
Learning Symbolic Task Decompositions for Multi-Agent Teams
Ameesh Shah∗
UC Berkeley
Berkeley, USA

ameesh@berkeley.edu

Niklas Lauffer∗
UC Berkeley
Berkeley, USA

nlauffer@berkeley.edu

Thomas Chen∗
UC Berkeley
Berkeley, USA

thomasychen@berkeley.edu

Nikhil Pitta∗
UC Berkeley
Berkeley, USA

nikhil.pitta@berkeley.edu

Sanjit A. Seshia
UC Berkeley
Berkeley, USA

sseshia@berkeley.edu

ABSTRACT
One approach for improving sample efficiency in cooperative multi-
agent learning is to decompose overall tasks into sub-tasks that
can be assigned to individual agents. We study this problem in the
context of reward machines: symbolic tasks that can be formally
decomposed into sub-tasks. In order to handle settings without a
priori knowledge of the environment, we introduce a framework
that can learn the optimal decomposition from model-free interac-
tions with the environment. Our method uses a task-conditioned
architecture to simultaneously learn an optimal decomposition and
the corresponding agents’ policies for each sub-task. In doing so,
we remove the need for a human to manually design the optimal
decomposition while maintaining the sample-efficiency benefits of
improved credit assignment. We provide experimental results in
several deep reinforcement learning settings, demonstrating the
efficacy of our approach. Our results indicate that our approach
succeeds even in environments with codependent agent dynam-
ics, enabling synchronous multi-agent learning not achievable in
previous works.1

KEYWORDS
DecentralizedMulti-Agent Learning, Discrete Event Systems, Multi-
Agent Reinforcement Learning, Reward Machines

ACM Reference Format:
Ameesh Shah, Niklas Lauffer, Thomas Chen, Nikhil Pitta, and Sanjit A.
Seshia. 2025. Learning Symbolic Task Decompositions for Multi-Agent
Teams. In Proc. of the 24th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23,
2025, IFAAMAS, 10 pages.

1 INTRODUCTION
Using a single reward signal for a team of agents in multi-agent
reinforcement learning (MARL) can make it challenging for agents
to understand how their individual behavior impacts the overall
reward. This challenge in MARL is known as the credit assignment

∗Equal Contribution
1Code is available at https://github.com/thomasychen/LOTaD

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

Selection
Method

value estimates

new

decomposition

a1, …, an o1, …, on

MARL training

π1, …, πn

Figure 1: Visualization of our learning framework. At each
new episode of training, a selection method chooses a possi-
ble symbolic decomposition of the task and assigns sub-tasks
to each agent in the team. As each agent learns the viability
of different sub-tasks, our selection method simultaneously
finds the optimal task decomposition.

problem [1] and can severely limit the effectiveness of naive rein-
forcement learning approaches in the multi-agent setting [23, 36].

One method for addressing the credit assignment problem is
to formulate the task as a symbolic concept that can be precisely
decomposed into sub-tasks for assignment to individual agents [21,
34]. By using the reward signal from each sub-task, agents are
credited for completing the specific sub-task they are assigned,
even if the overall task is not achieved.

Previous literature has established sufficient conditions for “valid"
decompositions of multi-agent reward machines [38], an automaton-
based symbolic task structure, where satisfaction of the sub-tasks
provably satisfies the overall task [21]. Human-designed decompo-
sitions that satisfy these validity conditions help the agents learn
to accomplish the task more quickly in tabular settings. Further
work demonstrates that valid decompositions can be automatically
generated based on human-designed heuristics [34].

These prior approaches to reward machine decomposition are
limited when many possible decompositions exist. In these cases,
the optimal decomposition of a task must be carefully designed and
selected by a human. Selecting a meaningful task decomposition
amongst many possible options often requires prior knowledge

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1904

https://github.com/thomasychen/LOTaD
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

of the environment that is not assumed in standard RL, making
the process tedious at best and impossible at worst. If a task de-
composition is selected arbitrarily, the decomposition may not be
compatible with the specifics of the environment to effectively
break down the task.

Motivating example. Consider the “Repairs” environment in
Figure 2, where a team of three robot agents must visit a number of
communication stations in their environment to make repairs. First,
any two of the agents must meet at headquarters (HQ, denoted
by the control tower symbol), at which point a ready signal is
sent out to both stations (red and yellow) to inform the stations
that agents will be visiting each station to perform repairs. The
agents are then tasked to visit these stations in any order. The
agents can independently move around in grid in any of the four
cardinal directions, or remain still. We can formulate this task in
the form of a Reward Machine (RM), an automaton that encodes the
objective over high level ‘events’ which occur in specific states of
the environment (visualized in Figure 2). RMs offer a precise notion
of task completion and can easily capture temporal dependencies
required in objectives (i.e., visit the stations after HQ).

In the Repairs environment, there exists a hazardous region,
encoded in orange, that prevents more than one agent from entering
the region at a time. The location and existence of this hazardous
region is not known to the agents a priori, which prevents this
constraint from being encoded in the reward machine as part of
the task description.

This task, even with no prior knowledge of the environment,
can naturally be decomposed in a number of ways. For example,
Agent 1 and Agent 2 can be tasked with meeting at HQ, and then
Agent 2 can visit the yellow station and leave the hazardous region
while Agent 3 visits the red station. Alternatively, Agents 2 and
3 can meet at HQ, and then Agent 1 can visit both the red and
yellow stations. Although many plausible decompositions exist,
knowing which decomposition of the overall task leads to the most
efficient completion of the task (i.e., is optimal) largely depends on
the dynamics of the underlying environment. In our case, Agent
3 happens to be closest to the red station, which might mean that
assigning that station to them would be optimal. However, without
knowledge of the layout of the environment, as is standard in a
model-free setting, this would be impossible to know ahead of time.

Our Contributions. In this work, we address the aforemen-
tioned limitations by introducing an approach to automatically find
optimal decompositions of an overall task into sub-tasks for a team of
agents. Our method is a lightweight extension of standard MARL
and is applicable to model-free settings with no prior information
about the environment or individual capabilities of the agents.

We summarize our approach briefly as follows. At the beginning
of training, we generate possible candidate decompositions of our
overall task as assignments of sub-tasks for our agents to accom-
plish. Then, during training, we explore selecting different decom-
positions for our team of agents and observe their performance as
they attempt to learn a goal-conditioned policy that can achieve the
variety of possible sub-tasks captured by our candidates. We record
the value of agents’ performances for different sub-tasks, and use
this information to intelligently select subsequent decompositions
for our agent team. This allows us to simultaneously learn (1) the
optimal decomposition for our task and (2) policies for each agent

Figure 2: (Top) The “Repairs” MDP with a team of 3 agents.
(Bottom) A task completion reward machine (RM) encoding
the task: agents must navigate the environment to visit the
HQ control tower, and then visit a set of communication
stations. The goal state of the RM is denoted by concentric
circles.

that optimize said decomposition. We leverage selection strategies
popularized in the multi-armed bandit algorithm literature [4, 6, 17]
to balance exploring different candidate decompositions with ex-
ploiting the value our agents achieve as they learn sub-tasks during
training. We visualize our approach in Figure 1.

In addition to our decomposition selection strategy, we introduce
a novel training setup for RM–driven MARL that rectifies issues
caused by dependent agent dynamics. Prior approaches [21, 34]
to RM-driven MARL make the assumption that the dynamics of
each agent are independent of other agents, so that each agent
can be trained individually in an environment absent from other
agents. This assumption is often impractical: it is inefficient to
train individual agents independently, and in many cases, multi-
agent dynamics are codependent. For example, an agent that has
completed their sub-task may obstruct another agent from the
completion of their own sub-task. Our setup gives each agent in
the team a global view of the overall task along with their sub-task,
enabling agents to learn policies that accomplish their individual
sub-tasks and help facilitate the completion of other agent’s sub-
tasks as well.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1905

We summarize our contributions as follows: (1) We introduce a
method for learning optimal decompositions from model-free inter-
actions with the environment. (2) Within our method, we provide
a novel training architecture that allows multiple agents to train si-
multaneously within an environment and avoids conflicts that arise
due to dependent dynamics across agents. (3) We demonstrate our
approach’s improvement in learning multi-agent policies against
baseline approaches in several cooperative environments. Our re-
sults show that MARL benefits substantially from the improved
credit assignment of task decompositions even when the optimal
decomposition is not known a priori.

2 PRELIMINARIES
2.1 MDPs and Labeled Markov Games
A Markov Decision Process (MDP) M = (𝑆,𝐴,𝑇M , 𝑑0, 𝛾) is a tuple
that consists of a state space 𝑆 , an action space 𝐴, a transition
function 𝑇M : 𝑆 × 𝐴 → 𝑆 , an initial state distribution 𝑑0 ∈ Δ(𝑆),
and a discount factor 0 < 𝛾 < 1. A (stationary) policy 𝜋 : 𝑆 → Δ(𝐴)
in M produces a distribution over actions given a state. Following
standard RL notation, we define 𝜋 (𝑎𝑡 |𝑠𝑡) as the probability of taking
action 𝑎𝑡 in state 𝑠𝑡 at timestep 𝑡 . A policy takes an action in a
given state in M, transitions to a new state via 𝑇M , and repeats,
generating a trajectory of length 𝜏 as (𝑠0, 𝑎0, . . . 𝑠𝜏 , 𝑎𝜏).

To generalize to theMARL setting, we extendM to a cooperative
Markov game with homogeneous action spaces. We define a cooper-
ativeMarkov gamewith𝑛 agents asG = (S,A,𝑇 G, 𝑑01 . . . 𝑑0𝑛 , 𝛾, 𝐿

G),
which corresponds to the joint set of states S = 𝑆1 × · · · × 𝑆𝑛 , the
joint set of actions A = 𝐴1 × · · · ×𝐴𝑛 , a joint transition operator
𝑇 G : S×A → S, a set of independent initial distributions for each
agent𝑑01×· · ·×𝑑0𝑛 , and a discount factor𝛾 that remains unchanged.
We consider the centralized training, decentralized execution [7] set-
ting of MARL, where each agent receives independent observations
and deploys their individual policies 𝜋𝑖 : 𝑆𝑖 → Δ(𝐴𝑖) at execution
time, but are jointly trained. The joint policy 𝝅 : S → Δ(A) exe-
cutes all individual policies simultaneously at each timestep, and
successive states are dictated by 𝑇 G , generating joint trajectories
((𝑠00 , 𝑎00 , . . . 𝑠0𝑛 , 𝑎0𝑛), . . . (𝑠𝜏0 , 𝑎𝜏0 , . . . 𝑠𝜏𝑛 , 𝑎𝜏𝑛)).

In addition to the standard components of our Markov Game,
we assume access to a known labeling function 𝐿G : S → 2Σ that
maps states in 𝑆 to a set of environment events, denoted by Σ. Each
environment event 𝑒 ∈ Σ is represented by a variable that takes
on a Boolean truth value (True or False). For example, in Figure 2,
if Agent 1 is in the yellow station, Agent 2 is in the red station,
and Agent 3 has not moved from its initial position, the labeling
function for this joint state would return {𝑌𝑆 , 𝑅𝑆 }.

2.2 Task completion Reward Machines
In this work, we consider task completion rewardmachines (RMs) [21,
34, 45] as our team objective. A task completion RM is specified
by a tuple R = (𝑈 ,𝑢−1, Σ, 𝛿,𝑈 ∗) consisting of a set of states𝑈 , an
alphabet of events Σ that trigger transitions in R via the transi-
tion function 𝛿 : 𝑈 × Σ → 𝑈 , an initial state 𝑢−1, and a set of
goal states 𝑈 ∗. There are no outgoing transitions from any goal
state 𝑢∗ ∈ 𝑈 ∗. Task completion RMs additionally define an output
scoring function 𝜎 : 𝑈 × 𝑈 → R, where 𝜎 (𝑢,𝑢′) = 1 whenever
𝑢 ∉ 𝑈 ∗ and 𝑢′ ∈ 𝑈 ∗, and 0 otherwise. Task completion RMs are

Mealy machines [20] where reaching the goal state represents a
valid completion of the task. We remark that 𝛿 and 𝜎 are partial
functions defined on subsets of 𝑈 × Σ and 𝑈 ×𝑈 . The transition
operator for a task completion RM takes in single events 𝑒 in as
input; when multiple events occur simultaneously, the events are
passed in sequence to the RM in arbitrary order.

A task completion RM is connected to a Markov game by the
labeling function 𝐿G . We can project a trajectory inG to a trajectory
in R by applying 𝐿G to each state, creating a sequence of event sets
({𝑒𝑖 . . . 𝑒𝑘 }0, . . . {𝑒𝑖 . . . 𝑒𝑘 }𝜏). This sequence of event sets transitions
R to create a trajectory (𝑢0, . . . 𝑢𝜏), where 𝑢0 is the state resulting
from 𝛿 (𝑢−1, {𝑒𝑖 . . . 𝑒𝑘 }0), and so forth. We say R accepts a trajectory
if 𝑢𝜏 ∈ 𝑈 ∗. By definition, the cumulative score of 𝜎 will be 1 for
accepting trajectories, and 0 for all non-accepting trajectories.

2.3 Using task completion RMs in MARL
Recall our problem setting of centralized training, decentralized ex-
ecution: each agent will receive independent observations during
execution. In other words, each agent will view the cooperative
Markov game as an MDP, where the presence and actions of other
agents are captured by the dynamics of their respective environ-
ments. To train our agent team, we can use the acceptance condition
of a task completion RM as a reward function for MARL. This objec-
tive can be naturally compiled down to a reward function expressed
over a product MDP for individual agent policies 𝜋1 . . . 𝜋𝑛 . Con-
cretely, a product MDP synchronizes M and R so that an agent
may learn a policy over the joint space by coupling the reward
machine state 𝑢𝑡 during a trajectory with the MDP’s state 𝑠𝑡 , pro-
ducing an action conditioned on both: 𝜋 (𝑎𝑡 |𝑠𝑡 , 𝑢𝑡). If the agents
transition to a goal state in R, they will receive a reward of one;
all other transitions will receive a reward of zero. Existing deep
RL algorithms, such as PPO [31], have shown success in learning
performant policies for RMs in a variety of single-agent settings by
learning policies over the product MDP [19, 42].

However, in a MARL setting, providing the full task completion
RM for each agent creates difficulties in learning. If all agents see the
same states and transitions in R, then all agents will receive credit
when the task is completed, even if one or more agents did not
contribute to completion of the task. Recall our running example in
Figure 2. Suppose Agent 1 and Agent 2 visit HQ at the same time,
and then Agent 2 visits the yellow and red stations, while Agent 3
remains stationary. Because the task is completed, all agents will
receive equal reward for that episode. As a result, Agent 3 will think
that its stationary behavior is desirable and be encouraged to act
similarly in future episodes.

Existing work addresses this shortcoming by introducing the
notion of task decomposition for a given task completion RM [21].
A decomposition of a task completion RM creates sub-tasks in the
form of 𝑛 smaller RMs R1 . . .R𝑛 , derived from the original, that can
then be assigned to each agent. Each agent is only concerned with
accomplishing their own sub-task encoded by the RM assigned to
them. In order to compute a decomposition, a practitioner provides
Local Event Sets (LES) for each agent. An LES is a subset of events
Σ𝑖 ∈ Σ that is deemed relevant to agent 𝑖’s individual sub-task
and restricts agent 𝑖 to only observing events in Σ𝑖 . A task com-
pletion RM is then projected onto these local event sets to create

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1906

an individual’s sub-task reward machine R𝑖 = (𝑈𝑖 , 𝑢−1𝑖 , Σ𝑖 , 𝛿𝑖 ,𝑈
∗
𝑖
).

The states, initial state, and goal states of R𝑖 are sets of equiva-
lence classes over states in R based on an equivalence relation that
subsumes states whose transitions do not contain any event in Σ𝑖 .
The transition function is a projection of the original 𝛿 where a
transition between two states𝑢 𝑗 and𝑢𝑘 in R𝑖 exists only if an event
in Σ𝑖 triggered a transition between two distinct states in R that
were subsumed by 𝑢 𝑗 and 𝑢𝑘 respectively. For the exact procedure
of this projection, see [21].

For each agent’s sub-task RMR𝑖 , we define an individual labeling
function 𝐿𝑖 that projects the set of environment events returned by
𝐿 to the events belonging to an agent’s local event set Σ𝑖 . We say an
event 𝑒 is a shared event if it belongs to more than one local event
set. For example, the event "Signal" in Figure 2 is a shared event. In
the case of shared events, agents’ sub-task RMs must synchronize
on this event. This means that a synchronized event must trigger a
transition for all agents’ RMs that share the event (i.e. all sub-task
RMs must be in the appropriate state for the synchronized event
to cause a transition), or no transition is taken from encountering
that event for any agent’s RM.

The decomposition approach outlined in [21] relies on a prac-
titioner manually designing the local event sets to assign to each
agent. In order to help guide the search for an appropriate assign-
ment of local event sets, [21] provides a notion of validity for a
given decomposition: a decomposition is valid if and only if the
parallel composition of all reward machines R1 . . .R𝑛 is bisimilar
to the original R. If a decomposition is valid, then for any trajectory
of events 𝜉 , R accepts 𝜉 if and only if all sub-task RMs R1 . . .R𝑛

accept 𝜉 . In other words, a trajectory of events that accomplishes
all decomposed sub-tasks encoded by R1, . . . ,R𝑛 is guaranteed to
solve the overall task.

3 METHODOLOGY
In practice, multiple valid decompositions often exist for a given
RM. However, a valid decomposition may not be feasible under the
dynamics of a given MDP; that is, the resulting learned policies
may not be able to achieve the individual tasks prescribed by a
decomposition. Moreover, when multiple feasible decompositions
do exist, we do not know which decomposition most efficiently
achieves the task or provides the best credit assignment for learning.
Recall the Repairs environment and task in Figure 2. A feasible
decomposition of the task would be for Agent 1 and Agent 2 to
meet at HQ, then for Agent 2 to visit the yellow, then red stations
in that order. However, this decomposition is less efficient than a
decomposition where Agents 1 and 3 visit HQ, then Agent 2 visits
the yellow station and leaves the hazardous region while Agent 3
visits the red station (assuming Agents complete their sub-tasks
with optimal efficiency).

Recent work attempts to automate the search for RM decompo-
sitions by leveraging additional information provided by a prac-
titioner [34]. In this work, subsets of events in Σ can be provided
that either require or forbid an event to belong to a specific agent’s
local event set Σ𝑖 , along with a utility function that quantifies how
valuable an event would be to a specific agent. This information is
then used to find a subset of events in Σ that still leads to a valid
decomposition of R, if one exists. However, the aforementioned

approach does not leverage knowledge gained about the MDP dur-
ing training and therefore cannot ensure that the decomposition
generated from their method is feasible or optimally efficient. In
what follows, we will introduce our approach, which aims to find
the optimal decomposition by learning a policy on-the-fly for many
possible sub-tasks during training.

Our approach can be broken down into three primary compo-
nents: (1) automatically generating a set of possible (candidate)
decompositions for our task, (2) using a task-conditioned policy
to generalize learning across multiple decompositions, and (3) em-
ploying the Upper Confidence Bounds (UCB) strategy [5] to balance
exploration and exploitation of candidates throughout training.

3.1 Generating candidate decompositions
Approaches to procedurally generate decompositions of reward ma-
chines and similar automaton-based task specifications have been
explored in the literature [18, 34]. Such methods can be used to gen-
erate a finite set of candidate decompositionsD = {(R1

1 . . .R
1
𝑛), . . .

(R |D |
1 . . .R |D |

𝑛)} from which the optimal decomposition can be
found. We will denote an individual decomposition in our set as
𝑑 ∈ D. In our work, we will use the decomposition approach for
task completion RMs introduced in [34]. In this approach, all pos-
sible valid decompositions are generated given Σ, and each one is
assigned a score based on three factors: (1) minimizing the aver-
age number of events assigned to each agent’s local event set, (2)
maximizing the similarity amongst the sizes of all local event sets,
and (3) maximizing the average ‘utility’ of each agent’s local event
set, based on a practitioner-provided utility function that maps the
assignment of an event to an agent to a scalar value. In our work, we
assume that no utility function has been provided. We will therefore
enumerate the ‘top-𝑘’ valid candidate decompositions based on a
weighted sum of scores pertaining to factors (1) and (2), where 𝑘 is
a hyperparameter that sets the number of decompositions we will
consider, i.e. 𝑘 = |D|. Our objective is to find the decomposition
𝑑∗ ∈ D that leads to a learned policy which will most efficiently
achieve the original task R.

3.2 Task-conditioned policies
We consider each agent policy in our team as sharing a task-conditioned
policy. Instead of learning separate policies for individual sub-tasks,
we learn a single policy that outputs actions conditioned on a
specific sub-task RM belonging to a decomposition generated in
section 3.1. We can then deploy separate copies of our policy on
each agent during execution time.

Policy Architecture. Our policy is represented by a feedforward
neural network that is shared and learned across all agents. The
neural policy receives four inputs, depending on the individual
agent:

• an observation from the underlying MDP (different for each
agent);

• an encoding of the selected decomposition 𝑑 𝑗 ∈ D for the
current execution episode (same for each agent);

• the current state in their sub-task R 𝑗
𝑖
∈ 𝑑 𝑗 (different for each

agent);

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1907

Figure 3: A visualization of the information each agent receives using the policy architecture described in section 3.2 for the
Repairs task from Figure 2. In addition to the observation gathered from the MDP, each agent’s policy is conditioned on (1) the
current state of the original RM task, (2) which decomposition is currently selected, and (3) the current state of their assigned
sub-task RM within the selected decomposition.

• an encoding of the overall task and the current state in the
overall task (same for each agent).

We visualize these inputs in Figure 3 for an example decom-
position of our Repairs task. Learning a task-conditioned policy
allows us to distinguish between different sub-tasks within differ-
ent decompositions while exploiting the generalization capabilities
of multi-task learning [24, 39] as well as the natural curriculum
learning inherent in decomposition exploration. Let us return to the
running example from Figure 2. Imagine that as part of a decompo-
sition selected during training, agent𝐴1 is only assigned the task of
meeting at HQ and nothing else. Even if this decomposition is not
optimal, succeeding in this sub-task teaches 𝐴1 the valuable skill
of how to reach HQ. This experience will be useful in the future
when 𝐴1 is tasked with more complicated sub-tasks, such as “first
go to HQ and then the red station".

Conditioning on the overall task allows us to relax the assump-
tion of independent dynamics as we will describe in Section 3.4. In
our experiments, we use one-hot encodings of the selected sub-task
and the current position in the sub-task during the rollout. However,
the embeddings could in principle be generated in any way, such
as learned embeddings from a graph neural network that encode
the structure of an RM [46].

3.3 Selecting decompositions during training
A naive approach to our objective of finding an optimal ordered
decomposition would be to learn a task-conditioned policy for each
𝑑 ∈ D independently, and then choose the decomposition that per-
forms the best after a certain amount of training. As the number of
candidate decomposition increases, this approach quickly becomes
intractable. We seek to improve the efficiency of this process by
simultaneously learning both the most efficient decomposition and
the corresponding policies that achieve this decomposition.

A key insight of our work is that we can use rewards from
previous executions of a sub-task R 𝑗

𝑖
to estimate the satisfaction

likelihood of that sub-task. These estimates, which we call value
estimates, are used as a heuristic in decomposition selection to assess
howwell a policy is performing on a specific sub-task. Our approach
computes value estimates as an exponential weighted moving sum
of previous rewards, as more recent rewards are typically a more
accurate reflection of the performance of the current policy.

We will denote the value estimates for a sub-task R 𝑗
𝑖
as 𝑉R 𝑗

𝑖

. On
episode 𝐻 of training on decomposition 𝑗 , we can compute a sub-
task’s value estimate as 𝑉R 𝑗

𝑖

=
∑𝐻
ℎ=0 𝛼

𝐻−ℎ𝑟ℎ . Here, 𝑟ℎ represents
the reward achieved by agent 𝑖 under sub-task R𝑖 from the ℎ-th
execution and 𝛼 is a hyperparameter defining the decay rate.

With value estimates in hand for each agent policy in our team,
on each sub-task, we can consider a number of heuristic approaches
to utilize them. In this work, we use the Upper Confidence Bound
(UCB) algorithm [5], which balances exploring different decompo-
sitions with exploiting higher scoring decomposition via a hyper-
parameter 𝛽 . The score assigned to each decomposition 𝑑 𝑗 is an
average of the decomposition’s current value estimates for each
sub-task {𝑉R 𝑗

1
, . . . ,𝑉R 𝑗

𝑛
}.

We note that the value estimates early in training may be ar-
bitrarily inaccurate due to the lack of progress made in learning
the policy for different sub-tasks by each agent. When inaccuracy
is high early in training, exploration is critical so that agents can
sufficiently optimize towards achieving each candidate sub-task
before the value estimates are exploited to converge on the optimal
decomposition. Once the optimal decomposition is converged upon,
additional training will further optimize the policy conditioned on
its corresponding sub-tasks.

3.4 Dealing with dependent dynamics
Prior work in RM-guided MARL [21, 34] assumes that the underly-
ing dynamics of the MDP are independent between agents. This
prevents the use of an MDP with dynamics that model collisions

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1908

or interactions between agents unless the interaction is explicitly
modeled by the task’s reward machine, which requires knowing
about the interaction a priori.

Consider the motivating example visualized in Figure 2. The
example includes dependent dynamics between the agents in the
form of the hazardous region. Only one agent can occupy the region
at a time, meaning that an agent’s ability to enter the region is
dependent on the other agents’ positions and actions.

Prior works [21, 34] require the assumption of independent dy-
namics so that the completion of an individual agent’s reward
machine is independent of the behavior of other agents. With de-
pendent dynamics, this is rarely the case. For example, imagine
that Agent 3 is assigned to reach the yellow target and Agent 2 is
assigned to reach the red target. If Agent 3 enters the hazardous
region and reaches the yellow target, it accomplishes its sub-task.
Now, completion of the overall task only requires Agent 2 to reach
the red target. Since the red target is located in the hazardous region,
this requires Agent 3 to exit the hazardous region. However, Agent
3 has already accomplished its sub-task (and has no knowledge of
Agent 2’s task), so it has no incentive to leave the hazardous region.

We are able to relax the assumption of independent dynamics
made in previous work [21, 34] and handle environments such
as the one in Figure 2 by allowing agents to condition not only
on the status of their sub-task, but on the status of the overall
task as well. In addition, agents are given a small reward for the
completion of the overall task during training along with their
primary reward for completing their assigned sub-task. This reward
structure incentivizes agents to condition on the status of other
agent’s tasks (e.g., that Agent 2 needs to go to red) so that the
overall task can be completed (e.g., Agent 3 is incentivized to leave
the hazardous region).

4 EXPERIMENTS
We evaluate our proposed approach, which we refer to as LOTaD
(Learning Optimal Task Decompositions), in a variety of MARL
settings with varying task complexity. Our code is available at
https://github.com/thomasychen/LOTaD.

In our experiments, we seek to answer the following research
questions: (RQ1) Does LOTaD outperform existing approaches
to RM-guided MARL that are not learning-informed, including
approaches that do not perform task decomposition? (RQ2) Can
LOTaD learn to avoid pitfalls in learning that may occur due to
dependent dynamics across agents? (RQ3) How does varying the
number of candidate decompositions 𝑘 = |D| affect the learning
performance of LOTaD?

4.1 Environments and tasks
Our environments include the Repairs environment and RM task
presented in Figure 2. The environment is instantiated as a 7x12
grid in which agents can move in any of the cardinal directions,
or take a no-op action where no movement occurs. We make the
Repairs environment stochastic by giving a small chance of an
agent “slipping” and taking a random action rather than the action
selected by their policy. Each agent observes only their position in
the world at each timestep.

In addition to the Repairs environment, we also include two “But-
tons” environments that require a team of agents to press a series of
buttons in a particular order. We instantiate two environment-task
pairs: First, we use Cooperative Buttons, a task from [21] where
any agent must reach a specified goal location, but in order to do
so, must traverse regions that can only be crossed once a corre-
sponding button has been pressed. Second, we use Four-Buttons, a
task where two agents must press four buttons (yellow, green, blue,
and red) in an environment, with an ordering constraint that the
yellow button must be pressed before the red button. Both of these
environments are represented as 10x10 grids with the same obser-
vation space, action space, and “slipping” dynamics as the Repair
environment. Visualizations of these environments are presented
in our Appendix [32].

Lastly, we evaluate LOTaD on two environments from the popu-
lar multi-agent benchmark Overcooked [9]. In both environments,
we provide the same simple task of delivering a soup to the delivery
station, which requires putting three onions in a pot, plating, and
delivering the soup. Agents must coordinate depending on the dy-
namics of their environment to efficiently cook and deliver the soup.
We use aCramped-Corridor environment, where two agents must
navigate around one another to reach the pot at the end of a small
corridor in a cramped room, and an Asymmetric-Advantages
environment, where two agents are in separate rooms, but have
access to an asymmetric set of resources in their respective rooms.
We visualize both Overcooked environments in our Appendix [32].
The observation space and action space for these environments
are the same as those provided in the Overcooked implementation
from [27] with the adjustment that we do not expose the number of
onions in the pot or whether the soup has finished cooking in order
to ensure that no information provided by the labeling function is
redundant in the agents’ observations.

In all environments, we apply a discount factor 𝛾 < 1.0 to the
reward offered by our RM to incentivize our agents to accomplish
the task as efficiently as possible. We generate 𝑘 = 10 decompo-
sition candidates in all experiments using the generation method
described in Section 3.1 for LOTaD to search amongst. We provide
additional information regarding each environment and task in our
Appendix [32].

4.2 Baselines
To evaluate LOTaD, we compare against a baseline that selects a
decomposition using the ATADmethod [34]. This approach selects
a set decomposition prior to learning based on the scoring method
described in Section 3.1. We break ties between top scoring decom-
positions arbitrarily. In addition to this baseline, we also compare
against a baseline approach that assigns each agent the overall task.
We call this baselineMonolithic and use it to evaluate how MARL
would perform if no decomposition of the RM was used. We use
PPO [31] with a Gaussian policy over the action space for each
agent as our RL algorithm in every environment.

4.3 Results
We plot training curves for all experimental domains in Figure 4. In
these curves, we report the current best discounted reward achieved

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1909

https://github.com/thomasychen/LOTaD

Figure 4: Training curves for LOTaD and baseline methods in our experimental domains. Results are averaged over 5 random
seeds.

Figure 5: Training curves for LOTaD in the Repairs Task and Cramped-Corridor environments demonstrating the effect of
conditioning on the overall task state along with individual sub-task states for each agent.

by LOTaD amongst all decomposition candidates under consider-
ation. We find that LOTaD outperforms both the monolithic and
ATAD baselines across all environments, answering (RQ1) in the
affirmative. In many of our environments, learning decompositions
with LOTaD allows for agents to explicitly parallelize their contribu-
tions towards achieving the task. For example, in the Four-Buttons
environment, a candidate decomposition allows for one agent to
visit the yellow and green buttons while the other agent visits the
blue button.

Interestingly, LOTaD-learned decompositions are useful even
when explicit parallelization is not possible, such as the Overcooked
RM task. Decompositions of this task can still facilitate multi-agent
learning: for example, one agent may be tasked with putting all
three onions in the pot, while the other agent must wait for the
soup to be cooked before plating and delivering the soup. In this
decomposition, the agent tasked with plating and delivering the

soup may fetch a plate and stand near the pot so that the soup can
be quickly delivered upon completion of cooking.

In comparison to LOTaD, the ATAD baseline is unable to con-
sistently find performant task decompositions. Although ATAD
selects a decomposition based on the same scoringmethod bywhich
we select D, there exist many possible decompositions tied for the
highest achievable score in a given task. As a result, ATAD may
select the optimal decomposition when the optimal decomposition
is also the highest scoring, but performs suboptimally when this
is not the case. In addition to lower reward, this leads to a higher
variance in performance by ATAD, as evidenced by Figure 4. The
Monolithic baseline consistently achieves the lowest reward due to
the sparsity of the overall task reward. Similar to ATAD, we notice
that policy learning with the Monolithic baseline is unreliable and
tends to converge more slowly than LOTaD.

We find that LOTaD is able to successfully accomplish the task
in the Repairs and Overcooked Cramped-Corridor environments,

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1910

Figure 6: Training curves for the UCB selection strategy on
increasingly sized D for the Four-Buttons task. Results are
averaged over 10 random seeds.

which both involve dependent dynamics amongst agents. LOTaD
is indeed able to avoid issues when training agent teams in envi-
ronments with dependent dynamics, affirming (RQ2). To further
investigate our hypothesis of whether a global task view alleviates
these issues, we ran LOTaD without an encoding of the overall task
in the Repairs and Cramped-Corridor environment. We present
the training curves from this ablation study in Figure 5. We find
that without the overall task encoding, LOTaD is largely unable to
accomplish the Repairs task, and is slower and less stable in accom-
plishing the Cramped-Corridor task. This suggests that the overall
task encoding enables our agents to learn policies that progress
towards completion of the overall task even when an agent’s in-
dividual sub-task is already achieved. In our other environment
settings, where codependent agent dynamics do not exist, removing
the overall task encoding does not significantly affect training.

To answer (RQ3), we perform ablation studies where we vary
the size of D. These training curves are visualized in Figures 6. We
see that values of 𝑘 that are either very small or very large make the
learning problemmore challenging for LOTaD.We reason that if𝑘 is
too large, more exploration is required, and LOTaD may struggle to
find the optimal decomposition amongst many candidates. If𝑘 is too
small, there is a lower chance of “good” decompositions appearing
in the set D, which inherently limits the performance potential of
LOTaD. We note that the inherent randomness of LOTaD, as well
as the choice of environment, task, and the amount of exploration
prioritized by our UCB hyperparameter 𝛽 , may confound results.

5 RELATEDWORK
Automaton-based task specifications in RL. An extensive body of

work has explored automaton-based task specification for RL agents.
Previous efforts have proposed RL approaches to policy learning for
reward machines [8, 14, 38] or automata-based representations of
temporal logic [3, 12, 13, 15, 28, 33, 41, 42] by augmenting the state
space of the MDP. These efforts focus primarily on single-agent
settings and are not designed to handle the MARL case with shared
objectives or formally decompose the automaton.

(Symbolic) task decomposition for multi-agent teams. Symbolic
structures have been leveraged to facilitate efficient multi-agent
learning in a variety of settings. A number of these approaches

rely on a known dynamics model [16, 29, 30] for planning-based
approaches. In contrast, we assume no prior knowledge of the
environment dynamics as is standard in reinforcement learning.

Closely related to our contributions, previous works explored
learning decompositions of tasks for teams of agents. Some previ-
ous works explored decomposing symbolic tasks by hand designing
decompositions or using task- and environment-agnostic heuristics
[21, 34]. However, these works either require extensive human in-
volvement in determining the optimal decomposition or do not offer
a way to choose a decomposition based on MDP dynamics. More-
over, these approaches are limited to MDPs in which the dynamics
of agents are independent. Other works learn role assignments for
traditional reward functions (i.e., non-symbolic) with multi-agent
teams [44] or decompose traditional (non-Markovian) reward func-
tions [35] for teams of agents but thesemethods do not easily extend
to non-Markovian rewards which we consider.

Credit assignment in multi-agent RL. Credit assignment, origi-
nally explored in the single-agent setting [11, 26, 37, 40], is a prob-
lem that has been extensively explored in multi-agent learning
literature and can be divided between explicit and implicit solu-
tions. Explicit credit assignment most closely resembles our work,
typically assuming that value functions are given in a specific form
that allows certain types of decompositions, such as additive de-
compositions [22], or value factorization [36, 43]. Other explicit
methods are based on assuming a hierarchical execution structure
[2, 10, 25]. Implicit credit assignment instead attempts to perform
credit assignment without an explicit structure, for example, by
deriving individual policy gradients for each agent derived from a
centralized critic [47].

6 CONCLUSION
We introduce a novel approach for learning the optimal decom-
position of a task completion RM for MARL through model free
interactions with the environment. Our framework simultaneously
learns the optimal decomposition and the policies that solve that
decomposition amongst a set of candidates. Our experiments show
that we improve the sample efficiency of multi-agent learning in
model-free deep RL settings even when the optimal decomposi-
tion is not known a priori. Through our ablations, we have shown
that both including the encoding of the overall task and intelligent
decomposition selection is critical for sample efficient learning of
reward machines in multiagent settings.

We see a number of compelling directions for future work. For
example, we are interested in exploring how different representa-
tions of an RM may enable greater sample efficiency by exploiting
semantic similarity amongst overlapping sub-tasks. Lastly, we are
interested in exploiting the inherent curriculum present in decom-
position exploration by generalizing our multi-agent setting to
solving multiple tasks, building on prior work in goal-conditioned
RL on automata-based tasks [24, 39].

ACKNOWLEDGMENTS
This work was supported in part by DARPA Contract FA8750-23-C-
0080 (ANSR) and the DARPA Contract HR00112490425 (TIAMAT),
by Nissan and Toyota under the iCyPhy center, and an NSF Gradu-
ate Fellowship.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1911

REFERENCES
[1] Adrian K. Agogino and Kagan Tumer. 2004. Unifying Temporal and Structural

Credit Assignment Problems. In 3rd International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2004), 19-23 August 2004, New York, NY,
USA. IEEE Computer Society, 980–987. https://doi.org/10.1109/AAMAS.2004.
10098

[2] Adrian K Agogino and Kagan Tumer. 2004. Unifying temporal and structural
credit assignment problems. In Autonomous agents and multi-agent systems con-
ference.

[3] Rajeev Alur, Suguman Bansal, Osbert Bastani, and Kishor Jothimurugan. 2022.
A Framework for Transforming Specifications in Reinforcement Learning. In
Principles of Systems Design - Essays Dedicated to Thomas A. Henzinger on the
Occasion of His 60th Birthday (Lecture Notes in Computer Science, Vol. 13660), Jean-
François Raskin, Krishnendu Chatterjee, Laurent Doyen, and Rupak Majumdar
(Eds.). Springer, 604–624. https://doi.org/10.1007/978-3-031-22337-2_29

[4] Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. 2009. Exploration–
exploitation tradeoff using variance estimates in multi-armed bandits. Theoretical
Computer Science 410, 19 (2009), 1876–1902.

[5] Peter Auer. 2002. Using Confidence Bounds for Exploitation-Exploration Trade-
offs. J. Mach. Learn. Res. 3 (2002), 397–422. http://jmlr.org/papers/v3/auer02a.html

[6] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of
the multiarmed bandit problem. Machine learning 47 (2002), 235–256.

[7] Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. 2002.
The complexity of decentralized control of Markov decision processes. Mathe-
matics of operations research 27, 4 (2002), 819–840.

[8] Alberto Camacho, Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano,
and Sheila A. McIlraith. 2019. LTL and Beyond: Formal Languages for Reward
Function Specification in Reinforcement Learning. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI-19. Inter-
national Joint Conferences on Artificial Intelligence Organization, 6065–6073.
https://doi.org/10.24963/ijcai.2019/840

[9] Micah Carroll, Rohin Shah, Mark K. Ho, Tom Griffiths, Sanjit A. Seshia, Pieter
Abbeel, and Anca D. Dragan. 2019. On the Utility of Learning about Humans for
Human-AI Coordination. In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (Eds.). 5175–5186. https://proceedings.neurips.cc/paper/2019/hash/
f5b1b89d98b7286673128a5fb112cb9a-Abstract.html

[10] Lei Feng, Yuxuan Xie, Bing Liu, and Shuyan Wang. 2022. Multi-level credit
assignment for cooperative multi-agent reinforcement learning. Applied Sciences
12, 14 (2022), 6938.

[11] Johan Ferret, Raphaël Marinier, Matthieu Geist, and Olivier Pietquin. 2019. Self-
attentional credit assignment for transfer in reinforcement learning. arXiv
preprint arXiv:1907.08027 (2019).

[12] Jie Fu and Ufuk Topcu. 2014. Probably Approximately Correct MDP Learning
and Control With Temporal Logic Constraints. In Robotics: Science and Systems
X, University of California, Berkeley, USA, July 12-16, 2014, Dieter Fox, Lydia E.
Kavraki, and Hanna Kurniawati (Eds.). https://doi.org/10.15607/RSS.2014.X.039

[13] Mohammadhosein Hasanbeig, Daniel Kroening, and Alessandro Abate. 2020.
Deep reinforcement learning with temporal logics. In International Conference
on Formal Modeling and Analysis of Timed Systems. Springer, 1–22.

[14] Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith.
2022. Reward machines: Exploiting reward function structure in reinforcement
learning. Journal of Artificial Intelligence Research 73 (2022), 173–208.

[15] Kishor Jothimurugan, Rajeev Alur, and Osbert Bastani. 2019. A composable
specification language for reinforcement learning tasks. Advances in Neural
Information Processing Systems 32 (2019).

[16] Mohammad Karimadini and Hai Lin. 2011. Cooperative Tasking for Deterministic
Specification Automata. Asian Journal of Control 18 (01 2011). https://doi.org/10.
1002/asjc.1300

[17] Michael N Katehakis and Arthur F Veinott Jr. 1987. The multi-armed bandit
problem: decomposition and computation. Mathematics of Operations Research
12, 2 (1987), 262–268.

[18] Niklas Lauffer, Beyazit Yalcinkaya, Marcell Vazquez-Chanlatte, Ameesh Shah, and
Sanjit A. Seshia. 2022. Learning Deterministic Finite Automata Decompositions
from Examples and Demonstrations. In 22nd Formal Methods in Computer-Aided
Design, FMCAD 2022, Trento, Italy, October 17-21, 2022, Alberto Griggio and Neha
Rungta (Eds.). IEEE, 1–6. https://doi.org/10.34727/2022/ISBN.978-3-85448-053-
2_39

[19] Andrew C. Li, Zizhao Chen, Toryn Q. Klassen, Pashootan Vaezipoor, Rodrigo Toro
Icarte, and Sheila A. McIlraith. 2024. Reward Machines for Deep RL in Noisy and
Uncertain Environments. CoRR abs/2406.00120 (2024). https://doi.org/10.48550/
ARXIV.2406.00120 arXiv:2406.00120

[20] George H Mealy. 1955. A method for synthesizing sequential circuits. The Bell
System Technical Journal 34, 5 (1955), 1045–1079.

[21] Cyrus Neary, Zhe Xu, Bo Wu, and Ufuk Topcu. 2021. Reward Machines for Coop-
erative Multi-Agent Reinforcement Learning. In AAMAS ’21: 20th International
Conference on Autonomous Agents and Multiagent Systems, Virtual Event, United
Kingdom, May 3-7, 2021, Frank Dignum, Alessio Lomuscio, Ulle Endriss, and Ann
Nowé (Eds.). ACM, 934–942. https://doi.org/10.5555/3463952.3464063

[22] Duc Thien Nguyen, Akshat Kumar, and Hoong Chuin Lau. 2017. Policy gradient
with value function approximation for collective multiagent planning. Advances
in neural information processing systems 30 (2017).

[23] Afshin Oroojlooy and Davood Hajinezhad. 2023. A review of cooperative multi-
agent deep reinforcement learning. Appl. Intell. 53, 11 (2023), 13677–13722.
https://doi.org/10.1007/S10489-022-04105-Y

[24] Wenjie Qiu, Wensen Mao, and He Zhu. 2023. Instructing Goal-Conditioned
Reinforcement Learning Agents with Temporal Logic Objectives. In Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz
Hardt, and Sergey Levine (Eds.). http://papers.nips.cc/paper_files/paper/2023/
hash/7b35a69f434b5eb07ed1b1ef16ace52c-Abstract-Conference.html

[25] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Far-
quhar, Jakob Foerster, and Shimon Whiteson. 2020. Monotonic value function
factorisation for deep multi-agent reinforcement learning. Journal of Machine
Learning Research 21, 178 (2020), 1–51.

[26] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas De-
grave, Tom Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. 2018.
Learning by playing solving sparse reward tasks from scratch. In International
conference on machine learning. PMLR, 4344–4353.

[27] Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei
Lupu, Gardar Ingvarsson, Timon Willi, Akbir Khan, Christian Schroeder de
Witt, Alexandra Souly, Saptarashmi Bandyopadhyay, Mikayel Samvelyan, Minqi
Jiang, Robert Tjarko Lange, Shimon Whiteson, Bruno Lacerda, Nick Hawes, Tim
Rocktaschel, Chris Lu, and Jakob Nicolaus Foerster. 2023. JaxMARL: Multi-Agent
RL Environments in JAX. arXiv preprint arXiv:2311.10090 (2023).

[28] Dorsa Sadigh, Eric S Kim, Samuel Coogan, S Shankar Sastry, and Sanjit A Seshia.
2014. A learning based approach to control synthesis of markov decision pro-
cesses for linear temporal logic specifications. In 53rd IEEE Conference on Decision
and Control. IEEE, 1091–1096.

[29] Philipp Schillinger, Mathias Bürger, and Dimos V. Dimarogonas. 2016. Decomposi-
tion of Finite LTL Specifications for Efficient Multi-agent Planning. In Distributed
Autonomous Robotic Systems, The 13th International Symposium, DARS 2016, Nat-
ural History Museum, London, UK, November 7-9, 2016 (Springer Proceedings in
Advanced Robotics, Vol. 6), Roderich Groß, Andreas Kolling, Spring Berman,
Emilio Frazzoli, Alcherio Martinoli, Fumitoshi Matsuno, and Melvin Gauci (Eds.).
Springer, 253–267. https://doi.org/10.1007/978-3-319-73008-0_18

[30] Philipp Schillinger, Mathias Bürger, and Dimos V. Dimarogonas. 2018. Simul-
taneous task allocation and planning for temporal logic goals in heteroge-
neous multi-robot systems. Int. J. Robotics Res. 37, 7 (2018), 818–838. https:
//doi.org/10.1177/0278364918774135

[31] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).
arXiv:1707.06347 http://arxiv.org/abs/1707.06347

[32] Ameesh Shah, Niklas Lauffer, Thomas Chen, Nikhil Pitta, and Sanjit A. Se-
shia. 2025. Learning Symbolic Task Decompositions for Multi-Agent Teams.
arXiv:2502.13376 [cs.MA] https://arxiv.org/abs/2502.13376

[33] Ameesh Shah, Cameron Voloshin, Chenxi Yang, Abhinav Verma, Swarat Chaud-
huri, and Sanjit A. Seshia. 2024. Deep Policy Optimization with Temporal Logic
Constraints. CoRR abs/2404.11578 (2024). https://doi.org/10.48550/ARXIV.2404.
11578 arXiv:2404.11578

[34] Sophia Smith, Cyrus Neary, and Ufuk Topcu. 2023. Automatic Decomposition of
Reward Machines for Decentralized Multiagent Reinforcement Learning. In 2023
62nd IEEE Conference on Decision and Control (CDC). IEEE, 5423–5430.

[35] Changyin Sun, Wenzhang Liu, and Lu Dong. 2020. Reinforcement learning with
task decomposition for cooperative multiagent systems. IEEE transactions on
neural networks and learning systems 32, 5 (2020), 2054–2065.

[36] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-
cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl
Tuyls, et al. 2017. Value-decomposition networks for cooperative multi-agent
learning. arXiv preprint arXiv:1706.05296 (2017).

[37] Richard Stuart Sutton. 1984. Temporal credit assignment in reinforcement learning.
University of Massachusetts Amherst.

[38] Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano, and Sheila A. McIlraith.
2022. Reward Machines: Exploiting Reward Function Structure in Reinforcement
Learning. J. Artif. Int. Res. 73 (may 2022), 36. https://doi.org/10.1613/jair.1.12440

[39] Pashootan Vaezipoor, Andrew C Li, Rodrigo A Toro Icarte, and Sheila A Mcilraith.
2021. Ltl2action: Generalizing ltl instructions for multi-task rl. In International
Conference on Machine Learning. PMLR, 10497–10508.

[40] Hado van Hasselt, Sephora Madjiheurem, Matteo Hessel, David Silver, André
Barreto, and Diana Borsa. 2021. Expected eligibility traces. In Proceedings of the
AAAI conference on artificial intelligence, Vol. 35. 9997–10005.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1912

https://doi.org/10.1109/AAMAS.2004.10098
https://doi.org/10.1109/AAMAS.2004.10098
https://doi.org/10.1007/978-3-031-22337-2_29
http://jmlr.org/papers/v3/auer02a.html
https://doi.org/10.24963/ijcai.2019/840
https://proceedings.neurips.cc/paper/2019/hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html
https://doi.org/10.15607/RSS.2014.X.039
https://doi.org/10.1002/asjc.1300
https://doi.org/10.1002/asjc.1300
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_39
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_39
https://doi.org/10.48550/ARXIV.2406.00120
https://doi.org/10.48550/ARXIV.2406.00120
https://arxiv.org/abs/2406.00120
https://doi.org/10.5555/3463952.3464063
https://doi.org/10.1007/S10489-022-04105-Y
http://papers.nips.cc/paper_files/paper/2023/hash/7b35a69f434b5eb07ed1b1ef16ace52c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/7b35a69f434b5eb07ed1b1ef16ace52c-Abstract-Conference.html
https://doi.org/10.1007/978-3-319-73008-0_18
https://doi.org/10.1177/0278364918774135
https://doi.org/10.1177/0278364918774135
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2502.13376
https://arxiv.org/abs/2502.13376
https://doi.org/10.48550/ARXIV.2404.11578
https://doi.org/10.48550/ARXIV.2404.11578
https://arxiv.org/abs/2404.11578
https://doi.org/10.1613/jair.1.12440

[41] Cameron Voloshin, HoangMinh Le, Swarat Chaudhuri, and Yisong Yue. 2022. Pol-
icy Optimization with Linear Temporal Logic Constraints. In Advances in Neural
Information Processing Systems, Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (Eds.). https://openreview.net/forum?id=yZcPRIZEwOG

[42] Cameron Voloshin, Abhinav Verma, and Yisong Yue. 2023. Eventual Discounting
Temporal Logic Counterfactual Experience Replay. arXiv:2303.02135 [cs.LG]

[43] Jianhao Wang, Zhizhou Ren, Beining Han, Jianing Ye, and Chongjie Zhang.
2021. Towards understanding cooperative multi-agent q-learning with value
factorization. Advances in Neural Information Processing Systems 34 (2021), 29142–
29155.

[44] Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and
Chongjie Zhang. 2020. Rode: Learning roles to decompose multi-agent tasks.
arXiv preprint arXiv:2010.01523 (2020).

[45] Zhe Xu, Ivan Gavran, Yousef Ahmad, Rupak Majumdar, Daniel Neider, Ufuk
Topcu, and Bo Wu. 2020. Joint Inference of Reward Machines and Policies for Re-
inforcement Learning. In Proceedings of the Thirtieth International Conference on
Automated Planning and Scheduling, Nancy, France, October 26-30, 2020, J. Christo-
pher Beck, Olivier Buffet, Jörg Hoffmann, Erez Karpas, and Shirin Sohrabi (Eds.).
AAAI Press, 590–598. https://ojs.aaai.org/index.php/ICAPS/article/view/6756

[46] Beyazit Yalcinkaya, Niklas Lauffer, Marcell Vazquez-Chanlatte, and Sanjit Seshia.
[n.d.]. Automata Conditioned Reinforcement Learning with Experience Replay.
In NeurIPS 2023 Workshop on Goal-Conditioned Reinforcement Learning.

[47] Meng Zhou, Ziyu Liu, Pengwei Sui, Yixuan Li, and Yuk Ying Chung. 2020. Learn-
ing implicit credit assignment for cooperative multi-agent reinforcement learning.
Advances in neural information processing systems 33 (2020), 11853–11864.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1913

https://openreview.net/forum?id=yZcPRIZEwOG
https://arxiv.org/abs/2303.02135
https://ojs.aaai.org/index.php/ICAPS/article/view/6756

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 MDPs and Labeled Markov Games
	2.2 Task completion Reward Machines
	2.3 Using task completion RMs in MARL

	3 Methodology
	3.1 Generating candidate decompositions
	3.2 Task-conditioned policies
	3.3 Selecting decompositions during training
	3.4 Dealing with dependent dynamics

	4 Experiments
	4.1 Environments and tasks
	4.2 Baselines
	4.3 Results

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

