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ABSTRACT

Coaches are vital for effective collaboration, but cost and resource
constraints often limit their availability during real-world tasks.
This limitation poses serious challenges in life-critical domains
that rely on effective teamwork, such as healthcare and disaster
response. To address this gap, we propose and realize an innovative
application of AI: task-time team coaching. Specifically, we intro-
duce Socratic, a novel AI system that complements human coaches
by providing real-time guidance during task execution. Socratic
monitors team behavior, detects misalignments in team members’
shared understanding, and delivers automated interventions to
improve team performance. We validated Socratic through two
human subject experiments involving dyadic collaboration. The
results demonstrate that the system significantly enhances team per-
formance with minimal interventions. Participants also perceived
Socratic as helpful and trustworthy, supporting its potential for
adoption. Our findings also suggest promising directions both for AI
research and its practical applications to enhance human teamwork.

CCS CONCEPTS

• Human-centered computing → Interactive systems and

tools; • Computing methodologies→ Intelligent agents; Plan-
ning under uncertainty; Multi-agent planning; Machine learning.
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1 INTRODUCTION

Consider your favorite sports team — whether it is soccer, cricket,
basketball, or another team sport — working together to achieve
a common goal. Even though all the team members are trained
professionals, some teams consistently outperform others. Indeed,
a team of individual experts does not necessarily make for an expert
team [3]; building a successful team requires the confluence of
multiple factors [40]. Human factors research has identified key
drivers of team effectiveness, including capability, coordination,
communication, and coaching [82]. Through targeted training and
interventions, human teams can significantly improve coordination
and enhance their performance in collaborative tasks.

Coaches play a crucial role in both team training and inter-
ventions. Rather than performing tasks themselves, they enhance
collaboration by offering expert insights. These insights are pro-
vided both during task execution, such as in games, and during
training sessions, such as in practice. While coaches are common in
professional sports, integrating them into life-critical fields presents
significant challenges [52, 73]. Resource constraints and a shortage
of experts make it difficult to employ coaches during task execution.
For example, in surgical teamwork, a coach could be invaluable in
reducing preventable medical errors [39, 73, 91]. Reducing these
errors would significantly improve patient health outcomes. How-
ever, due to the shortage of medical professionals, it is not feasible
for a specialist to continuously serve in this coaching role. Similarly,
in aviation, coaches assist with simulation-based training, but they
cannot accompany a flight crew on every flight [34].

Recognizing the need for coaching assistance in life- and safety-
critical applications, we propose an innovative use of artificial intel-
ligence (AI): task-time team coaching. Specifically, we envision an
AI agent that complements a human coach by monitoring a team
during task execution and providing real-time guidance to improve
teamwork, particularly in situations where the human coach may
be busy or unavailable. While coaches offer a variety of feedback
before, during, and after tasks, in this work, we limit our scope to
delivering task-time feedback in time-critical tasks. For this setting,

An extended version of this paper, which includes supplementary material mentioned
in the text, is available at http://tiny.cc/socratic-appendix
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Figure 1: Schematic of Socratic: an AI coach for enhancing teamwork during task execution. Blue arrows represent the

workflow during the training phase, whereas black arrows indicate the workflow during the execution phase.

we present a novel proof-of-concept AI agent, Socratic, designed
to complement a human coach and thereby enhance teamwork.

Illustrated in Fig. 1, the overall design of Socratic is grounded
in the extensive literature on human team training. Specifically,
Socratic operates by observing task execution and identifying
points where the team’s mental models regarding shared plans
may become misaligned. When such a misalignment is detected,
Socratic prompts the team to pause, reflect on their plans, and
offers suggestions for improvement. By encouraging the team to
reconsider future actions that could lead to inefficiencies or errors,
Socratic aims to enhance collaborative decision-making.

From an AI perspective, Socratic leverages recent advances
in imitation learning and multi-agent systems. First, it employs
multi-agent imitation learning to model team behavior based on
demonstrations from previously executed tasks. Using this model
and data from an ongoing task, it builds on TIC– a recent algorithm
for agent-based teamwork – to algorithmically detect points of
misalignment and generate recommendations. Finally, through an
interactive user interface, Socratic delivers the automatically gen-
erated interventions aimed at aligning the team’s understanding
and improving overall performance.

To evaluate Socratic, we conducted two human subject experi-
ments: one focused on training and the other on validation. Both ex-
periments involved two collaborative tasks and dyadic teams. In the
training experiment, we curated a novel dataset of human demon-
strations annotated with intents and used it to train Socratic. In
the validation experiment, we conducted a randomized controlled
trial to evaluate both Socratic’s objective performance and the
users’ subjective perceptions of the system. The experimental re-
sults show that Socratic significantly improves team performance
with minimal interventions. Equally important for its adoption,
participants perceive Socratic as helpful to improving teamwork.
The evaluations also suggest promising directions for both AI re-
search and the proposed applications, highlighting the potential of
AI agents to support human teamwork.

2 BACKGROUND

Before describing Socratic, we present the concepts and related
research that inform our approach.

2.1 Collaborative Tasks

Teamwork is fundamental to many human endeavors, spanning sce-
narios such as sports, healthcare, aviation, and more. Our focus is
on time-critical scenarios, such as healthcare and disaster response,
where effective teamwork is crucial for mission success. Team-
work occurs at various levels, ranging from large organizations
to small ad-hoc teams. We focus on mission-oriented, sequential
tasks, where an established team works toward a clearly defined
mission (e.g., Fig. 2). Although the mission is well-defined, there
are often multiple ways to achieve the task. Real-world challenges,
such as uncertainty, information asymmetry, and partial observabil-
ity, can create barriers to efficient teamwork and task completion.
Finally, we consider teams composed of human members, either in
human-only teams or hybrid human-AI teams.

To develop an AI agent capable of supporting such teamwork,
the first step is to mathematically model the task and team dy-
namics. Fortunately, research in multi-agent systems offers several
established formalisms for modeling collaborative tasks, includ-
ing belief-desire-intention frameworks, Markov models, and game
theory [2, 7, 15, 19, 20, 24, 43, 46, 47, 70, 79, 81, 84]. In our work,
we leverage decentralized multi-agent partially observable Markov
decision processes (Dec-POMDPs) [51]. This choice is motivated by
their ability to model tasks with well-defined missions, structured
teams, time constraints, action uncertainties, and partial observabil-
ity, as well as their prior use in modeling time-critical collaboration
scenarios like disaster response [8, 12, 36, 37, 86].

We define a task as the tupleM = (𝑛, 𝑆,𝐴,Ω,𝑇 ,𝑂, 𝑅,𝛾, ℎ), where
𝑛 is the number of agents, 𝑆 , 𝐴 � ×𝑖𝐴𝑖 and Ω � ×𝑖Ω𝑖 denote a
state space, an action space and an observation space, respectively,
𝑇 (𝑠′ |𝑠, 𝑎) denotes a probability of a state 𝑠 transitioning to another
state 𝑠′ given a joint action 𝑎 � (𝑎1, · · · , 𝑎𝑛),𝑂 (𝑜 |𝑠′, 𝑎) is a probabil-
ity of a joint observation 𝑜 � (𝑜1, · · · , 𝑜𝑛) given a state 𝑠′ and a joint
action 𝑎, 𝑅 is the task reward (objective), 𝛾 is the discount factor,
and ℎ is the task horizon. In theory, a team could act optimally by
computing a decentralized policy using Dec-POMDP solvers based
on the task model. However, it is unrealistic to expect human team
members to compute and execute such a policy flawlessly and with-
out errors. Therefore, we draw on human factors research to model
team behaviors and identify strategies for improving teamwork.
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(a) Map of Movers (b) Movers: Alice’s perspective (c) Map of Flood (d) Flood: Police’s perspective

Figure 2: Movers and Flood domains, detailed in Sec. 4.1. Teammembers can observe only the unshaded region of the environment.

2.2 The Science of Human Teamwork

The science of human teamwork focuses on the question: What
makes teams work? [68]. Over the past four decades, psychologists
and human factors researchers have systematically identified the
factors that make teamwork challenging and developed methods
to improve it [9, 10, 65, 67]. We briefly review key insights that
inform our work, while directing readers to recent survey by Tan-
nenbaum and Salas [82] for more details. There is broad consensus
that teamwork is especially challenging in time-critical scenarios,
where success depends on the convergence of multiple factors.
A major challenge is that humans often make suboptimal deci-
sions due to bounded rationality [29, 30, 77] and limited situational
awareness [13, 14, 54, 78], especially under time constraints. Hence,
Socratic does not assume perfect rationality or situational aware-
ness from team members. Even teams composed of experts may not
function optimally due to a lack of shared mental models, leading to
poor coordination and even fatal errors [6, 22, 28, 40, 41, 89]. Thus,
Socratic explicitly considers team members’ intent and allows for
potential misalignment, which can lead to suboptimal teamwork.

To enhance teamwork, the science of teamwork recommends sev-
eral methods and best practices, including effective communication,
simulation-based training, and coaching – the latter being the focus
of this paper. Coaches play a crucial role by assessing teamwork
and providing feedback to improve it. While human coaches rely
on their expertise and experience for these activities, the science
of teamwork has developed principled methods and formalized
best practices for coaching. Researchers have established robust
methods for assessing teams [11, 16, 17, 32, 68] and generating
targeted insights to enhance teamwork [4, 21, 55, 66, 93]. However,
these assessments are typically post-hoc, lack automation, and are
limited to contexts where a human coach is available. Thus, we
explore the design of an AI coach capable of operationalizing these
insights, detecting misalignments in team members’ shared intents,
and providing real-time feedback during task execution.

2.3 AI-Assisted Teamwork

AI-assisted human teamwork is an emerging area of research with
applications being explored across various domains [23, 31, 56, 57,
62, 71, 73, 90]. For instance, DeepMind and Liverpool FC are in-
vestigating data-driven approaches to analyze and enhance team

strategies in football [85]. For applications in healthcare and disaster
response, researchers have applied AI to analyze team conversa-
tions and improve extended-duration teamwork [1, 33]. Closer to
our focus on time-critical scenarios, domain-specific methods for
automated teamwork assessment have been developed [16, 35].
However, these methods, to our knowledge, provide only post-hoc
support, and AI has not yet been used for task-time coaching.

Approaches for assessing and improving teamwork in human-
robot or robot-only teams are also relevant to our work [63, 64, 83,
86, 94]. Research in human-robot collaboration introduces metrics
for evaluating teamwork [26, 38, 50] and algorithms for improv-
ing it [5, 45, 49, 69, 87]. However, these methods focus on training
robots to work with humans. In contrast, our work centers on an AI
agent that provides coaching and decision support, without directly
performing the task. Closest to our work are the recent frameworks
TIC [72] and TARS [97], which generate task-time interventions
to enhance multi-agent teamwork. TARS uses Dynamic Epistemic
Logic-POMDP to generate interventions through planning algo-
rithms [97]. TIC employs Dec-POMDPs and multi-agent imitation
learning to generate interventions through a learned model [72, 76].
However, these methods have not been applied or evaluated in
settings with human team members.

Our work builds on these methods but differs in key ways. First,
we adopt a systems perspective to develop Socratic that includes
both an intervention algorithm and a user interface, enabling in-
teraction with and coaching for human users. Second, our method-
ology incorporates mechanisms to collect training data on human
teamwork, including their cognitive states. Finally, we validate the
effectiveness of the solution through human subject experiments.

3 SOCRATIC

We now describe Socratic: the System for Objective Coaching
through Automated Task-time Interventions for Collaboration. Draw-
ing on multiple disciplines (Sec. 2), we begin by outlining the sys-
tem’s design requirements and architecture. We then detail its key
components: a module for monitoring team performance, an algo-
rithm for learning team behavior models, another for generating
task-time interventions, and a user interface to communicate these
interventions to the team. We illustrate Socratic using two human-
AI collaboration tasks, detailed in Sec. 4.1 and inspired by real-world
scenarios, implemented on a web-based simulation platform.
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(a) Task scene and UI for Alice. (b) UI for intent annotation.

(c) UI for after-action review.

Figure 3: Snapshots of the Movers task from the first study

(larger images are available in the appendix).

3.1 System Overview

3.1.1 Scope. We limit our scope to collaborative tasks modeled as
Dec-POMDPs (Sec. 2.1) and teams that include at least one human
member. Importantly, we do not make assumptions about team
members’ rationality or expertise levels. As reviewed in Sec. 2.2,
the science of teamwork identifies several key drivers of effective
teamwork. In this proof-of-concept work, we focus on team align-
ment1 — ensuring that the team is “on the same page.” Misalignment
is particularly common in time-critical scenarios, where teams may
lack sufficient time to communicate and coordinate shared plans.
Additionally, real-world factors such as partial observability, fatigue,
and uncertainty can further degrade team member’s understanding
of each other’s beliefs, desires, and intentions.

3.1.2 Design Requirements. With this scope defined, we design So-
cratic: an AI-enabled coaching agent to improve teamwork during
task execution. The design process began by identifying system
requirements through brainstorming sessions with an interdisci-
plinary team of researchers in human factors, team training, AI,
and usability. We determined that an AI agent capable of detecting
misalignments in team members’ intents and alerting the team to
pause, reflect, and adjust their plans is both feasible to develop and
can significantly enhance collaboration. For the successful realiza-
tion and adoption of such an agent, we distilled key requirements
(Rx); namely, Socratic must be:
R1. able to sense and monitor teamwork;
R2. able to accurately infer intents of the team members;
R3. able to accurately anticipate future actions of the team;
R4. able to generate effective task-time interventions;
R5. able to effectively deliver the interventions; and
R6. perceived as useful by the team members.

1Investigating other drivers of effective teamwork, intervention mechanisms, and
teamwork settings is an important avenue for future research.

3.1.3 System Architecture. To meet the design requirements, So-
cratic leverages recent advancements in imitation learning and
multi-agent systems, incorporating an interactive user interface to
monitor the team and deliver interventions. For R1 (sensing and
monitoring teamwork), we assume Socratic is equipped with sen-
sors to observe both the team and task environment. Similar to sport
scenarios, where team members may have partial observability, the
coach has full visibility of the environment. To meet R2 (inferring
intents) and R3 (anticipating future actions), Socratic employs a
recent multi-agent imitation learning algorithm BTIL that explicitly
models team members’ intents and learns a generative model of
team behavior [76]. Building on this model, Socratic utilizes a
specialized instance of the TIC framework to generate task-time
interventions to meet R4 [72]. Lastly, Socratic includes a user
interface to deliver these interventions to the team, addressing R5.

3.1.4 SystemOperation. Socratic operates in two phases: training
and execution. During the training phase, Socratic observes the
team performing tasks in practice sessions, collecting teamwork
data and learning generative models of team behavior. During task
execution, Socratic uses the learnt generative model to infer team
intents, detect misalignments, and compute and deliver effective
interventions. We now detail each system component.

3.2 Training Phase

3.2.1 Team Model. To effectively monitor the team, Socratic
builds upon a mathematical model of the task and team behavior.
Having described the task model in Sec. 2.1, we now formalize the
model of team behavior. Human decision-making often depends on
factors beyond the task state, such as cognitive states corresponding
to beliefs and intents [25, 48]. Hence, Socratic explicitly models
the influence of team members’ intent – a latent variable – on their
behavior. More specifically, following the Agent Markov Model
(AMM) [88], 𝑗-th team member’s behavior is defined by the tuple
H𝑗 = (𝑋, 𝜋 𝑗 , 𝜁 𝑗 ;M), where 𝑋 represents the set of possible task-
specific intents, 𝜋 𝑗 (𝑎 |𝑥, 𝑠) denotes the team member’s policy, and
𝜁 𝑗 (𝑥 ′ |𝑠′, 𝑎, 𝑥) represents the intent transition model.2 While this
model is well-defined, it is not trivial for domain experts to specify.
Therefore, Socratic leverages imitation learning to learn the model
parameters from demonstrations collected during training sessions.

3.2.2 Model Learning. In particular, Socratic uses BTIL to learn
the unknown parameters of the team behavioral model: 𝜋 (𝑎 |𝑠, 𝑥)
and 𝜁 (𝑥 ′ |𝑠′, 𝑥, 𝑎). BTIL is a multi-agent imitation learning algorithm
that explicitly models latent decision factors, such as intents [76].
By leveraging a Bayesian approach, BTIL has been shown to attain
sample- and label- efficient model learning from team demonstra-
tions. Additionally, BTIL can learn from both optimal and sub-
optimal demonstrations. This is especially important for Socratic,
as it learns the team model from demonstrations collected during
practice sessions, where team behavior may not always be optimal.
In practice, Socratic’s model learning begins with the collection

2Although team members’ behavior may also depend on other latent factors, such as
cognitive states and beliefs about unobserved parts of the environment, the decision
to model only intent simplifies the system design. Our experiments confirm that
this modeling choice is valid for the domains considered. However, we believe that
performance of future AI-enabled coaching systems could be further enhanced by
incorporating additional decision factors and more sophisticated behavioral models.
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(a) Example: no intervention (b) Example: Socratic-generated

intervention

Figure 4: Snapshots of Socratic’s interactive user interface

(larger images are available in the appendix).

of data on observable features of team demonstration, specifically
(𝑠, 𝑎)-trajectories. With the assistance of a human annotator, a sub-
set of these trajectories is annotated with the values of team intent
(𝑥). Using this combination of trajectory data and intent annota-
tions, Socratic utilizes the semi-supervised variant of BTIL to
learn the team behavioral model H𝑗∀𝑗 = 1 : 𝑛.

3.2.3 Team Monitoring. Equally critical to team modeling are the
mechanisms for monitoring the team and collecting teamwork data:
specifically, (𝑠, 𝑎)-trajectories and annotations of (𝑥) for a subset
of the training data. In this proof-of-concept, we focus on collabo-
rative tasks conducted through a web-based interface and develop
methods for data collection and annotation specific to this setting,
illustrated in Fig. 3 and detailed in Sec. 4.2. For real-world appli-
cations, we recommend using multimodal sensors to monitor and
gather teamwork data. We leave the exploration of related percep-
tion challenges for future work, with relevant research directions
discussed in Sec. 5. Socratic uses the samemonitoring mechanisms
during the task execution phase, which we describe next.

3.3 Execution Phase

3.3.1 Intent Detection. Socratic monitors the team during task
execution, identifying potential misalignments in team members’
intents and computing timely interventions. This capability is en-
abled by TIC, a framework that has been experimentally shown to
generate task-time interventions that enhance teamwork among
AI agents [72]. We extend this framework to develop an AI-enabled
coaching system for teams that include human members. During
task execution, Socratic can observe team members’ states and
actions, but their intents (a latent variable) remain unobservable.
While Socratic leverages a human annotator to obtain partial in-
tent annotations during the training phase, involving a human in
the loop during task execution is impractical. Therefore, to infer
team members’ intents, Socratic frames the problem as one of
Bayesian filtering. Specifically, given the learned model of team
behavior (H𝑗∀𝑗 = 1 : 𝑛) and the partial (𝑠, 𝑎)-trajectory of the
team’s task execution, Socratic employs the forward-backward
algorithm to infer each team member’s current intent 𝑥 .

3.3.2 Intervention Generation. Socratic next uses the inferred
intents to assess whether the team is aligned. If the intended plans of

the teammembers are likely to lead to suboptimal task performance,
Socratic intervenes by weighing the costs and benefits of the
intervention. Under the TIC framework, determining this balance
requires an intervention strategy, which can be hand-crafted or
learned. For Socratic, we opt for a learned, value-based strategy
to minimize human effort in intervention generation. Specifically,3

• Socratic first computes the expected return (𝑔) conditioned
on the inferred intent: 𝑔(𝑥 |𝑠) = 𝐸H [∑𝑡 𝛾

𝑡𝑟𝑡 |𝑠, 𝑥].
• Next, Socratic computes the intent values and return for
a hypothetical fully aligned team as 𝑥∗ = argmax𝑥 𝑔(𝑥 |𝑠)
and 𝑔(𝑥∗ |𝑠) = 𝐸𝜋,𝜁 [

∑
𝑡 𝛾

𝑡𝑟𝑡 |𝑠, 𝑥∗], respectively. We define
the benefit of an intervention as the difference between the
optimal and estimated return: 𝑔(𝑥∗ |𝑠) − 𝑔(𝑥 |𝑠).

• Finally, if the benefit of an intervention exceeds its cost 𝑐 by
a pre-defined threshold (i.e., 𝑔(𝑥∗ |𝑠) − 𝑔(𝑥 |𝑠) > 𝑐 + 𝛿), then
Socratic prompts the team to pause, reflect on their plans,
and recommends the optimal plan corresponding to 𝑥∗.

Choosing an appropriate cost (𝑐) and threshold (𝛿) for interven-
tions is crucial, as unnecessary or incorrect interventions could
impair team performance and reduce human trust in, and adoption
of, Socratic. Sec. 4.3 outlines the approach for selecting these hy-
perparameters for our implementation and evaluation of Socratic.

3.3.3 Intervention Delivery. To assist human team members, in
addition to generating interventions, Socratic requires effective
mechanisms for delivering these instructions. In this work, we
utilize an interactive user interface for delivering interventions,
as illustrated in Fig. 4 and detailed in Sec. 4.2. Since human team
members can choose whether to accept the AI-generated recom-
mendations, Socratic incorporates a hyperparameter 𝑝𝑎 , which
models the probability of a human accepting its recommendation.

4 FEASIBILITY STUDIES

We conducted human subject evaluations to assess the feasibility of
AI-enabled coaching in enhancing collaborative task execution. The
IRB-approved experimental protocols were designed to evaluate:
Q1. Is Socratic capable of learning a useful team model?
Q2. Is Socratic capable of improving team performance?
Q3. Is Socratic perceived as useful by human users?
The evaluations consisted of two studies: training and validation.

Both studies involved dyadic teams completing two collaborative
tasks. In the training study, we curated a novel dataset of human
demonstrations, annotated with intents, to train Socratic. In the
validation study, we conducted a randomized controlled trial4 to
evaluate the objective performance of Socratic and gather subjective
feedback from participants regarding AI-enabled coaching.

4.1 Domains

We first describe the collaborative tasks used in our evaluations:
Movers and Flood. Introduced in [72], these dyadic tasks require
teams to maintain a shared plan for effective execution. However,
due to partial observability and lack of communication, achieving
coordination and high task performance is challenging.

3Since this computation relies on observations, task model, and the learned model of
team behavior, it requires no additional human input or domain-specific knowledge.
4Validation Study: The experimental group received coaching from Socratic, while
the control group completed tasks without any AI-enabled coaching.
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4.1.1 Movers. As shown in Fig. 2a, Alice and Rob are tasked with
moving three boxes to the truck as quickly as possible. The boxes are
heavy and require both teammates to lift them together. Teamwork
is effective as long as the teammates agree on which box to move
and act accordingly, regardless of the order. However, as depicted
in Fig. 2b, each team member has a limited view of the environment
and cannot communicate with the other during task execution,
making coordination challenging. The task ends after 150 time
steps or when all boxes are moved to the truck, whichever comes
first. The cumulative team reward is defined as 150 minus the time
step at which the task terminates.

4.1.2 Flood. The second task is inspired by time-critical disaster
response scenarios. As shown in Fig. 2c, the environment includes
victims at three sites: one at City Hall, two at the Campsite, and
four at the Mall. A rescue team, consisting of a police car and a
fire truck, must save all victims within a time limit of 30 time steps.
While victims at City Hall and the Campsite can be rescued by a
single vehicle, rescuing those at the Mall requires both vehicles to
collaborate in repairing one of two bridges. Teamwork in this task
is more complex: sometimes the team must work together (e.g., at
the Mall), while in other cases, dividing sub-tasks is more efficient
(e.g., at City Hall and the Campsite). As depicted in Fig. 2d, team
members can only observe each other when at the same location
or a landmark, complicating coordination. The total team reward is
defined as the number of victims rescued within the time limit.

4.2 Study 1: Training

The first study focused on the training phase of Socratic to collect
training data and evaluate Q1. Forty participants (20 females, 20
males, mean age: 28.5±4.9 years) completed the Movers and Flood
tasks with a robot teammate, while also providing annotations of
their task-relevant intent (𝑥 ∈ 𝑋 ). For Movers, intent is defined as
the box a team member plans to pick up or drop next. For Flood,
intent refers to the site a team member plans to approach next.

4.2.1 Materials and Setup. We developed a website using the Flask
framework [18] that included the two tasks, complete with a user
interface for task execution and intent labeling (Fig. 3). This plat-
form enabled participants to perform the experiment remotely. Each
participant was paired with a robot teammate, forming a dyadic
human-robot team. Following Sec. 3.2.1, behavior of each teammate
was modeled as H𝑗 = (𝑋, 𝜋 𝑗 , 𝜁 𝑗 ;M). The robot (denoted as 𝑅) had
its policy 𝜋𝑅 pre-trained using value iteration, and its intent dynam-
ics 𝜁𝑅 were manually specified. The experiment aimed to collect
data on the human teammate’s (denoted as 𝐻 ) behavior in order to
learn their policy 𝜋𝐻 and intent dynamics 𝜁𝐻 . Both teammates had
to make decisions under partial observability and infer the intent
of their teammate to complete the task successfully.

4.2.2 Procedure. Upon providing informed consent, participants
were introduced to the experiment and completed a demographic
survey. They were then instructed to complete the dyadic tasks with
the robot, following the same process for both Movers and Flood.
This process included an interactive tutorial and four task trials.
The tutorial introduced participants to the task and trained them
on how to navigate the user interface (UI). The tutorial featured
a guided scenario that mirrored the actual task. For each domain,

Table 1: Survey Statements

# Statement (rated on a 5-point Scale)

1 The team worked fluently together.
2 The robot contributed to the fluency of the interaction.
3 The team improved over time.

4 During the task, I followed the AI Coach suggestions in general.
5 The AI Coach was intelligent.
6 The AI Coach was trustworthy.
7 The AI Coach’s suggestions were effective.
8 The AI Coach’s suggestions were timely.
9 The AI Coach contributed to the fluency of the interaction.

participants proceeded through four task trials after completing
the tutorial. Each trial was followed by a simplified after-action
review [44, 60, 80]. During each trial, the website displayed a task
scene and a task control UI, allowing participants to control their
character to complete the task (Fig. 3a). The experiment collected
data on task states (𝑠) and team actions (𝑎) while generating human
intent annotations (𝑥). Intent annotations were generated during
the task and refined via the after-action reviews, as described in
Sec. 4.2.3. After completing four trials for both the Movers and
Flood tasks, the experiment concluded with a post-experiment
survey, where participants provided open-ended feedback about
their experience.

4.2.3 Annotation. Training Socratic requires both observable
(𝑠, 𝑎)-trajectories and time series data of team members’ intents
(𝑥), which are latent and must be manually annotated. In this study,
we collected intent data through participant reports, supported
by user-centered annotation mechanisms to ensure reliable data
collection. Recall that in both domains, intent is tied to a physi-
cal location in the task scene, such as a box or a rescue site. To
streamline reporting, we developed a “Destination Selection” UI,
allowing participants to report their intended destination during
task execution (Fig. 3b). Potential destinations are highlighted, and
participants select their intended location with a mouse click. Par-
ticipants are encouraged to update their intent when it changes
and are prompted if five time steps pass without a report. Selected
intents are visually indicated with a flashing red circle. Addition-
ally, key actions like “Pick Up,” “Drop,” or “Rescue” are restricted
to the selected destination, ensuring alignment between reported
intents and actions. After each task trial, participants use the "after-
action review" UI to verify and, if needed, correct their annotations
(Fig. 3c). This interface replays the task execution, displaying both
team actions and selected intents, allowing participants to confirm
their reports. If discrepancies are found, participants can adjust
incorrect intents using the “Fix Destination” button, improving the
accuracy of the dataset used to train and validate Socratic.

4.2.4 Data Analysis. We collected 160 demonstrations per domain
and trained Socratic using a semi-supervised approach. Recogniz-
ing that intent annotation is resource-intensive, we used only 30%
of the intent labels for training and reserving the rest for valida-
tion. This approach enables evaluating Socratic in a more realistic
setting, where only partial intent annotations are available.
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Table 2: Success Rate of the Learned Model

Domain Intent Success (%) Wrong (%) Nowhere (%)

Movers

Box 1 75.4 5.9 18.7
Box 2 72.5 12.5 15.0
Box 3 69.3 13.8 16.9
Truck 99.6 0.0 0.4

Mean 79.2 8.05 12.75

Flood

City Hall 88.3 0.3 11.4
Campsite 38.2 9.2 52.6
Bridge 1 59.4 2.2 38.4
Bridge 2 45.4 3.1 51.5

Mean 57.8 3.7 38.5

4.3 Study 2: Validation

After collecting the training data, we conducted a second study to
evaluate Socratic’s performance (Q2) and perceived usefulness
(Q3). The study was a randomized control trial, where only the
experimental group received coaching from Socratic.

4.3.1 Participants. We recruited participants via Prolific [53]. Of
the 73 users who accessed the experiment, 61 completed it. To
ensure balanced group sizes, we used the first 30 participants from
each group. The control group consisted of 13 females and 17 males
(age: 28.7±8.4 years), while the experimental group included 11
females, 17 males, and 2 non-binary participants (27.8±9.1 years).

4.3.2 Materials and Setup. Similar to the first study, we developed
a website featuring the two tasks with an interactive user interface.
However, instead of intent annotation mechanisms, this version
incorporated Socratic on the backend and its user interface on
the frontend for interacting with the team during task execution.
As shown in Fig. 4, the interface features an AI coach icon with
a speech balloon above the task screen. During task execution,
the speech balloon nominally displays: “Keep up the good work.”
However, if Socratic detects misaligned intents and decides to
intervene, it pauses the task, prompts the team to reflect on their
plans, and recommends an optimal course of action corresponding
to 𝑥∗. As illustrated in Fig. 4b, the speech balloon displays:

“I’ve spotted a potential opportunity to enhance our
teamwork: Please ⟨𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛⟩”.

The suggestion is highlighted with a red circle, and participants
must click the “Confirm” button to resume the task.While Socratic
offers recommendations, participants ultimately decide whether
to accept them. To account for the fact that not all recommenda-
tions will be followed, we set 𝑝𝑎 = 0.9 for this study. Socratic
utilizes two additional hyperparameters: the cost of intervention
𝑐 and the threshold 𝛿 . For Movers, the intervention cost is set to
1, representing the loss of one time step to pause and reflect on
the recommendation. In contrast, for the life-critical Flood task,
the cost is considered negligible (𝑐 = 0) as any small delays caused
by interventions are justified if they assist in rescue efforts. The
threshold 𝛿 was determined through a grid search over the hyper-
parameter space, with values set to 5 for Movers and 0.1 for Flood
based on simulated experiments with the learned teamwork model.

4.3.3 Procedure. The overall structure of this experiment closely
mirrors that of the first study. It is web-based and includes a study
overview, a demographic survey, Movers and Flood domains, and
a post-experiment survey. For each domain, participants completed
an interactive tutorial followed by four task trials. While the tutori-
als and trials were similar to the first study, intent annotation fea-
tures were removed. Only for the experimental group, Socratic’s
features were integrated into the tutorial and task trials. Each do-
main involved one practice trial to help participants familiarize
themselves with the task and the robot teammate, followed by
three test trials. Neither group received assistance from Socratic
during the practice trial. In the test trials, the control group per-
formed the task without coaching, while the experimental group
received task-time interventions from Socratic. After the trials,
participants completed the survey described next.

4.3.4 Measures. We assessQ1 by quantifying the intent-condition-
ed success rate of the learned model. For Q2, team performance
is evaluated using task scores. Beyond improving teamwork, the
perceived usefulness of Socratic is essential for its adoption by
human users. Hence, to address Q3, we use subjective statements
adapted from a widely used scale [26]. The first three questions
solicited participants perception regarding the robot teammate,
while the rest regarding Socratic the AI coach. Control group rated
the first three statements listed in Table 1, while the experimental
group rated all statements. Responses were recorded on a 5-point
scale, ranging from strongly disagree (1) to strongly agree (5).

4.4 Experimental Results

4.4.1 Socratic learns intent-driven models of team behavior. To
address Q1, Socratic first learns models of team behavior using
the training data. We then evaluate if the learned model captures
intent-driven behaviors by simulating the policy 1000 times for each
intent 𝑥 and measuring its success rate in completing the intended
sub-task within 20 time steps. For instance, if the specified intent
is to rescue victims at City Hall, we check how often the model
succeeds. Table 2 presents the success rates of the learned model
for each intent. Failures are categorized as eitherWrong (where the
model accomplishes a sub-task associated with a different intent,
such as rescuing victims at the Camp Site when the specified intent
was City Hall) or Nowhere (where the model fails to complete any
sub-task within the time limit). On the challenging task of modeling
team behaviors from human data, the model achieved an average
success rate of 79% for Movers and 58% for Flood. Most failures
belong to theNowhere category, suggesting that model learns intent-
driven models of team behavior. Through the second study, we find
that this model learning performance is sufficient for Socratic to
deliver effective task-time interventions to improve teamwork.

4.4.2 Socratic improves teamwork via targeted interventions. To
answer Q2, we compared the performance of the two groups, using
a cost-adjusted score that accounts for the time spent on processing
and responding to interventions. Specifically, Score is defined as
𝑅 − 𝐶 , where 𝑅 is the cumulative team reward and 𝐶 is the total
cost of interventions. For the control group, Score is equal to the
task score, as no interventions took place. As shown in Fig. 5, the
experimental group outperformed the control group. In Movers,
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Figure 5: Team Scores: with and without Socratic.

teams coached by Socratic scored on average 90.8(±8.4) compared
to 78.6(±21.7) for the control group, with a statistical significance
of 𝑝 < 0.001. Similarly, for Flood, the average score of the experi-
mental group was 6.1(±1.5) versus 5.3(±1.7) for the control group,
with 𝑝 < 0.01. The average number of interventions was 3.9 (±1.7)
for Movers and 2.3 (±2.1) for Flood. These results highlight that
Socratic effectively enhanced teamwork with minimal interven-
tions. This targeted approach to delivering interventions is crucial
for improving team performance and building human users’ trust
in AI-enabled coaching.

4.4.3 Socratic is perceived as useful by human users. To answer
Q3, we analyzed participants’ survey responses. Fig. 6 displays the
percentage of positive, neutral, and negative assessments for each
statement. Responses to statements #1-3, which evaluated the robot
teammate, were largely similar across both groups, indicating that
participants had comparable perceptions of the robot teammate’s
capabilities. This consistency ensures a fair comparison between
the groups, allowing us to accurately evaluate the AI coach’s utility.

Statements #4-9, which evaluated Socratic and were rated only
by the experimental group, indicate that participants perceived
Socratic as useful, effective, intelligent, and trustworthy. Based on
these statements, the average rating of Socratic was 3.81(±1.03)
for Movers and 3.28(±1.32) for Flood on a 1 − 5 scale. Except for
statement #8 for Flood task, the positive responses outweighed the
negative ones for all statements.

Open-ended feedback suggested that Socraticwas seen as more
helpful in the Movers task, while participants found Flood more
challenging. Regarding statement #8, which asked about the timeli-
ness of Socratic ’s recommendations, one participant commented:

“There was one occasion when the AI’s suggestion came
a bit late, causing me to waste a few moves.”

While Socratic is already designed to provide proactive guidance
using a predictive model of teamwork, participants’ responses sug-
gest that they value this proactivity and may expect even more
planning support from an AI Coach. Informed by these findings, we
conclude by summarizing our contributions and discussing their
implications for both team training and AI research.

5 CONCLUSION

We introduce Socratic: a system that provides AI-enabled coach-
ing to teams with human members during task execution. Through

Figure 6: Participant Responses to Survey Statements

human subject experiments on challenging dyadic tasks, we demon-
strated that Socratic not only enhances team performance but
is also perceived as useful by participants. Since Socratic does
not perform the tasks itself, it has the potential to assist in various
domains, including those where AI agents may lack the capability
to act but can still analyze and enhance human task execution.

Along with its strengths, we also highlight the limitations of
this proof-of-concept work, which suggest exciting future research
directions. First, while the experimental tasks captured challeng-
ing elements of real-world collaboration, they were conducted in a
web-based environment. Future work should investigate AI-enabled
coaching in more complex scenarios that include dynamic environ-
ments, larger teams, multiple objectives, ad-hoc collaboration, or
members with diverse expertise [74, 75, 79]. Additionally, expand-
ing AI coaching to physical teamwork settings using multimodal
perception is an important next step [92, 95].

Second, from a human-centered perspective, our study opens up
new opportunities to examine howAI can support team training and
complement human coaches. Informed by the science of teamwork,
expanding Socratic’s interventions to include more varied recom-
mendations would further enhance its utility [4, 55, 93]. To enhance
usability, interventions could be delivered through user-friendly
interfaces such as screens, audio systems, or augmented/virtual
reality. Lastly, given AI coaches can make errors, a critical area for
further investigation is ensuring the safe and responsible deploy-
ment of AI coaches [27, 42, 58, 59, 61, 96]. This includes examining
how trust in AI coaches can be effectively built, calibrated, and
maintained to foster successful human-AI collaboration.
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