
Towards Efficient Online Goal Recognition
through Deep Learning

Lorenzo Serina
Università degli Studi di Brescia

Brescia, Italy
lorenzo.serina@unibs.it

Mattia Chiari
Università degli Studi di Brescia

Brescia, Italy
mattia.chiari@unibs.it

Alfonso Emilio Gerevini
Università degli Studi di Brescia

Brescia, Italy
alfonso.gerevini@unibs.it

Luca Putelli
Università degli Studi di Brescia

Brescia, Italy
luca.putelli@unibs.it

Ivan Serina
Università degli Studi di Brescia

Brescia, Italy
ivan.serina@unibs.it

ABSTRACT

Online goal recognition (OGR) is the task of understanding the
intention of an agent as it executes a plan, recognizing its goal every
time it performs a new action. This task is important in different
contexts, such as applications of cyber-security and human-robot
collaboration. An effective OGR system should (i) compute the
correct goal of the agent as early as possible with respect to the
agent’s performed actions, and (ii) perform fast, given that, while
the OGR system infers the agent’s goal, the agent keeps executing
the plan. In this paper, we propose a deep-learning approach to OGR
based on Recurrent Neural Networks. The approach is implemented
in a new system that learns to predict the goal of an agent acting in
a given planning domain using a training dataset for the domain.
We propose a method that exploits planning-related knowledge for
designing a training dataset that is effective for the OGR and for
improving the system performance. An experimental evaluation of
our system on several benchmark domains shows that it performs
generally better than the state-of-the-art in terms of accuracy and
execution time, considering both the requirements (i) and (ii).

KEYWORDS

Online Goal Recognition; Deep Learning; Automated Planning
ACM Reference Format:

Lorenzo Serina,Mattia Chiari, Alfonso Emilio Gerevini, Luca Putelli, and Ivan
Serina. 2025. Towards Efficient Online Goal Recognition through Deep
Learning. In Proc. of the 24th International Conference on Autonomous Agents

and Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23,

2025, IFAAMAS, 9 pages.

1 INTRODUCTION

The task of inferring the goals and intentions of an agent by observ-
ing its behaviour in an environment is defined as goal recognition.
This task is the subject of many studies [17, 36] which analyse the
problem from both the automated planning perspective [24, 26, 27]
and the machine learning perspective [2, 6, 8, 9]. Typically, a goal
recognition problem is specified as follows: assuming that the agent

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,

USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

is executing a plan 𝜋 to achieve a goal 𝐺∗, given a partial trace 𝜋 ′
of possibly non-consecutive actions in 𝜋 and a set G of possible
goals for the agent containing 𝐺∗, the objective is to infer 𝐺∗ from
𝜋 ′ and G. In the majority of the goal recognition studies, although
the plan trace is often incomplete, it is typically assumed to be
provided offline. That is, the trace is revealed after the agent has
fully executed the plan and the candidate solution is generated only
once for that trace. However, in many important domains, such as
cyber-security and human-robot interaction, it is more useful to
infer the goal of the agent during the plan execution (e.g., for early
identification of possible damages of an attacker, or for providing
collaborative support to an acting human). This task is called on-

line goal recognition (shortly OGR) [38]. In OGR, it is important to
consider that the trace is revealed incrementally, and the input of
the goal recognition problem changes with it. Thus, a candidate
solution is generated not just once as in offline goal recognition, but
every time a new observation is revealed. Therefore, in OGR there are
two important aspects to consider. The first, which is particularly
relevant in security applications, is the convergence of the system
[38], i.e., the ability to recognise the goal of the observed agent
as early as possible with respect to the number of the performed
plan actions. The second crucial aspect is goal-recognition time.
In fact, while the system computes the solution, the agent keeps
performing actions. Therefore, it could be useless to have a system
with very high convergence that, in order to obtain such results,
requires a substantial amount of time during which the agent can
perform several additional actions.

For offline goal recognition, planning-based techniques can be
rather effective, and the approaches in [26, 27] have obtained re-
markable results. However, they need to use refined reasoning
techniques based on automated planners, which can require even
minutes to compute a solution. Moreover, although a faster ap-
proach has been proposed in [24], the best performance in terms of
both accuracy and recognition time has been obtained by machine
learning models, and in particular by GRNet [8].However, learning
approaches can be sensitive to their training data, whereas symbolic
approaches are more robust and general.

In this paper, we investigate OGR starting from GRNet, which
we adapt to make it suitable for this problem. Next, we present a
new approach called CLERNet (Causal Link Enhanced Recurrent
Network) exploiting. CLERNet frames OGR as a many-to-many

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1895

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

sequence classification task performed by a Recurrent Neural Net-
work. The network iteratively receives as input the incremental
trace, and tries to predict the agent’s goal every time a new action
is executed. Each prediction is generated considering not only the
last action executed, but also the contribution of all the actions exe-
cuted before by the agent. To train the neural network, we propose
two algorithms for creating an effective labelled dataset containing
planning knowledge. Specifically, our system exploits causal links
[21, 34] to identify which actions are necessary to achieve a goal,
and uses the problem’s initial state and mutually exclusive (mutex)
relations among predicted facts. We experimentally evaluate GR-
Net and CLERNet on several planning benchmark domains, for
which we created the datasets and trained domain-specific neural
networks. Our results show that our approach obtains better per-
formance in terms of convergence and recognition time compared
to the state-of-the-art [37].

2 PRELIMINARIES

In this section we provide a formalisation of classical planning
problems and online goal recognition problems in such a context.

Classical Planning. AI Planning involves extracting a sequence
of actions (also called a plan) whose execution transforms a given
initial state of the environment into a new state that satisfies the
desired goal state [12]. In the branch of planning called Classical
Planning, the environment is deterministic and the initial state
and goal are fully known. The simplest classical planning language
currently in use is STRIPS [10], a language based on boolean vari-
ables. In STRIPS, the boolean variables that compose a state of the
environment are called facts, fluents or atoms. A planning prob-
lem in STRIPS is represented by a tuple Π = ⟨𝐹, 𝐼 , 𝐴,𝐺⟩ where: 𝐹
represents the set of all possible fluents or propositions of inter-
est; 𝐼 ⊆ 𝐹 represents the initial state; 𝐴 represents the set of all
possible actions and 𝐺 ⊆ 𝐹 represents the goal. The actions 𝑎 ∈ 𝐴

are represented by three sets of atoms over 𝐹 called Add (𝐴𝑑𝑑 (𝑎)),
Delete (𝐷𝑒𝑙 (𝑎)) and Precondition (𝑃𝑟𝑒 (𝑎)) lists. The Add list de-
scribes the atoms that 𝑎 makes true, the Delete list describes the
atoms that 𝑎 makes false and the Precondition list describes the
atoms that must be true in order for the action 𝑎 to be executed. A
state 𝑠 in STRIPS is a subset of 𝐹 , with the meaning that if 𝑓 ∈ 𝑠 ,
then 𝑓 is 𝑡𝑟𝑢𝑒 in 𝑠 , 𝑓 𝑎𝑙𝑠𝑒 otherwise. An action 𝑎 is applicable in
𝑠 if 𝑠 |= 𝑃𝑟𝑒 (𝑎), and the application of the action in 𝑠 yields the
state 𝑠′ = (𝑠\𝐷𝑒𝑙 (𝑎)) ∪𝐴𝑑𝑑 (𝑎). We indicate with 𝑠′ = 𝑠 [𝑎] the state
resulting from applying the action 𝑎 in 𝑠 . A plan 𝜋 for a planning
problem Π is a sequence of actions 𝜋 = ⟨𝑎1, . . . 𝑎𝑛⟩ in Π; the plan 𝜋

is a solution for Π iif there exists a sequence of states ⟨𝑠1, . . . , 𝑠𝑛⟩
such that 𝑠1 = 𝐼 , and ∀𝑖 ∈ {1, . . . , 𝑛} we have that 𝑠𝑖 |= 𝑃𝑟𝑒 (𝑎𝑖),
𝑠𝑖+1 = 𝑠𝑖 [𝑎𝑖], and 𝑠𝑛+1 |= 𝐺 .

Given a plan 𝜋 , it is possible to identify the set of causal links
within 𝜋 , representing the causal relationships between actions [21,
34]. These links indicate that the effect of one supporting action is
necessary for the successful execution of another consumer action,
without being threatened by any other action in the plan. Causal
links are widely used in Partial Order Planning [39], or in explaining
the behaviour of executed plans [32]. In our context, plans are
sequences of actions rather than partially ordered sets of actions, as

in partial-order planning. With sequential plans,the computation
of causal links can be performed in polynomial time [5].

Online Goal Recognition. Our approach, as many others in the
literature, belongs to the “goal recognition over a domain theory”
field [24, 27, 36], into which the available knowledge consists of
an underlying model of the agent’s behaviour and its environment.
This model typically represents the agent/environment states and
the set of actions 𝐴 that the agent can perform; typically, it is
specified by a planning language such as pddl. An instance of the

GR problem in a given domain is then specified by: an initial state 𝐼
of the agent and environment (𝐼 ⊆ 𝐹); a sequence𝑂 = ⟨𝑜1, .., 𝑜𝑛⟩ of
observations (𝑛 ≥ 1), where each 𝑜𝑖 is an action in 𝐴 performed by
the agent, and a set G = {𝐺1, ..,𝐺𝑚} (𝑚 ≥ 1) of possible goals of
the agent, where each 𝐺𝑖 is a set of fluents over 𝐹 that represents a
partial state. The observations form a trace of the full sequence 𝜋
of actions performed by the agent to achieve a goal 𝐺∗.

We refer to Offline Goal Recognition when (i) the observation
trace consists of possibly non-consecutive actions in 𝜋 , ordered as
they appear in 𝜋 ; and (ii) the candidate solution is generated once
for a given problem. Whereas, following the assumptions stated
in [38], we refer to Online Goal Recognition (OGR) when (i) the
observation trace is complete, revealed incrementally, and consists
of a prefix of 𝜋 ; and (ii) the candidate OGR solution is generated
every time a new action is provided. Therefore, starting from the
first action in 𝜋 , for each new action executed by the agent, such
action is added to the observation sequence and a candidate OGR
solution is generated. Finally, there is no prior knowledge on the
length of the sequence 𝜋 ; in other words, there is no information
on whether the latest observation received is the final one.

Example 1. As a very simple running example, we will use an OGR

instance in the well-known blocksworld domain. In this domain, one

agent has the goal of building one or more stacks by moving only one

block at a time. More specifically, in this domain there are four types

of actions: Pick-Up a block from the table, Put-Down a block on the

table, Stack a block on top of another one, and Unstack a block that

is on another one. In this example, we assume that our OGR instance

involves at most 4 blocks. In blocksworld there are five types of flu-

ents (predicates): On, which has two blocks as arguments, plus Clear,

Holding and On-Table that have one argument and Handemptywith no

arguments. Subsequently, the fluent set 𝐹 consists of 25 propositions.
We then assume that the goal set G of the instance example consists

of two candidate goals 𝐺1 = ⟨(On Block_B Block_A), (On Block_D

Block_C)⟩ (which is the correct goal of the agent) and 𝐺2 = ⟨(On
Block_D Block_A),(On Block_B Block_C)⟩ (which is another hypo-

thetical goal). The plan executed by the agent, which corresponds

to the complete sequence of observations 𝑂 = ⟨𝑜1, . . . , 𝑜6⟩ is made

by 6 actions: ⟨(Unstack Block_A Block_C), (Put-Down Block_A),

(Pick-Up Block_B), (Stack Block_B Block_A), (Pick-Up Block_D),

(Stack Block_D Block_C)⟩.

3 RELATEDWORK

Although offline goal recognition has been extensively addressed
through planning techniques [17, 24, 26, 27, 30, 31], matching tech-
niques relying on plan libraries (e.g., [19]) and process mining
techniques [33], online goal recognition has received less attention
from the artificial intelligence community.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1896

For offline goal recognition, the works in [26, 27] identify the
goal and the plan by computing, for all the goals in the hypothesis
set, an optimal plan from the initial state to the goal and an optimal
plan that complies with the observations 𝑂 from the same initial
state to the same goal. Although this approach is formally exact,
its major drawback is that it requires checking all candidate goals,
with several calls to the planner, which could take a long time,
limiting its applications for a time-sensitive task such as OGR. A
faster planning-based approach called LGR has been introduced in
[22, 24]. This approach exploits landmarks [13], i.e. properties or
actions that cannot be avoided to achieve a goal. However, unlike
the works in [26, 27], LGR does not have any formal guarantee of
the correctness of the result, except for 100% of the plan.

For OGR, the work in [37] proposes an approach to solving
instances in continuous domains. This approach, called mirroring,
consists of the use of a planner to generate recognition hypotheses
for a problem and all the possible goals. Then, it confronts such
hypotheses with the actions observed to get a similarity measure
used to identify the goal. Although this approach reaches very good
results, there is an important disadvantage. In fact, to match the
hypotheseswith the actions, it is necessary to calculate several plans
with a planner, resulting in a very long execution time on discrete
domains. Therefore, in [38] the mirroring approach is extended
with heuristic and landmarks (as in [22, 24]). The work in [38]
currently represents the state-of-the-art for online goal recognition.
In this paper, we will show how combining planning knowledge
and deep learning can achieve better results with respect to [38].

More recently, goal recognition has been addressed using rein-
forcement learning [2, 9]. The work in [2] presents graql, which
is based on Q-learning. Given a GR instance, the approach learns
a Q-table for each goal and computes the distance between the
observed sequence and these policies to infer the candidate goal.
The major difference between this work and ours is that graql
trains several specific RL models for each instance, whereas we
train a general deep learning model that can solve many different
instances. A similar problem-specific approach has been proposed
in [9] but focusing on images and path-planning tasks which are
not the subject of our work. Among the machine learning and deep
learning approaches introduced for goal recognition, most are ei-
ther application-focused [18, 20, 35] or problem-focused [6, 15].
Other approaches, like [3, 8], are designed to handle a wider set
of problems. In [3], a LSTM(Long Short Term Memory) is used
for filling missing observations in offline plan recognition task,
trying to reconstruct the complete sequence of states reached by
the agent. Since our formulation of OGR assumes a gap-free obser-
vation sequence, this approach becomes highly inefficient. Some
OGR approaches with partial observability have been proposed
in [23, 25], but this scenario is outside the scope of the present
work. The work in [8] presents a LSTM network, GRNet, capable
of solving many offline goal recognition problems in a discrete
planning domain. Given the promising results, in this paper we
perform the necessary steps to adapt GRNet and evaluate it in
the context of OGR. Moreover, we propose a further improvement
of such approach by incorporating planning knowledge, and in
particular, causal links.

Figure 1: Architecture of CLERNet. Each observed action is

processed by the Neural Component (in blue), which encodes

the observations by embedding vectors, feeds them to an

LSTM network and then to a feed-forward layer which, at

each step, predicts the agent’s goal scores (𝑦𝑖). These outputs

are then combined together with the initial state (𝐼) and the

information related to mutually exclusive fluents (R) by the

Aggregation Component (in green). Finally, the Selection

Component returns the predicted goal 𝐺 by processing the

aggregated score and the set of candidate goals G (in red).

4 METHODOLOGY

In this section, we present CLERNet (Causal Link Enhanced Recur-
rent Network), our deep learning model for OGR. First, we describe
its architecture how it incorporates planning-based information.
Next, we describe the approaches based on causal links that we
designed to create an effective training set.

4.1 Architecture of CLERNet

Following a similar approach to the one presented in [8], we struc-
ture our online goal recognition task as a multi-class classification
on a sequential input. Therefore, we also chose a Long Short-Term
Memory Network (LSTM) to process the sequence of actions ob-
served. However, an important first difference has to be highlighted:
GRNet is originally an offline goal recognition system, thus its neu-
ral network receives in input the observation trace of the plan and
provides only one prediction after elaborating it in its entirety, in
a task defined as a many-to-one sequential task; on the contrary,
CLERNet receives in input one action at a time and, after every
action, provides a new prediction (many-to-many sequential task).
Therefore, considering an observation trace composed by𝑚 actions,
the LSTM provides𝑚 different predictions. This approach enable us
to both leverage the sequential nature of the observation trace and
to combine these single predictions to produce a final prediction
that accounts for all the agent’s actions over time.

Our architecture, CLERNet, is depicted in Figure 1. It consists of
three main parts: the Neural Component (in blue), the Aggregation
Component (in striped green) and the Selection Component (in grid
red). The input of the first component is an online goal recognition
instance, and its output is a prediction vector for each input observa-
tion 𝑜𝑖 ∈ 𝑂 . Each prediction vector (𝑦𝑖) is a vector of 𝑁 components,
one for each proposition in 𝐹𝐺 ⊆ 𝐹 , with a value in [0, 1], where 𝐹𝐺
is the domain fluent set that can appear in any goal of G for any GR
instance in the domain. The Aggregation component takes as input
the score vectors generated by the Neural Component, the initial

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1897

Input: The list of prediction vectors 𝑌 = ⟨𝑦𝑖 , . . . , 𝑦𝑛⟩, a set
mutually exclusive fluents R, the initial state of the
problem 𝐼 and three numeric constants 𝛼, 𝜏1 and 𝜏2

Output: An aggregated prediction vector 𝑎
1 𝑎 = []
2 for 𝑗 ∈ |𝐹𝐺 | do
3 if 𝐹𝐺 [𝑗] ∈ 𝐼 then 𝑎[𝑗] = 𝛼

4 else 𝑎[𝑗] = 0
5 for 𝑦𝑖 ∈ 𝑌 do

6 𝑡 = { 𝑗 | 𝑦 𝑗

𝑖
> 𝜏1}

7 𝑚𝑢𝑡𝑒𝑥 = {}
8 for 𝑗 ∈ 𝑡 do𝑚𝑢𝑡𝑒𝑥.𝑎𝑑𝑑 (R (𝑗) \ 𝑡)
9 for𝑚 ∈ 𝑚𝑢𝑡𝑒𝑥 do 𝑎[𝑚] = 0

10 for 𝑗 ∈ 𝑦𝑖 do

11 if 𝑦
𝑗

𝑖
< 𝜏2 then 𝑦

𝑗

𝑖
= 0

12 𝑎 = 𝑎 + 𝑦𝑖

13 return 𝑎

Algorithm 1: Aggregation Component

state 𝐼 of the agent and the information related to which fluents in
𝐹𝐺 are mutually exclusive. Then, it calculates a unique aggregated
score that summarizes all this information. Finally, the Selection
Component receives in input the aggregated score and the set of
candidate goals G, and it outputs the predicted goal 𝐺 . Please note
that the Neural Component is trained once for each domain and
the overall architecture can be used for every online GR instance
over 𝐹𝐺 . On the other hand, both the Aggregation Component and
the Selection Component are deterministic and do not require any
training. In the remaining part of this section, we describe the main
structure and behaviour of each component.

Neural Component. The Neural Component has the following
structure. First, an embedding layer [4] transforms each input ob-
servation 𝑜𝑖 into a vector 𝑒𝑖 of real numbers. The index of each
observation is simply the result of an arbitrary order of the set of
all possible actions that can be observed in the domain, which is
defined only once for each domain during the initial pre-processing
phase. Then an LSTM layer processes the sequence of observations.
The output of each cell is then passed to a time-distributed feed-
forward layer, which has 𝑁 = |𝐹𝐺 | output neurons with a sigmoid

activation function. Note that we don’t use a specific feed-forward
layer for each cell with a different weight matrix, but we use the
same feed-forward layer (with the same weight matrix) for each
cell. This layer provides a prediction for each observation we re-
ceive in input. Therefore, considering the prediction made after
seeing the 𝑖-th observed action 𝑜𝑖 , the output of the 𝑗-th neuron 𝑦 𝑗

𝑖
corresponds to the score associated to the 𝑗-th fluent 𝑓𝑗 (fluents are
lexically ordered), and the activation value of 𝑦 𝑗

𝑖
gives a score for

𝑓𝑗 belonging to the agent’s goal.
We used the binary cross-entropy as loss function for training the

Neural Component. All hyperparameters, including the dimension
of all the neural layers, are selected using the Bayesian optimisation
approach provided by the Optuna framework [1]. Of the training
set, 80% of it is used to train the network, wherare as the remaining
20% is used in this optimization.

Input: Planning Problem Π = {𝐼 ,𝐺,𝐴} and a totally
ordered solution plan 𝜋 = ⟨𝑎1, ..., 𝑎𝑛⟩ for Π

Output: A label associated to each action in 𝜋

1 𝐺𝑜𝑎𝑙𝑠 = 𝐺

2 CL𝜋 = { (𝑎𝑖
𝑒−→ 𝑎 𝑗) | 𝑖 > 𝑗, 𝑒 ∈ 𝐴𝑑𝑑 (𝑎𝑖), 𝑒 ∈

𝑃𝑟𝑒 (𝑎 𝑗), �𝑘 𝑠.𝑡 . 𝑖 < 𝑘 < 𝑗, 𝑒 ∈ 𝐷𝑒𝑙 (𝑎𝑘) }
3 for 𝑖 = 𝑛 to 1 do
4 if 𝐺𝑜𝑎𝑙𝑠 ∩𝐴𝑑𝑑 (𝑎𝑖) ≠ ∅ then

5 𝑎𝑖 .𝑙𝑎𝑏𝑒𝑙 = 𝐺𝑜𝑎𝑙𝑠 ∩𝐴𝑑𝑑 (𝑎𝑖)
6 𝐺𝑜𝑎𝑙𝑠 = 𝐺𝑜𝑎𝑙𝑠 \ 𝐴𝑑𝑑 (𝑎𝑖)
7 else

8 𝑎𝑐𝑡𝑠 (𝑎𝑖) = {𝑎 𝑗 ∈ 𝐴 | (𝑎𝑖
𝑒−→ 𝑎 𝑗) ∈ CL𝜋 }

9 𝑎𝑖 .𝑙𝑎𝑏𝑒𝑙 =
⋃

𝑏∈𝑎𝑐𝑡𝑠 (𝑎𝑖) 𝑏.𝑙𝑎𝑏𝑒𝑙

10 end

11 end

Algorithm 2: Cumulative labelling strategy

Aggregation Component. The Aggregation Component aggre-
gates the outputs of the previous component with the initial state 𝐼
andwith the information related to mutually exclusive fluents in 𝐹𝐺 ,
following Algorithm 1. Consider providing a prediction after having
observed the first𝑚 actions executed by the agent ⟨𝑜1, 𝑜2 ...𝑜𝑚⟩, the
Neural Component provides the output 𝑌 = ⟨𝑦1, 𝑦2, ..., 𝑦𝑚⟩, into
which each fluent 𝑓𝑗 has a score computed by the corresponding
neuron 𝑗 obtained after processing incrementally each observation
𝑜𝑖 (𝑦

𝑗
𝑖
, with 𝑖 ∈ {1, . . . ,𝑚} and 𝑗 ∈ {1, . . . , 𝑁 }).

From line 1 to 4, the aggregation vector 𝑎 is initialized. 𝑎 has
the same structure as the other 𝑦𝑖 and follows the same lexical
ordering used in the Neural Component: it is a vector of size |𝐹𝐺 |
that has value 𝛼 in position 𝑗 if fluent 𝑓𝑗 is in the initial state of
the goal recognition problem and 0 otherwise. Eventual fluents
that appear in the initial state but are not in 𝐹𝐺 are not considered.
Next, a "for" cycle loops over the predictions of the network. For
each prediction 𝑦𝑖 , at line 6 the algorithm identifies the index of
the fluents that the network predicts belonging to the goal and
stores them in 𝑡 ; we consider fluents predicted as belonging to the
goal set if their score exceeds 𝜏1. The algorithm then computes the
indexes of those fluents which are mutually exclusive to those in 𝑡

and that do not appear in 𝑡 , and sets them to 0 in the aggregation
vector 𝑎 (lines 7-9). The idea behind this procedure is to include
domain knowledge to correct errors made when considering only
the first observations. After seeing just a few actions, in fact, it is
probable that some fluents are not predicted correctly. However,
when provided with additional actions as input, the neural network
may alter its predictions, potentially contradicting previous ones.
In our procedure, we prioritise predictions based on the most recent
information, overriding any prior conflicting predictions. In order to
simplify the calculations and to avoid noise propagation errors, all
scores lower than a threshold 𝜏2 are set to zero. From line 10 to line
12, scores predicted in 𝑦𝑖 are then added to the aggregation vector
𝑎. Finally, the aggregation vector 𝑎 is returned. In our experimental
evaluation, we set 𝛼 to 0.1, 𝜏1 to 0.4 and 𝜏2 to 0.05

Selection Component. The Selection Component performs an
evaluation of the candidate goals in G of the OGR instance, using
the aggregated vector 𝑎. To choose the most probable goal in G
(solving the multi-class classification task corresponding to the

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1898

(a)

(b)

Figure 2: Visualisation of the Proximity (a) and Cumula-

tive (b) labeling strategies for our example. Each rectangle

represents an action and their colour represents which goal

fluents are the label assigned to each action (red for 𝑓1, green
for 𝑓2). Each line represents a causal link.

OGR instance), we designed a simple score function that indicates
how likely it is that𝐺 is the correct goal, according to the previous
components. This score is defined as 𝑆 (𝐺) =

∑
𝑓 ∈𝐺 𝑎[𝑓] where

𝑎[𝑓] is the output of the aggregator component for 𝑓 of the current
OGR instance. For each candidate goal 𝐺 ∈ G, we consider only
the output neurons that have associated facts in 𝐺 . By adding only
these predicted values, we derive an overall score for 𝐺 being the
correct goal, and we select the element with the highest score in G.

4.2 Dataset Creation and Causal Link Labelling

Our training set for the Neural Component of CLERNet, consists of
many couples (𝑂,𝐺∗), with 𝑂 the complete sequence of observed
actions belonging to a plan 𝜋 and 𝐺∗ the hidden goal satisfied by
that plan. In order to create such dataset, we exploited the problems
and the solution plans (and therefore their dimensions in terms of
number of actions, goal fluents and possible goals) released in [8].
For solving such problems and obtaining the plans (and therefore
the sequence of observations𝑂), the authors of [8] used the lpg [11]
planner, which allows the specification of the number of different
solutions required for the problem it resolves. In our dataset, we
included 4 sub-optimal solutions. Given that we address OGR as a
many-to-many sequential task, we need a label for each observed
action in input. Although the simplest technique could be to repli-
cate the label corresponding to𝐺∗ for all observed actions, this has
not been proven to be effective. Moreover, different actions can
contribute to different goal fluents. Consider the problem described
in Example 1. The action of picking up one of the blocks that builds
the first tower is certainly relevant for that tower, but it has a very
limited impact on the second tower. This kind of information is
provided by causal links in the solution plan and can be very im-
portant for our model to learn the connections among the actions
executed by an agent and its goals. Therefore, in order to include
causal links in the training process of our Neural Component, we
designed two ways to assign a label for each observation 𝑜𝑖 ∈ 𝑂 :
the Cumulative and the Proximity labelling strategies.

Algorithm 2 describes the Cumulative labelling strategy. It
receives as input a problem Π and a corresponding solution plan
𝜋 . Without loss of generality, we assume that 𝜋 is totally ordered

Figure 3: Visualization of the incremental score calculated

by the Neural and the Aggregation components of CLERNet

for our running example. On the y-axis we have the actions

progressively seen by the system. On the x-axis, arrows shows

the contribution of each action to the score of each candidate

goal and its fluents (𝐺1 on the left, 𝐺2 on the right).

and hence each action of 𝜋 is associated to an integer time step; in
the case of partially ordered plans, the system can simply derive a
total order from them. At line 2, all causal links are computed; then
the for cycle (line 3) examines in reverse order all the actions of 𝜋
to identify for each of them a set of label fluents that can be used
during the training phase. In particular, if some additive effects of
the current action are included in𝐺𝑜𝑎𝑙𝑠 then the label of this action
corresponds to these facts (line 5), and we remove them from𝐺𝑜𝑎𝑙𝑠 .
Otherwise, we identify all the actions with a precondition supported
by the current action (line 8), and we define the label of this action
as the union of the labels of the previously identified actions; note
that these labels correspond to goal facts already satisfied by actions
causally ordered with the current action.

The algorithm for the Proximity selection procedure selects, at
line 8, only the causally ordered action closest to the current one,
i.e 𝑎𝑐𝑡𝑠 (𝑎𝑖) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑗 {𝑎 𝑗 ∈ 𝐴| (𝑎 𝑗

𝑒−→ 𝑎 𝑗) ∈ CL𝜋 }, and in this
case, the label of the current action corresponds to the label of the
closest action in the causal links.

Example 2. Considering the problem described in Example 1, in

Figure 2 we show the label assigned by the Proximity (2a) and Cu-

mulative (2b) strategies. In the figure, we show the initial state 𝐼 ,

the actions progressively observed by the OGR system (represented

as rectangles), and the fluents (represented as circles) belonging to

the correct goal 𝐺1: 𝑓1 = (On Block_B Block_A) (in red) and 𝑓2 =

(On Block_D Block_C) (in green). Each line between two actions or

between an action and a fluent represents a causal link. Exploiting this

information, we can label each action with one or more goal fluents

that they achieve. If a causal link involves a goal fact, we assign that

fluent as the label of the supporter action. For example, since the action

(Stack Block_B Block_A) is the supporter action of 𝑓1, we assign 𝑓1
as its label (in red). Recursively, the actions that have a causal link

with (Stack Block_B Block_A) (such as (Pick-Up Block_B)) have 𝑓1
as label too. The same happens with those that have a causal link with

(Pick-Up Block_B) and so on. The main difference between the Cumu-

lative and Proximity strategies is on how labels are assigned to those

actions that have a causal link leading to two different fluents. This is

the case of (Unstack Block_A Block_C) which allows the agent to put

Block_A on the table ((Put-Down Block_A)) and stack Block_B on top

of it in order to achieve 𝑓1, as well to remove an object over Block_C,

allowing the agent to pick-up Block_D to put on top of Block_C for

achieving 𝑓2. With Cumulative (Figure 2b) both fluents are assigned

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1899

Table 1: Results of ORL [38], GRNet [8] and CLERNet for six planning domains. For each system, we consider the Ranked First

(RF), the Convergence (CV) metrics and the execution time (T, in𝑚𝑠). Best results are marked in bold, second best underlined.

Domain ORL GRNet Cumulative Proximity

RF CV T RF CV T RF CV T RF CV T

blocksworld 38.9 36.3 580 41.5 36.4 11 43.6 40.6 11 46.6 44.2 11
depots 46.6 44.9 987 47.3 40.6 4 49.1 42.6 4 50.6 44.7 4
driverlog 50.9 48.3 897 57.6 48.7 4 59.8 55.3 5 59.5 53.8 4
logistics 49.5 48.6 1118 58.5 51.7 4 56.8 49.8 4 55.0 51.7 4
satellite 72.5 69.8 1260 66.8 60.3 7 70.2 68.0 7 70.1 68.5 7
zenotravel 57.7 56.8 649 69.2 66.3 6 75.2 71.0 5 75.4 71.7 5

average 52.9 51.1 920 57.1 50.9 6 59.4 54.8 6 59.8 56.0 6

as a label. Instead, with Proximity only 𝑓1 is assigned because the

action Put-Down A, which has label 𝑓1, is closer to (Unstack Block_A

Block_C) than action (Pick-Up D), which has label 𝑓2.
The labels are structured as binary vectors. In our example, that

involves at most 25 goal fluents, an index between 0 and 24 is assigned
to each fluent and a vector of dimension 25 is created. Let’s assume

that 𝑓1 has index 8. The action (Put-Down Block_A) and all others

connected with 𝑓1 will have as a label a vector with all zeroes except

a 1 in position 8. With the Cumulative strategy, if an action has two

or more labels, the vector will contain a 1 for each label.

An intuition to how our system works is given in Figure 3, which

shows the scores (calculated by the Neural Component and the Ag-

gregation component) for each candidate goal. On the left, we show

the score calculated for 𝐺1 = ⟨ (On Block_B Block_A), (On Block_D

Block_C) ⟩ (which is the correct goal of the agent), whereas on the

right we show the score of 𝐺2 = ⟨ (On Block_D Block_A), (On Block_B

Block_C) ⟩. On the y-axis we have the initial state of our OGR problem

and the actions progressively seen by our system. On the x-axis, we

have the score given by the Aggregation Component for both fluents.

As we explained in Section 4.1, this score is calculated incrementally,

therefore we show the progressive contribution of each action to the

prediction. We can see that the first three actions do not provide a

valuable contribution to any of the goals. Instead, (Stack Block_B

Block_A) makes the Neural Component and the Aggregation Com-

ponent change their predictions and lean towards 𝐺1, recognising
that such action is fundamental for (On Block_B Block_A). Instead,

this action has a negative effect on the score of 𝐺2. This is due to the
fact that (On Block_B Block_A) is predicted as 𝑡𝑟𝑢𝑒 (i.e. with a score

greater than 𝜏1). This causes the fluents (On Block_D Block_A) and

(On Block_B Block_C) in 𝐺2, which are mutually exclusive with (On

Block_B Block_A), to be set to 0. As expected, the remaining actions of

the plan (in particular, (Stack Block_D Block_C)) increment the score

of 𝐺1, which will be correctly chosen by the Selection Component.

5 EXPERIMENTAL EVALUATION

For the experimental evaluation, we choose six different discrete
planning domains with unit action costs [14, 16]: blocksworld,
depots, driverlog, logistics, satellite, zenotravel. For each
considered domain, we created a training set with 55, 000 instances
using the labelling strategies we described in Section 4.2 and the
goal recognition problems of [8]. As a test set, we used the set of

6, 000 goal recognition instances published and used in [8], which
were generated with the planner lama [28].

To evaluate our models, we use different metrics. First, we con-
sider the prediction accuracy for different portions of the plan. We
examine it ranging from 10% to 100% of actions, with a 10% step.
Furthermore, we compute the Ranked First (RF) and Convergence

(CV) metrics, which are standard metrics for OGR introduced in
[38]. For a single OGR instance, RF is defined as the number of pre-
dicted goals (one for each observation) correctly identified, divided
by the total number of observations. The CV metric expresses how
early our model can predict the correct goal, and it is calculated
similarly to RF; this metric considers a goal predicted correctly not
only if it is the correct goal, but also if the system does not predict
another goal from that point onwards. More intuitively, consider
the OGR instance in Examples 1 and 2 made by 6 observations.
A system predicting 𝐺1 after observing the first action, 𝐺2 after
observing the second and third actions, and predicting𝐺1 from the
fourth action obtains 𝑅𝐹 equal to (1+0+0+1+1+1)/6 = 4/6 and𝐶𝑉
equal to (0+0+0+1+1+1)/6 = 3/6. Considering the whole test set,
RF and CV are defined as the average of the metrics across all test
instances. We also include the average prediction/execution time
(T), which does not include the training time (approximately 1 hour
on CPUs). Nonetheless, the networks can be applied to multiple
instances in the domain.

We compare the deep learning-based approaches (GRNet and
CLERNet) first with the state-of-the-art methods based on rea-
soning (ORL [38]) and on reinforcement learning (graql [2]). For
applying GRNet to OGR, considering a plan composed by𝑚 ac-
tions, we create𝑚 action traces, starting from one containing only
the first action executed by the agent and adding the subsequent
actions one at a time. This poses a significant difference with the
system application in [8] as, in that context, GRNet was applied to
offline goal recognition, and thus it provided a single prediction for
each incomplete trace. For the comparison with graql, we adopt
two additional test sets in the blocksworld domain. Firstly, we use
the set of 10 problems presented in [2] (bw_rl), using the complete
observation trace to generate the OGR instances. Secondly, given
the rather small number of blocks used in these instances (up to 6),
we also randomly selected 10 problems form our testset to evaluate
the performance on more complex instances (bw_small).

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1900

Figure 4: Performance of CLERNet with Proximity (in green) and Cumulative (in red) labeling strategies for each considered

domain, compared with ORL (in blue) and GRNet (on range) in terms of accuracy (on the y-axis). On the x-axis, we indicate the

percentage of actions in the plan observed and given in input.

5.1 Comparison with ORL

The results of our comparison among CLERNet, GRNet and ORL,
in terms of RF, CV and T, are available in Table 1.

First, we can observe that adapting GRNet to OGR provides
better results w.r.t ORL in terms of RF in all domains except satel-
lite. The major improvements are reported in driverlog (57.6
points versus 50.9), logistics (58.5 versus 49.5) and zenotravel
(69.2 versus 57.7). In terms of CV, the results of GRNet and ORL
are comparable. In fact, we can see an important improvement in
zenotravel (9.5 points) and in logistics (3.1 points), but a marked
worsening in depots (4.3 ponts) and satellite (9.5 points). On
average, GRNet obtains a higher RF (57.1 versus 52.9) and a compa-
rable CV (50.9 versus 51.1). However, the most important difference
between these two approaches is in terms of time. In fact, while
GRNet takes around 6 ms on average to compute the prediction
after each observation, ORL takes about 150 times more (920 ms).
Given that in the OGR context recognition time can be fundamental,
as the agent keeps executing actions while the system is trying to
understand in goal, GRNet overall performs better than ORL.

An even more important difference can be seen comparing ORL
to our new model, CLERNet, considering both the Proximity and
the Cumulative labeling strategies. As it can be seen in Table 1,
CLERNet obtains better results in all domains except satellite in
terms of RF. Themost important improvements can be seen in zeno-
travel (75.4 obtained by Proximity) and driverlog (59.8 obtained
by Cumulative, versus 50.9). In terms of CV, CLERNet performs
better in all domains except satellite and slightly in depots, into
which ORL obtains a CV of 44.9 and CLERNet with the Proximity
strategy obtains a very similar 44.7. Analysing satellite, we can
see a slightly less marked worsening of the performance (72.5 ob-
tained by ORL versus 70.2 by Cumulative and 70.1 by Proximity,
in terms of RF, and 69.8 versus 68.0 and 68.5 in terms of CV) with

respect to the worsening that can be seen with GRNet. On average,
our approach performs better than ORL by about 5 points both
in terms of RF and CV. Similarly to what previously observed for
GRNet, we remark the important difference between CLERNet
and ORL in terms of time (6𝑚𝑠 versus 920𝑚𝑠).

Finally, we compare the performance of GRNet and CLERNet.
In terms of RF and CV, CLERNet obtains better performance for
all domains except logistics (58.5 versus 56.8 obtained by Cumu-
lative and 55.0 obtained by Proximity in terms of RF). The most
important improvements can be seen in zenotravel (about 5 point
of RF and CV) and blocksworld (44.2 obtained by Proximity
versus 36.4 of GRNet in terms of CV). On average, we improve
by more than 2 points in terms of RF. In terms of CV, Proximity
obtains 5 points more w.r.t to GRNet. Since they are both LSTM
based, CLERNet and GRNet have similar recognition time.

In terms of accuracy (see Figure 4), we observe the same trend we
observed for RF and CV. In almost all cases, we can see that ORL (in
blue) obtains a lower accuracy for almost all the plan percentages.
However, some peculiar exceptions are satellite and depots with
10% of the plan. In such cases, the best performance is obtained
by ORL. This is probably due to the landmark computation, which
includes fundamental information that cannot be deducted by the
small amount of observations in input. This slight difference of
performance for depots is the main motivation behind the better
CV, whereas in general GRNet and CLERNet obtain better per-
formance. Comparing the deep-learning based approaches, we can
see how CLERNet (green and red lines) obtains a better accuracy
w.r.t. to GRNet even with small percentage of plans. A notable
exception is logistics, in which GRNet obtains higher results than
our approaches, especially with lower plan percentages. With more
information (from 70%), both approaches perform very well. The
reported improvements are statistically significant according to the
Friedman test and the Nemeny Post-hoc test. The results on these

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1901

Table 2: Comparison in terms of RF,CV and T (in seconds) be-

tween graql and CLERNetwith Proximity labels on bw_rl

and bw_small datasets. For each dataset, we report the min

and max number of blocks (# Bl) and the goal set size (|G|).
the For graql, we report in brackets the average time needed

to learn the policies for each considered problem.

Domain # Bl |G| graql Proximity

RF CV T RF CV T

bw_rl [5, 6] 4 82.9 82.9 0.08 (7) 48.8 47.5 0.02
bw_small [8, 11] 20 0.0 0.0 22.0 (4420) 48.8 32.5 0.01

tests confirm that there is a significant difference betweenCLERNet
(both considering Proximity and Cumulative) and ORL, and be-
tween CLERNet and GRNet, with the only exception in satellite,
for which the difference with ORL is not statistically significant.

Comparing our two labeling strategies, we can see that the results
are quite similar, with an average difference of 0.4 for RF and about
1 for CV. There is however a notable exception: in blocksworld,
Proximity performs better than Cumulative, especially in terms
of CV (44.2 versus 40.6). This is probably due to the high number
of causal links that can be extracted from a plan in that domain,
which complicates the learning process of the Neural Component
the Cumulative strategy.

5.2 Comparison with graql

In this subsection, we compareCLERNet and graql [2] considering
both the bw_rl test set and the 10 problems in bw_small.

graql was implemented using the default configuration (i.e. 500
episodes and 10 seconds as time out limit for the optimal planner
initialization). The results, in terms of RF, CV and time (T) are in
Table 2. Considering bw_rl, graql reaches excellent performance,
with 82.9 in both RF and CV, whereas Proximity obtains results
similar to those given in Table 1 (48.8 of RF and 47.5 of CV). This
notable difference in performance highlights the potential of RL-
based methods. However, these results require a specific training
procedure that computes multiple Q-Tables for each OGR instance.
Thus, this problem-specific approach requires an additional com-
putation time (7 seconds on average). For our approach, this time
is not included in Table 2, as CLERNet does not require additional
processing time for new instances once trained. Moreover, as we
can see from the results on bw_small, graql has several limits
in terms of scalability. In fact, we tested the same configuration
used by graql on bw_small without obtaining meaningful results.
Even testing several other configurations considered by the authors
of graql (10𝑘 and 30𝑘 episodes, time limit up to 15 minutes) did
not produce any improvements (0 in terms of both RF and CV). As
it can be seen in Table 2, increasing the size of the test problems
(from up to 6 blocks to up to 11 blocks) results in policies that were
insufficiently informed and deviated from the goal during execution.
This may be attributed to the larger state space in the Q-table, given
by the higher number of blocks considered. Moreover, bw_small
contains suboptimal plans whereas graql contains optimal plans.
As expected, increasing the number of goals led to a corresponding

Table 3: Results of the ablation study in terms of RF and CV

for Proximity. No stands for no knowledge included, Mutex
for including only mutually exclusive facts, 𝐼 including only

the initial state and Both including both Mutex and 𝐼 .

Domain No Mutex 𝐼 Both

RF CV RF CV RF CV RF CV

bw 47,1 44,5 47,1 44,1 46,7 44,7 46,6 44,2
depots 45.8 42.0 49.0 43.7 47.1 42.6 50.6 44.7

driverlog 57.7 51.6 58.3 51.5 58.9 53.7 59.5 53.8

logistics 55.3 51.4 55.5 51.4 54.8 51.7 55.0 51.7

satellite 70.1 68.3 70.1 68.2 70.1 68.5 70.1 68.5

zenotravel 72.1 68.3 72.4 68.8 75.0 71.2 75.4 71.7

increase in the time required to compute the Q-Tables. Instead,
CLERNet does not suffer these problems and it has very similar
results in terms of RF, CV and a very similar execution time.

5.3 Ablation Study

In order to measure the contribution of the different sources of
planning knowledge in our Aggregation Component, we conducted
an ablation study considering the Proximity labeling strategy;
these results are in Table 3. As we can see in most of the cases,
despite CLERNet performs well even without the inclusion of
mutually exclusive fluents (Mutex) and the initial state (𝐼), this
knowledge helps the system to predict the correct goal, increasing
the RF and CV metrics. The most important improvements can be
seen for depots, in which performance increases from 45.8 to 49.0
in terms of RF including mutex facts and to 50.6 also including 𝐼 .
We observe good improvements also for zenotravel, while for the
other domains they are less significant. However, it is important to
notice that all the models in the ablation study include a form of
planning related knowledge given by the causal links exploited for
training the Neural Component.

6 CONCLUSIONS AND FUTUREWORK

We have studied how deep-learning based models can be applied
to the online goal recognition (OGR) task. We adapted and tested
GRNet [8] and introduced CLERNet, which leverages valuable
planning knowledge. Our experimental analysis shows that they
can obtain better performance w.r.t. the state-of-the-art [38].

Regarding future work, we plan to test different labeling tech-
niques and use information from the current state to refine the
neural network’s output, and improve accuracy. We will also con-
sider the integration of a symbolic technique, as in [7], to deal with
uncertain prediction and make CLERNet more robust. Moreover, a
GPT-based approach, such as the one proposed in [29] for planning,
will be studied in the context of goal recognition.

ACKNOWLEDGMENTS

This work was partially supported by project SERICS (PE00000014),
project RIPER (No. 20203FFYLK), by project FAIR (B53C22003980006),
under the MUR National Recovery and Resilience Plan funded by
the European Union - NextGenerationEU.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1902

REFERENCES

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. 2019. Optuna: A next-generation hyperparameter optimization frame-
work. In Proceedings of the 25th ACM SIGKDD International Conference on Knowl-

edge Discovery & Data Mining. 2623–2631.
[2] Leonardo Amado, Reuth Mirsky, and Felipe Meneguzzi. 2022. Goal recognition

as reinforcement learning. In Proceedings of the AAAI Conference on Artificial

Intelligence, Vol. 36. 9644–9651.
[3] Leonardo Amado, Ramon Fraga Pereira, and Felipe Meneguzzi. 2023. Robust

Neuro-Symbolic Goal and Plan Recognition. In Thirty-Seventh AAAI Conference

on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Appli-

cations of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational

Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, February

7-14, 2023, Brian Williams, Yiling Chen, and Jennifer Neville (Eds.). AAAI Press,
11937–11944. https://doi.org/10.1609/AAAI.V37I10.26408

[4] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003. A
neural probabilistic language model. The journal of machine learning research 3
(2003), 1137–1155.

[5] Pascal Bercher. 2021. A Closer Look at Causal Links: Complexity Results for
Delete-Relaxation in Partial Order Causal Link (POCL) Planning. In Proceedings

of the Thirty-First International Conference on Automated Planning and Scheduling,

ICAPS 2021, Guangzhou, China (virtual), August 2-13, 2021, Susanne Biundo, Minh
Do, Robert Goldman, Michael Katz, Qiang Yang, and Hankz Hankui Zhuo (Eds.).
AAAI Press, 36–45. https://ojs.aaai.org/index.php/ICAPS/article/view/15944

[6] Daniel Borrajo, Sriram Gopalakrishnan, and Vamsi K. Potluru. 2020. Goal recog-
nition via model-based and model-free techniques. Proceedings of FinPlan 2020

(2020).
[7] Mattia Chiari, Alfonso Emilio Gerevini, Andrea Loreggia, Luca Putelli, and

Ivan Serina. 2024. Fast and Slow Goal Recognition. In Proceedings of the 23rd

International Conference on Autonomous Agents and Multiagent Systems, AA-

MAS 2024, Auckland, New Zealand, May 6-10, 2024, Mehdi Dastani, Jaime Simão
Sichman, Natasha Alechina, and Virginia Dignum (Eds.). International Founda-
tion for Autonomous Agents and Multiagent Systems / ACM, 354–362. https:
//doi.org/10.5555/3635637.3662884

[8] Mattia Chiari, Alfonso Emilio Gerevini, Francesco Percassi, Luca Putelli, Ivan
Serina, and Matteo Olivato. 2023. Goal Recognition as a Deep Learning Task:
The GRNet Approach. In Proceedings of the Thirty-Third International Conference

on Automated Planning and Scheduling, July 8-13, 2023, Prague, Czech Republic.
AAAI Press, 560–568.

[9] Zihao Fang, Dejun Chen, Yunxiu Zeng, Tao Wang, and Kai Xu. 2023. Real-
Time Online Goal Recognition in Continuous Domains via Deep Reinforcement
Learning. Entropy 25, 10 (2023), 1415. https://doi.org/10.3390/E25101415

[10] Richard E. Fikes and Nils J. Nilsson. 1971. Strips: A new approach to the applica-
tion of theorem proving to problem solving. Artificial Intelligence (1971).

[11] Alfonso Gerevini, Alessandro Saetti, and Ivan Serina. 2003. Planning Through
Stochastic Local Search and Temporal Action Graphs in LPG. J. Artif. Intell. Res.
20 (2003), 239–290.

[12] Malik Ghallab, Dana S. Nau, and Paolo Traverso. 2004. Automated planning -

theory and practice. Elsevier.
[13] Jörg Hoffmann, Julie Porteous, and Laura Sebastia. 2004. Ordered Landmarks in

Planning. J. Artif. Intell. Res. 22 (2004), 215–278.
[14] Derek Long and Maria Fox. 2003. The 3rd International Planning Competition:

Results and Analysis. J. Artif. Intell. Res. 20 (2003), 1–59.
[15] Mariane Maynard, Thibault Duhamel, and Froduald Kabanza. 2019. Cost-Based

Goal Recognition Meets Deep Learning. Proceedings of PAIR 2019 (2019).
[16] Drew V. McDermott. 2000. The 1998 AI Planning Systems Competition. AI Mag.

21, 2 (2000), 35–55.
[17] Felipe Meneguzzi and Ramon Fraga Pereira. 2021. A Survey on Goal Recognition

as Planning. In Proceedings of IJCAI 2021.
[18] Wookhee Min, Bradford W. Mott, Jonathan P. Rowe, Barry Liu, and James C.

Lester. 2016. Player Goal Recognition in Open-World Digital Games with Long
Short-Term Memory Networks. In Proceedings of IJCAI 2016. IJCAI/AAAI Press.

[19] Reuth Mirsky, Roni Stern, Ya’akov (Kobi) Gal, and Meir Kalech. 2016. Sequential
Plan Recognition. In Proceedings of the Twenty-Fifth International Joint Conference

on Artificial Intelligence, IJCAI 2016, Subbarao Kambhampati (Ed.). IJCAI/AAAI
Press, 401–407.

[20] Zaolin Pan and Yantao Yu. 2024. Learning multi-granular worker intentions from
incomplete visual observations for worker-robot collaboration in construction.
Automation in Construction 158 (2024), 105184.

[21] J. Scott Penberthy and Daniel S. Weld. 1992. UCPOP: A Sound, Complete, Partial
Order Planner for ADL. In KR. Morgan Kaufmann, 103–114.

[22] Ramon Pereira, Nir Oren, and Felipe Meneguzzi. 2017. Landmark-based heuristics
for goal recognition. In Proceedings of the AAAI Conference onArtificial Intelligence,
Vol. 31.

[23] Ramon Fraga Pereira, Francesco Fuggitti, Felipe Meneguzzi, and Giuseppe De
Giacomo. 2024. Temporally extended goal recognition in fully observable non-
deterministic domain models. Appl. Intell. 54, 11-12 (2024), 470–489. https:
//doi.org/10.1007/S10489-023-05087-1

[24] Ramon Fraga Pereira, Nir Oren, and Felipe Meneguzzi. 2020. Landmark-based
approaches for goal recognition as planning. Artif. Intell. 279 (2020).

[25] Ramon Fraga Pereira, Mor Vered, Felipe Meneguzzi, and Miquel Ramírez. 2019.
Online Probabilistic Goal Recognition over Nominal Models. In Proceedings of

the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI

2019, Macao, China, August 10-16, 2019, Sarit Kraus (Ed.). ijcai.org, 5547–5553.
https://doi.org/10.24963/IJCAI.2019/770

[26] Miquel Ramírez and Hector Geffner. 2009. Plan Recognition as Planning. In
Proceedings of IJCAI 2009.

[27] Miquel Ramírez and Hector Geffner. 2010. Probabilistic Plan Recognition Using
Off-the-Shelf Classical Planners. In Proceedings of AAAI 2010. AAAI Press.

[28] Silvia Richter and Matthias Westphal. 2010. The LAMA Planner: Guiding Cost-
Based Anytime Planning with Landmarks. J. Artif. Intell. Res. 39 (2010), 127–177.

[29] Nicholas Rossetti, Massimiliano Tummolo, Alfonso Emilio Gerevini, Luca Putelli,
Ivan Serina, Mattia Chiari, andMatteo Olivato. 2024. Learning General Policies for
Planning through GPT Models. In Proceedings of the Thirty-Fourth International

Conference on Automated Planning and Scheduling, ICAPS 2024, Banff, Alberta,

Canada, June 1-6, 2024, Sara Bernardini and Christian Muise (Eds.). AAAI Press,
500–508. https://doi.org/10.1609/ICAPS.V34I1.31510

[30] Luísa R. A. Santos, Felipe Meneguzzi, Ramon Fraga Pereira, and André Grahl
Pereira. 2021. An LP-Based Approach for Goal Recognition as Planning. In
Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021. AAAI Press,
11939–11946.

[31] Shirin Sohrabi, Anton V. Riabov, and Octavian Udrea. 2016. Plan Recognition as
Planning Revisited. In Proceedings of IJCAI 2016. IJCAI/AAAI Press.

[32] Sarath Sreedharan, Tathagata Chakraborti, and Subbarao Kambhampati. 2021.
Foundations of explanations as model reconciliation. Artificial Intelligence 301
(2021), 103558. https://doi.org/10.1016/j.artint.2021.103558

[33] Zihang Su, Artem Polyvyanyy, Nir Lipovetzky, Sebastian Sardiña, and Nick van
Beest. 2024. Adaptive goal recognition using process mining techniques. Eng.
Appl. Artif. Intell. 133 (2024), 108189. https://doi.org/10.1016/J.ENGAPPAI.2024.
108189

[34] Austin Tate. 1977. Generating Project Networks. In International Joint Conference

on Artificial Intelligence. https://api.semanticscholar.org/CorpusID:538251
[35] Nusrat Jahan Tithi and Swakkhar Shatabda. 2023. A Convolutional Neural

Network for Goal Recognition. In 2023 26th International Conference on Computer

and Information Technology (ICCIT). 1–6.
[36] Franz A. Van-Horenbeke and Angelika Peer. 2021. Activity, Plan, and Goal

Recognition: A Review. Frontiers Robotics AI 8 (2021).
[37] Mor Vered, Gal A. Kaminka, and Sivan Biham. 2016. Online goal recognition

through mirroring: humans and agents. In Fourth Annual Conference on Advances

in Cognitive Systems (Advances in Cognitive Systems), Kenneth Forbus, Tom
Hinrichs, and Carrie Ost (Eds.). Cognitive Systems Foundation.

[38] Mor Vered, Ramon Fraga Pereira,Mauricio CecilioMagnaguagno, Gal A. Kaminka,
and Felipe Meneguzzi. 2018. Towards Online Goal Recognition Combining Goal
Mirroring and Landmarks. In AAMAS. International Foundation for Autonomous
Agents and Multiagent Systems Richland, SC, USA / ACM, 2112–2114.

[39] Håkan L. S. Younes and Reid G. Simmons. 2003. VHPOP: Versatile Heuristic
Partial Order Planner. J. Artif. Intell. Res. 20 (2003), 405–430. https://doi.org/10.
1613/JAIR.1136

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1903

https://doi.org/10.1609/AAAI.V37I10.26408
https://ojs.aaai.org/index.php/ICAPS/article/view/15944
https://doi.org/10.5555/3635637.3662884
https://doi.org/10.5555/3635637.3662884
https://doi.org/10.3390/E25101415
https://doi.org/10.1007/S10489-023-05087-1
https://doi.org/10.1007/S10489-023-05087-1
https://doi.org/10.24963/IJCAI.2019/770
https://doi.org/10.1609/ICAPS.V34I1.31510
https://doi.org/10.1016/j.artint.2021.103558
https://doi.org/10.1016/J.ENGAPPAI.2024.108189
https://doi.org/10.1016/J.ENGAPPAI.2024.108189
https://api.semanticscholar.org/CorpusID:538251
https://doi.org/10.1613/JAIR.1136
https://doi.org/10.1613/JAIR.1136

	Abstract
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Methodology
	4.1 Architecture of CLERNet
	4.2 Dataset Creation and Causal Link Labelling

	5 Experimental Evaluation
	5.1 Comparison with ORL
	5.2 Comparison with graql
	5.3 Ablation Study

	6 Conclusions and Future Work
	Acknowledgments
	References

