isomorphism on instance
𝐽 = (𝐷,𝐻,𝛾) using the algorithm of Lemma 4.5, and return
“yes” if and only if 𝐻 admits a subdigraph 𝛾-isomorphic to 𝐷 .
Otherwise return “no.”

5 CONCLUSIONS AND FUTURE RESEARCH

We provided a detailed multivariate complexity analysis of the
Possible President problem in the framework of candidate nom-
ination by parties for several Condorcet-consistent rules; see Ta-
ble 1 for a summary. Our results show a clear difference between
Copeland𝛼 for 𝛼 ∈ [0, 1] and Maximin: although both remain NP-
hard even for a constant number of voters, Possible President
for Maximin becomes tractable (in the parameterized sense) in the
realistic scenario where the number 𝑡 of parties is small, while
Copeland𝛼 remains intractable even then. An intriguing question
we left open is whether Possible President for Copeland with two
or three voters becomes FPT when parameterized by 𝑡 .

For another promising research direction, recall that our algo-
rithms for two voters relied on the transitivity of the “defeat” rela-
tion. Interestingly, the defeat relation is transitive for any number
of voters if preferences are single-peaked. Faliszewski et al. [10]
proved that Possible President for Plurality remainsNP-complete
for such preferences. Misra [16] strengthened this result by showing
NP-hardness for 1D-Euclidean profiles that are both single-peaked
and single-crossing, even with maximum party size 2. What is the
situation for voting rules other than Plurality?

The related Necessary President problem, asking if some can-
didate of a given party can become the winner regardless of nomi-
nations from other parties, was shown to be coNP-complete for Plu-
rality by Faliszewski et al. [10], even with maximum party size two.
Cechlárová et al. [6] added the analogous results for ℓ-Approval,
ℓ-Veto, and Plurality with run-off, and gave integer programs for
Necessary President for further voting rules including Copeland,
Llull, and Maximin. As far as we know, the parameterized complex-
ity of this problem has not been considered yet.
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