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Abstract
Multi-Agent Reinforcement Learning can lead to the development
of collaborative agent behaviors that show similarities with organi-
zational concepts. Pushing forward this perspective, we introduce
a novel framework that explicitly incorporates organizational roles
and goals from theM𝑂𝐼𝑆𝐸+ model into the MARL process, guiding
agents to satisfy corresponding organizational constraints. By struc-
turing training with roles and goals, we aim to enhance both the
explainability and control of agent behaviors at the organizational
level, whereas much of the literature primarily focuses on individ-
ual agents. Additionally, our framework includes a post-training
analysis method to infer implicit roles and goals, offering insights
into emergent agent behaviors. This framework has been applied
across various MARL environments and algorithms, demonstrating
coherence between predefined organizational specifications and
those inferred from trained agents.
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1 Introduction
Multi-Agent Reinforcement Learning (MARL) enables the discovery
of a joint policy that controls agents’ behaviors so they can achieve
a global goal within a specific environment. This joint policy not
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only dictates the individual actions of agents but also manages their
interactions with one another, and potentially with all other agents,
without any preconceived notion of a predefined organization.

In environments that require social interaction among agents to
optimally achieve the global goal, agents may converge in such a
way that they exhibit recurring sets of similar behaviors across dif-
ferent testing episodes. These distinct sets of behaviors can demon-
strate properties of specialization, complementarity, and stability,
making them akin to implicit roles. Moreover, the trajectories of
agents assuming these "implicit" roles may display similarities, such
as recurrent observations at the end of each episode. These recur-
ring patterns in agent histories can be interpreted as "implicit"
goals, suggesting that agents may aim to pursue these as interme-
diate goals before reaching the global goal. These implicit roles and
implicit goals form the foundation of an "implicit" structural and
functional organization as defined in M𝑂𝐼𝑆𝐸+ [14].

However, it would bemisleading to assume that all trained agents
in any environment can be faithfully compared to a structural and
functional organization. Indeed, we can interpret the behaviors of
trained agents concerning their similarity to the potential vision of
an implicit structural and functional organization, which we define
as organizational fit. While evaluating organizational fit would
be useful to assess to what extent trained agents can naturally be
explained as roles and goals, one could also consider the reverse
approach. By guiding or encouraging agents to converge towards
structural and functional organizations with higher organizational
fit, we aim to enhance explainability and control in MARL.

Building on these assumptions, this paper aims to further ex-
plore two key aspects: i) The evaluation of organizational fit,
which seeks to measure how closely a joint policy aligns with a
structural and functional organization. A significant challenge here
is to understand under what conditions agents can be considered
to form a structural and functional organization, given constraints
imposed by the environment, goals, and other optional factors. Ex-
isting literature often addresses policy evaluation in terms of roles
or goals [15, 27, 29], but these works generally lack a systematic and
comprehensive approach. Current methods offer few clear tools
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for quantitatively and qualitatively measuring this organizational
fit.; ii) The control of organizational fit, which aims to guide
agents towards policies that conform to a structural and functional
organization through user-defined constraints or incentives that
implement roles and goals. The primary challenges include reduc-
ing the policy search space, improving convergence, and ensuring
compliance with safety constraints. Existing approaches in this
field often fall short in terms of enabling users to easily define and
manage the application of organizational specifications in a practi-
cal manner within a standard MARL framework, without relying
on paradigms such as Hierarchical Reinforcement Learning (HRL).

We introduce the MOISE+MARL framework, which integrates
the Decentralized Partially Observable Markov Decision Process
(Dec-POMDP) MARL framework with the M𝑂𝐼𝑆𝐸+ [14] organi-
zational model through proposed relationships. This framework
allows users to manually define the logic of a role or a goal by rely-
ing on trajectory-based patterns to describe the expected behavior
of an agent that has adopted a goal or mission. Once configured,
they allow users to apply a role to an agent, adding constraints
that automatically influence agents’ policies by dynamically up-
dating both the action space and reshaping the reward function.
This framework also includes a method called Trajectory-based
Evaluation in MOISE+MARL (TEMM), which uses unsupervised
learning techniques to generalize implicit roles and implicit mis-
sions from observed trajectories across multiple test episodes. By
measuring the gap between inferred implicit organizational specifi-
cations and actual behaviors, this method allows for a quantitative
assessment of organizational fit. It is worth noting that unlike hi-
erarchical reinforcement learning, which decomposes tasks into
subtasks [18, 20, 23], our approach relies on explicit organizational
roles and missions to guide agent coordination externally.

We evaluated the MOISE+MARL framework in the following sce-
narios: i) Four distinct environments, each expected to result in the
training of joint policies with different implicit organizations, to as-
sess the generalizability of MOISE+MARL’s applicability; ii) Four
MARL algorithms from the several families to assess their suitability
with MOISE+ MARL during training and post-analysis; iii) Four
sets of organizational specifications, one for each environment,
to constrain agents in a manner that either enforces conformity
intended for both manual and quantitative evaluation.

In all environments, we observed that agents having adopted
roles do behave as expected according to their roles in a correlated
way with a quantitative measure of the organizational fit by TEMM.
The roles and missions inferred by TEMM closely align with the
predefined specifications, demonstrating the internal consistency of
MOISE+MARL, as the policy modifications introduced by organiza-
tional specifications are effectively captured by TEMM. The results
also indicate that policy-based and actor-critic algorithms are par-
ticularly well-suited for guiding agents towards stable policies. This
stability allows agents to maintain consistent and coherent behav-
iors across episodes, which is essential for TEMM’s generation of
a stable implicit organization. In contrast, value-based algorithms
showed greater variability in agent behaviors.

The rest of the paper is organized as follows: Section 2 presents
works relative to evaluating and controlling organizational fit. Sec-
tion 3 introduces the MOISE+MARL framework. Section 4 describes
the TEMM method. Section 5 describes the experimental protocol,
particularly the environments and MARL algorithms. Section 6
presents the experimental results. Finally, Section 7 discusses and
concludes on the evaluation and control of organizational fit.

2 Related works
This section explores works related to organizational fit, as framed
by the two core issues introduced.

2.1 Evaluating organizational fit
Some works may be related to role or goal inference regarding
the need to compute organizational fit or close concepts. Wilson
et al. [28] develop a method for transferring roles in Multi-Agent
MDPs, which helps agents adapt by transferring roles across differ-
ent environments. However, their model lacks the role abstraction
as it focuses on specific, task-related roles. Berenji and Vengerov [5]
investigate coordination and role inference in UAV missions, en-
hancing cooperation through modeling agent dependencies. While
useful for cooperation, their approach remains task-specific and
does not provide the implicit role computation needed for orga-
nizational fit. Yusuf and Baber [31] use inferential reasoning and
Bayesian methods to facilitate task coordination among diverse
agents. Though effective in dynamic coordination, their framework
lacks role abstraction and does not measure alignment with an
broader organizational structure either. Serrino et al. [24] examine
dynamic role inference in social settings, where agents deduce roles
through interactions. While they enable flexible role understanding,
their approach focuses on immediate operational roles rather than
implicit roles that align with organizational models.

While some works explore organizational concepts in MARL,
none explicitly address the computation of organizational align-
ment as we define it. Our concept of organizational fit requires a
framework that assesses alignment with implicit goals.

2.2 Controlling organizational fit
Controlling organizational fit involves aligning the agents’ policies
with a predefined organization, often using constraints or incen-
tives. Achiam et al. [1] introduce CPO, adjusting policies with safety
constraints while maximizing rewards. MOISE+MARL, however,
introduces constraints beyond safety to shape behavior toward
organizational expectations by externally guiding agent learning.
Ray et al. [22] use Lagrange multipliers to integrate constraints
into the reward function, balancing reward and constraint adher-
ence. MOISE+MARL extends this by dynamically modifying the
action space to enforce constraint adherence at various levels, offer-
ing flexible control over agent behaviors. Safe exploration ensures
agents learn while adhering to safety constraints. Garcia et al. [11]
overview methods for maintaining safe exploration, and Alshiekh
et al. [4] propose shielding to block unsafe actions. MOISE+MARL
goes further by using constraints to guide agents toward behaviors
that align with organizational roles. HRL breaks tasks into subtasks,
aligning with organizational hierarchies. Ghavamzadeh et al. [12]
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illustrate that HRL can improve coordination. MOISE+MARL con-
strains MARL externally, offering a modular granularity and gen-
erating refined behaviors under organizational constraints. Con-
trolling Communication and Coordination is essential for ensuring
organizational fit, especially in large-scale systems. Foerster et
al. [10] propose decentralized coordination through shared knowl-
edge, allowing agents to operate without centralized control.

Unlike HRL, the MOISE+MARL framework stands out for incor-
porating external organizational constraints that influence agents
within a standard MARL framework, enabling modular granular-
ity. Unlike Shielding or CPO, which typically focus on safety con-
straints, MOISE+MARL goes further by relying on actions and
reward modifications to align with roles.

3 The MOISE+MARL framework
This section introduces the formalism used to describe the func-
tioning framework of the MOISE+MARL framework.

3.1 Markov framework for MARL
To apply MARL techniques, we rely on the Decentralized Par-
tially Observable Markov Decision Process (Dec-POMDP) [19]. Dec-
POMDPs naturally model decentralized multi-agent coordination
under partial observability, making them well suited for integrating
organizational constraints. Unlike Partially Observable Stochastic
Games (POSG), the Dec-POMDP allows for a common reward func-
tion for agents, which promotes collaboration [6].

A Dec-POMDP 𝑑 ∈ 𝐷 (where 𝐷 is the set of Dec-POMDPs)
is defined as a 7-tuple 𝑑 = ⟨𝑆, {𝐴𝑖 },𝑇 , 𝑅, {Ω𝑖 },𝑂,𝛾⟩, where 𝑆 =

{𝑠1, . . . , 𝑠 |𝑆 | } is the set of possible states; 𝐴𝑖 = {𝑎𝑖1, . . . , 𝑎
𝑖
|𝐴𝑖 | } is the

set of possible actions for agent 𝑖; 𝑇 represents the set of transition
probabilities, with𝑇 (𝑠, 𝑎, 𝑠′) = IP(𝑠′ |𝑠, 𝑎) as the probability of transi-
tioning from state 𝑠 to state 𝑠′ following action 𝑎; 𝑅 : 𝑆 ×𝐴×𝑆 → R
is the reward function, assigning a reward based on the initial state,
the action taken, and the resulting state; Ω𝑖 = {𝑜𝑖1, . . . , 𝑜

𝑖
|Ω𝑖 | } is

the set of possible observations for agent 𝑖; 𝑂 represents the set
of observation probabilities, where 𝑂 (𝑠′, 𝑎, 𝑜) = IP(𝑜 |𝑠′, 𝑎) is the
probability of obtaining observation 𝑜 after performing action 𝑎

and reaching state 𝑠′; and 𝛾 ∈ [0, 1] is the discount factor
The following formalism is used with MOISE+MARL to solve the

Dec-POMDP [3, 6]:A represents the set of 𝑛 agents; Π denotes the
set of policies, where a policy 𝜋 ∈ Π, 𝜋 : Ω → 𝐴 deterministically
maps an observation to an action, representing the agent’s internal
strategy; Π 𝑗𝑜𝑖𝑛𝑡 represents the set of joint policies, with a joint
policy 𝜋 𝑗𝑜𝑖𝑛𝑡 ∈ Π 𝑗𝑜𝑖𝑛𝑡 , 𝜋 𝑗𝑜𝑖𝑛𝑡 : Ω𝑛 → 𝐴𝑛 = Π𝑛 , which selects
an action for each agent based on their respective observations,
acting as a collection of policies used by agents within a team; 𝐻
is the set of histories, where a history (or trajectory) over 𝑧 ∈ N
steps (typically the maximum number of steps in an episode) is
represented as the 𝑧-tuple ℎ = ⟨⟨𝜔𝑘 , 𝑎𝑘 ⟩|𝑘 ≤ 𝑧, 𝜔 ∈ Ω, 𝑎 ∈ 𝐴⟩,
capturing successive observations and actions; 𝐻 𝑗𝑜𝑖𝑛𝑡 stands for
the set of joint histories, with a joint historyℎ 𝑗𝑜𝑖𝑛𝑡 ∈ 𝐻 𝑗𝑜𝑖𝑛𝑡 over 𝑧
steps defined as the set of agent histories: ℎ 𝑗𝑜𝑖𝑛𝑡 = {ℎ1, ℎ2, . . . , ℎ𝑛};
and finally, 𝑉𝑗𝑜𝑖𝑛𝑡 (𝜋 𝑗𝑜𝑖𝑛𝑡 ) : Π 𝑗𝑜𝑖𝑛𝑡 → R denotes the expected
cumulative reward over a finite horizon (assuming 𝛾 < 1 or if the
number of steps in an episode is finite), where 𝜋 𝑗𝑜𝑖𝑛𝑡 represents

the joint policy for team 𝑖 , with 𝜋 𝑗𝑜𝑖𝑛𝑡,−𝑖 being the joint policies of
other teams, considered as fixed.

3.2 The M𝑂𝐼𝑆𝐸+ organizational model
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Figure 1: A synthetic view of the M𝑂𝐼𝑆𝐸+ model

As illustrated in Figure 1, M𝑂𝐼𝑆𝐸+ comprises three types of
organizational specifications:

Structural Specifications (SS) define how agents are struc-
tured, expressed as SS = ⟨R,IR,G⟩. R𝑠𝑠 is the set of roles (𝜌 ∈ R)
with an inheritance relation IR where 𝜌1 ⊏ 𝜌2 if 𝜌1 inherits from
𝜌2.GR includes groups ⟨R,SG,L𝑖𝑛𝑡𝑟𝑎,L𝑖𝑛𝑡𝑒𝑟 , C𝑖𝑛𝑡𝑟𝑎, C𝑖𝑛𝑡𝑒𝑟 , 𝑛𝑝, 𝑛𝑔⟩.
Links (L) define connections between roles: acquaintance, commu-
nication, or authority. Compatibilities C denote roles that agents
can play together. Intra- and inter-group links and compatibilities
are shown by L𝑖𝑛𝑡𝑟𝑎 , L𝑖𝑛𝑡𝑒𝑟 , C𝑖𝑛𝑡𝑟𝑎 , and C𝑖𝑛𝑡𝑒𝑟 , with 𝑛𝑝 and 𝑛𝑔

defining role and subgroup counts.

Functional Specifications (FS) describe the agents’ goals, rep-
resented as FS = ⟨SCH ,PO⟩. The social scheme SCH includes
global goals G, missions M, and plans P that organize goals in
a tree structure. Plans link goals with an operator (𝑜𝑝) indicating
sequence, choice, or parallel completion. Missions map to goal sets
(𝑚𝑜), and agent counts per mission are specified by 𝑛𝑚. Preferences
PO indicate which missions agents prefer, denoted as𝑚1 ≺𝑚2.

Deontic Specifications (DS) indicate the relationship between
roles goals, given by DS = ⟨OBL,PER⟩. Time constraints TC
set periods for permissions or obligations (𝐴𝑛𝑦 for any time). Obli-
gations (OBL) require agents in role 𝜌𝑎 to undertake mission𝑚
at times 𝑡𝑐 , while permissions (PER) allow it. The 𝑟𝑑𝑠 function
maps roles to their deontic specifications as ⟨𝑡𝑐,𝑦,𝑚⟩ where 𝑦 dis-
tinguishes permission (0) from obligation (1).

Organizational specifications applied to agents are roles and goals
(as missions) through permissions or obligations. Indeed, the other
structural specifications such as compatibilities or links are inherent
to roles. Similarly, we consider that the goals, the missions, and their
mapping (𝑚𝑜) are enough to also link all of the other functional
specifications such as plans, cardinalities, or preference orders.
Consequently, we consider it is sufficient to take into account roles,
missions (goal and mapping) and permissions/obligations when
linking M𝑂𝐼𝑆𝐸+ with Dec-POMDP.
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Definition 1 Sate-Value function adapted to constraint guides in AEC mode:

𝑉 𝜋 𝑗

(𝑠𝑡 ) =
∑︁

𝑎𝑡 ∈𝐴 if 𝑟𝑛 ( )<𝑐ℎ𝑡 ,
𝑎𝑡 ∈𝐴𝑡 else

𝜋𝑖 (𝑎𝑡 |𝜔𝑡 )
∑︁

𝑠𝑡+1∈𝑆
𝑇 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) [𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) +

∑︁
𝑚∈M𝑖

𝑣𝑚 (𝑡)𝑔𝑟𝑔𝑚 (ℎ𝑡+1)
1 − 𝑝 + 𝜖

+ (1 − 𝑐ℎ𝑡 ) × 𝑟𝑟𝑔(𝜔𝑡 , 𝑎𝑡+1) +𝑉 𝜋
𝑗

𝑖+1 𝑚𝑜𝑑 𝑛 (𝑠𝑡+1)]

With 𝑟𝑎𝑔(ℎ𝑡 , 𝜔𝑡 ) = 𝐴𝑡×R, ⟨𝑎𝑡 , 𝑐ℎ𝑡 ⟩ ∈ 𝐴𝑡×R ; and 𝑟𝑛 : ∅ → [0, 1[, a uniform random function
With 𝜔𝑡 = 𝑂 (𝜔𝑡 |𝑠𝑡 , 𝑎𝑡 ) ; ℎ𝑡 = {ℎ0 = ⟨⟩, ℎ𝑡+1 = ⟨ℎ𝑡 , ⟨𝜔𝑡+1, 𝑎𝑡+1⟩⟩} ; 𝑔𝑟𝑔𝑚 (ℎ) =

∑︁
(𝑔𝑟𝑔𝑖 ,𝑤𝑖 ) ∈𝑚𝑜 (𝑚)

𝑤𝑖 × 𝑔𝑟𝑔𝑖 (ℎ) ; 𝜖 ∈ R>0 ;
𝑣𝑚 (𝑡) = {1 if 𝑡 ∈ 𝑡𝑐 ; else 0} ; and M𝑖 = {𝑚 𝑗 |⟨𝑎𝑟 (𝑖),𝑚 𝑗 , 𝑡𝑐 , 𝑝⟩ ∈ M}
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Figure 2: A minimal view of the MOISE+MARL framework:
Users first defineM𝑂𝐼𝑆𝐸+ specifications, which include roles
(R) andmissions (M), both associated through 𝑟𝑑𝑠. They then
create MOISE+MARL specifications by first defining Con-
straint guides such as 𝑟𝑎𝑔 and 𝑟𝑟𝑔 to specify role logic, and
𝑔𝑟𝑔 for goal logic. Next, Linkers are used to connect agents
with roles through 𝑎𝑟 and to link the logic of the constraint
guides to the defined M𝑂𝐼𝑆𝐸+ specifications. Once this is set
up, roles can be assigned to agents, and theMARL framework
updates accordingly during training.

3.3 Linking M𝑂𝐼𝑆𝐸+ with MARL
We identified theAGR [8] (Agent Group Role) and theM𝑂𝐼𝑆𝐸+ [14]
organizational models. Unlike AGRwhich is an informal framework
introducing roles according to groups,M𝑂𝐼𝑆𝐸+ provides a more
detailed and flexible description of the structures and functions of
a MAS, easing a formal description of agents’ policies in MARL.

The Constraint Guides are three new relations introduced to
describe the logic of the roles and goals of M𝑂𝐼𝑆𝐸+ in the Dec-
POMDP formalism: i)RoleActionGuide 𝑟𝑎𝑔 : 𝐻×Ω → P(𝐴×R),
the relation that models a role as a set of rules which, for each pair
consisting of a history ℎ ∈ 𝐻 and an observation received by the
agent𝜔 ∈ Ω, associates expected actions𝐴 ∈ P(𝐴) each associated
with a constraint hardness 𝑐ℎ ∈ [0, 1] (𝑐ℎ = 1 by default). By restrict-
ing the choice of the next action among those authorized, the agent
is forced to adhere to the expected behavior of the role; ii) Role
Reward Guide 𝑟𝑟𝑔 : 𝐻 ×Ω×𝐴 → R = {𝑟𝑚 if 𝑎 ∉ 𝐴𝜔 , 𝑟𝑎𝑔(ℎ,𝜔)
= 𝐴𝜔 ×R, ℎ ∈ 𝐻 ; else 0}, the relation that models a role by adding
a penalty 𝑟𝑚 to the global reward if the last action chosen by the

agent 𝑎 ∈ 𝐴 is not authorized. This is intended to encourage the
agent to adhere to the expected behavior of a role; iii) Goal Re-
ward Guide 𝑔𝑟𝑔 : 𝐻 → R, the relation that models a goal as a
soft constraint by adding a bonus 𝑟𝑏 ∈ R to the global reward if
the agent’s history ℎ ∈ 𝐻 contains a characteristic sub-sequence
ℎ𝑔 ∈ 𝐻𝑔 of the goal, encouraging the agent to reach it.

Finally, we introduce the Linkers to link the M𝑂𝐼𝑆𝐸+ organiza-
tional specifications with constraint guides and agents: i) Agent
to Role 𝑎𝑟 : A → R, the bijective relation linking an agent to
a role;; ii) Role to Constraint Guide 𝑟𝑐𝑔 : R → 𝑟𝑎𝑔 ∪ 𝑟𝑟𝑔,
the relation associating each M𝑂𝐼𝑆𝐸+ role to a 𝑟𝑎𝑔 or 𝑟𝑟𝑔 relation,
forcing/encouraging the agent to follow the expected actions for
the role 𝜌 ∈ R;; iii)Goal to Constraint Guide 𝑔𝑐𝑔 : G → 𝑔𝑟𝑔,
the relation linking goals to 𝑔𝑟𝑔 relations, representing goals as
rewards in MARL.

Resolving the MOISE+MARL problem involves finding a joint
policy 𝜋 𝑗 = {𝜋 𝑗

0 , 𝜋
𝑗

1 . . . 𝜋
𝑗
𝑛} that maximizes the state-value func-

tion 𝑉 𝜋 𝑗
(or reaches a minimum threshold), which represents the

expected cumulative reward starting from an initial state 𝑠 ∈ 𝑆

and following the joint policy 𝜋 𝑗 , applying successive joint actions
𝑎 𝑗 ∈ 𝐴𝑛 under additional constraint guides. The state-value is de-
scribed in the case where agents act sequentially and cyclically
(Agent Environment Cycle - AEC mode) in Definition 1, adapting
its definition for roles (in red) and missions (in blue), impacting
the action space and reward. Figure 2 illustrates the links between
M𝑂𝐼𝑆𝐸+ and Dec-POMDP via the MOISE+MARL framework.

At any time 𝑡 ∈ N (initially 𝑡 = 0), the agent 𝑖 = 𝑡 𝑚𝑜𝑑 𝑛 is
constrained to a role 𝜌𝑖 = 𝑎𝑟 (𝑖). For each temporally valid deontic
specification 𝑑𝑖 = 𝑟𝑑𝑠 (𝜌𝑖 ) = ⟨𝑡𝑐𝑖 , 𝑦𝑖 ,𝑚𝑖 ⟩, the agent is permitted
(if 𝑦𝑖 = 0) or obligated (if 𝑦𝑖 = 1) to commit in mission 𝑚𝑖 ∈
M,G𝑚𝑖

= 𝑚𝑜 (𝑚𝑖 ), and 𝑛 ∈ N the number of agents. First, based
on the received observation 𝜔𝑡 , the agent must choose an action
either: within the expected actions of the role 𝐴𝑡 if a random value
is below the role constraint hardness 𝑐ℎ𝑡 ; or within the set of all
actions 𝐴 otherwise. If 𝑐ℎ𝑡 = 1, the role is strongly constrained
for the agent and weakly otherwise. Then, the action is applied to
the current state 𝑠𝑡 to transition to the next state 𝑠𝑡+1, generate the
next observation 𝜔𝑡+1, and yield a reward. The reward is the sum
of the global reward with penalties and bonuses obtained from the
organizational specifications: i) the sum of the bonuses for goals
associated with each temporally valid mission (via Goal Reward
Guides), weighted by the associated value ( 1

1−𝑝+𝜖 ); ii) the penalty
associated with the role (via "Role Reward Guides") weighted by the
role constraint hardness. Finally, the cumulative reward calculation
continues in the next state 𝑠𝑡+1 ∈ 𝑆 with the next agent (𝑖+1)𝑚𝑜𝑑 𝑛.
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3.4 Easying constraint guides implementation
Since roles, goals, and missions as simple labels, their definition is
assumed. However, implementing a 𝑟𝑎𝑔, 𝑟𝑟𝑔, or𝑔𝑟𝑔 relation requires
defining a potentially large number of histories, possibly redundant.
Therefore, an extensional definition of a set of histories can be
tedious. Moreover, the logic of all constraint guides takes the agent
trajectory as input to determine whether the trajectory belongs to
a predefined history set. For example, a 𝑟𝑎𝑔 relation can be seen as
determining the next expected actions depending on whether the
trajectory belongs to a given set and the new observation received.

A first approach is to let users develop their constraint guides in
an intensional way with custom logic (such as a script code) in order
to analyse history and compute the output in a manageable way. In
that case, the relation𝑏𝑔 : 𝐻 → {0, 1} formalizes how users propose
to determine whether a history belongs to a predefined set 𝐻𝑔 .
To help implement this relation, we propose a Trajectory-based
Pattern (TP) inspired by Natural Language Processing, denoted
𝑝 ∈ 𝑃 , as a way to define a set of histories in an intensional way.

A TP implies that any considered real observation or action is
known and mapped to a label 𝑙 ∈ 𝐿 (through 𝑙 : Ω ∪ 𝐴 → 𝐿) to
be conveniently managed. A TP 𝑝 ∈ 𝑃 is defined as follows: 𝑝 is:
either a "leaf sequence" denoted as a couple of history-cardinality
𝑠𝑙 = ⟨ℎ, {𝑐𝑚𝑖𝑛, 𝑐𝑚𝑎𝑥}⟩ (where ℎ ∈ 𝐻, 𝑐𝑚𝑖𝑛 ∈ N, 𝑐𝑚𝑎𝑥 ∈ N ∪ ” ∗ ”);
or a "node sequence" denoted as a couple of a tuple of concrete
sequences and cardinality 𝑠𝑛 = ⟨⟨𝑠𝑙1 , 𝑠𝑙1 . . . ⟩, {𝑐𝑚𝑖𝑛, 𝑐𝑚𝑎𝑥}⟩. For ex-
ample, the pattern 𝑝 = ”[𝑜1, 𝑎1, [𝑜2, 𝑎2]⟨0, 2⟩]⟨1, ∗⟩” can be formal-
ized as the node sequence ⟨⟨⟨𝑜1, 𝑎1⟩, ⟨1, 1⟩⟩, ⟨⟨𝑜2, 𝑎2⟩, ⟨0, 2⟩⟩⟩⟨1, ”∗”⟩,
indicating the set of histories 𝐻𝑝 containing at least once the
sub-sequence consisting of a first pair ⟨𝑜1, 𝑎1⟩ and then at most
two repetitions of the pair ⟨𝑜2, 𝑎2⟩. The relation 𝑏𝑔 then becomes
𝑏𝑔 (ℎ) = 𝑚(𝑝𝑔, ℎ), with𝑚 : 𝑃 × 𝐻 → {0, 1} indicating if a history
ℎ ∈ 𝐻 matches a history pattern 𝑝 ∈ 𝑃 describing a history set 𝐻𝑔 .

4 The TEMMmethod
As presented in Section 2, we were unable to identify any avail-
able method that fully meets our requirements for determining
implicit roles, implicit goals, or organizational fit. Therefore, we
propose the Trajectory-based Evaluation in MOISE+MARL
(TEMM) method for automatic inference and evaluation of roles
and missions. TEMM uses unsupervised learning techniques to
generalize roles and missions from the set of collected trajectories
over multiple test episodes. By measuring the gap between inferred
implicit organizational specifications and actual behaviors, we can
also quantify the organizational fit as to howwell a policy conforms
to the inferred implicit organizational specifications.

TEMM is based on proposed definitions for each M𝑂𝐼𝑆𝐸+ orga-
nizational specification regarding joint-histories or other organi-
zational specifications, using specific unsupervised lea-rning tech-
niques to infer them progressively. Here, we provide an informal
description of the method 1.

1) Inferring roles and their inheritance We introduce that a
role 𝜌 is defined as a policy whose associated agents’ histories all
contain a Common Longest Sequence (CLS). We introduce that a
1 Additional details, developed code, datasets containing all the hyperparameters and
details of the organizational specifications are available at https://github.com/julien6/
MOISE-MARL

role 𝜌2 inherits from 𝜌1 if the CLS of histories associated with 𝜌2 is
also contained within that of 𝜌1. Based on these definitions, TEMM
uses a "hierarchical clustering" technique to find the CLSs among
agent histories. The results can be represented as a dendrogram,
allowing inferring implicit roles and inheritance relationships, their
respective relationshipswith histories.Wemeasure the gap between
current agents’ sequence and inferred implicit roles’ sequences, as
the "structural organizational fit".

2) Inferring goals, plans, and missions We introduce that a
goal is a set of common joint-observation reached by following the
histories of successful agents. For each joint-history, TEMM calcu-
lates the joint-observation transition graph, which is then merged
into a general graph. By measuring the distance between two vec-
torized joint-observations with K-means, we can find trajectory
clusters that some agents may follow. Then, we sample some sets of
joint-observations for each trajectory as implicit goals. For example,
we can select the narrowest set of joint-observations where agents
seem to collectively transition at a given time to reach their goal.
Otherwise, balanced sampling on low-variance trajectories could
be performed. Knowing which trajectory a goal belongs to, TEMM
infers plans based solely on choices and sequences.

We introduce that a mission is the set of goals that one or more
agents are accomplishing. Knowing the shared goals achieved by the
agents, TEMM determines representative goal sets as missions. By
measuring the distance between inferred implicit goals which joint-
observations with current agents’ joint-observation, we compute
the "structural organizational fit".

3) Inferring obligations and permissions We introduce that
an obligation is when an agent playing the role 𝜌 fulfills the goals
of a mission and no others during certain time constraints, while
permission is when the agent playing the role 𝜌 may fulfill other
goals during specific time constraints. TEMM determines which
agents are associated with which mission and whether they are
restricted to certain missions, making them obligations, or if they
have permission. Having already computed structural organiza-
tional fit and functional organizational fit, the organizational fit is
the sum of these two values.

Overall, the K-mean and hierarchical clustering techniques re-
quire manual configuration to obtain roles and goals, avoiding
introducing perturbations that could lead to determining false or-
ganizational specifications. Despite this, the method recommends
thoroughly understanding the obtained roles and goals to manually
identify and remove any remaining perturbations.

5 Experimental framework
This section details the experimental framework used to evaluate
the MOISE+MARL framework.

5.1 Implementing MOISE+MARL
We have developed an implementation of the MOISE+MARL frame-
work called “MMA” 1 (MOISE+MARL API), which is a Python API
that integrates all theoretical sets and relations to minimize user
interactions. MMA uses an Object-oriented approach, structuring
theM𝑂𝐼𝑆𝐸+ model as nested data classes, with the "Moise" class
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at the root, enabling users to define organizational specifications,
such as roles, goals, and permissions.

To support Dec-POMDP environments, we utilized the Petting-
Zoo library [26], which provides a standard API for multi-agent
systems and ensures interoperability across various environments,
similar to the Gymnasium framework [16]. MMA incorporates a
dictionary for observation/action label mapping (𝑙), which users
can customize, and it also supports Trajectory Patterns (TPs) to
facilitate pattern definition and matching.

Each type of constraint guide, like 𝑟𝑎𝑔, 𝑟𝑟𝑔, and 𝑔𝑟𝑔, is imple-
mented as a separate class. Users can define these guides with
custom functions or JSON rules; for example, 𝑟𝑎𝑔 can be instan-
tiated by associating a ⟨TP, last observation⟩ pair with expected
actions, while 𝑔𝑟𝑔 can apply bonuses based on specific TPs. The
global "MMA" class integrates these guides with user-defined rela-
tions, such as linking an agent to a role (𝑎𝑟 ) or associating a role
with 𝑟𝑟𝑔 and 𝑟𝑎𝑔, incorporating the organizational specifications
defined in the M𝑂𝐼𝑆𝐸+ structure.

Once set up, the MMA object is used to encapsulate the envi-
ronment with a PettingZoo wrapper. This wrapper applies action
masks and modifies rewards at each step, ensuring that agents ad-
here to the organizational specifications throughout training. MMA
also integrates MARLlib [13], which provides access to state-of-
the-art MARL algorithms, enabling training to be run on a high-
performance computing cluster.

After training, the TEMM method is employed, using manually
optimized hyperparameters to infer implicit roles and goals through
hierarchical clustering and K-means. This analysis generates visual
outputs, such as dendrograms for roles and joint-observation tran-
sition graphs for goals. The resulting implicit roles and goals can
be exported as JSON trajectories, providing a structured view of
the inferred organizational behaviors.

5.2 Environments used
We test MOISE+MARL in four different MARL environments, each
modeled as a Dec-POMDP simulation scenario. These environ-
ments were selected for their diversity in terms of collaboration
and resource management. Here is a description of each:

• Predator-Prey: A classic environment where several preda-
tors must cooperate to capture prey. This environment tests
the agents’ ability to coordinate their actions to achieve a
collective goal[17]

• Overcooked-AI: A team cooking gamewhere several agents
must collaborate to prepare and serve dishes in increas-
ingly complex kitchens[7]. Agents must manage tasks such
as chopping, cooking, assembling, and serving ingredients
while optimizing their movements and avoiding obstacles.
This environment is ideal for testing coordination and task al-
location in dynamic, highly interdependent scenarios, where
clear roles (such as "chef," "assistant," "server") can be defined
via organizational specifications

• WarehouseManagement: A proposed environment, where
agents must manage a warehouse by coordinating resource
deliveries to demand points. Roles and missions here influ-
ence agent specialization in specific tasks (transportation of
products, inventory management)

• Cyber-Defense Simulation: A complex environment si-
mulating network defense against cyberattacks. Agents must
identify and counter threats while adhering to strict security
rules, thus testing the safety of trained agents[25].

These environments are encapsulable in the PettingZoo API,
enabling seamless integration with our MOISE+MARL implementa-
tion and facilitating the application of organizational specifications.

5.3 MARL algorithms used
Weevaluated our frameworkwith severalMARL algorithms : i)MAD-
DPG (Multi-Agent Deep Deterministic Policy Gradient) [17]:
A centralized learning, decentralized execution algorithm, allowing
each agent to have a deterministic policy while using global infor-
mation during training; ii) MAPPO (Multi-Agent Proximal
Policy Optimization) [30]: An adapted version of PPO for MAS,
optimized for stable joint policy convergence in complex scenar-
ios; iii) Q-Mix [21]: A Q-value-based algorithm that learns to
combine individual agents’ Q-values into a joint value to optimize
cooperation; iv) COMA (Counterfactual Multi-Agent) [9] An
actor-critic algorithm able to estimate the impact of an individual
agent’s actions on the team’s overall reward.

5.4 Organizational specifications
For each environment, we defined a set of organizational speci-
fications. These specifications include roles, missions, as well as
permissions and obligations. Here, we give an informal description
of these 1: i) Predator-Prey: Predator and prey roles are defined,
with each predator having specific goals such as "capture the prey"
or "block escape routes."; ii) Overcooked-AI: Agents adopt three
main roles: chef, assistant, and server. The Chef is responsible for
cooking and assembling dishes, the Assistant handles ingredient
chopping and supply, and the Server is in charge of delivering dishes
to customers. Missions primarily involve preparing and serving a
certain number of dishes within a given time.; iii)Warehouse
Management: Agents adopt roles such as "transporter" and "inven-
tory manager," with missions related to managing logistics flows
and optimized delivery.; iv)Cyber-Defense Simulation: Agents
have network defender roles, each with obligations such as intru-
sion detection or protecting specific drone swarm ad hoc networks.

5.5 Computing resources and hyperparameters
All experiments were conducted on an academic high-performance
computing cluster, utilizing various configurations of GPU nodes.
Specifically, we employed nodes equipped with NVIDIA A100 and
V100 GPUs, and AMD MI210 GPUs. Each algorithm-environment
combination was executed on 5 parallel instances to ensure robust
and consistent results. Hyperparameters 1 for each algorithm, in-
cluding learning rates, discount factors, and exploration rates, were
either retrieved from MARLlib data banks or optimized for each
environment through a grid search using the Optuna tool [2].

5.6 Evaluation metrics and protocol
Tomeasure the policy effectiveness and the impact of organizational
specifications, we defined the following metrics: i) Cumulative
Reward: Measures policy effectiveness in achieving environment
goals; ii) Reward Standard Deviation: Reflects the stability
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of learned policies over episodes; iii) Convergence Rate: In-
dicates the speed at which policies achieve stable performance;
iv) Constraint Violation Rate: Assesses policy adherence to orga-
nizational constraints, critical for safety; v) Consistency Score:
Evaluates alignment between trained behaviors and organizational
specifications; vi) Robustness Score: Measures agents’ ability
to maintain performance under a series of challenging scenarios;
vii) Organizational Fit Level: Quantifies the organizational fit.

Our protocol compares the Reference Baseline (RB) without organi-
zational constraints and the Organizationally Constrained Baseline
(OB) using MOISE+MARL.

We use the MMA software to establish the RB with no orga-
nizational specifications. For each environment, we train agents
with each algorithm until rewards converge or a maximum episode
limit is reached. We record metrics and select the algorithm that
achieves the highest Cumulative Reward as the RB (control scenario
without constraints). For the OB, we reset environments and agents,
applying pre-defined organizational specifications using MMA so
that each agent is assigned a role. We train these agents with the
RB’s highest-performing algorithm, again until convergence or the
episode limit. After training, we compute all metrics, providing a
scenario with organizational constraints as the OB.

By comparing the RB and OB, we can validate the impact of
MOISE+MARL on organizational fit. First, we check if the agents’
behaviors align with the specified roles in the OB.We analyze manu-
ally or rely on reliable metrics like Reward Standard Deviation, Con-
vergence Rate, and Robustness Score. If agents behave in ways that
align with their roles, then we favor the idea that MOISE+MARL
has influenced organizational fit. Therefore, we should observe
differences in the Organizational Fit Level metric between RB and
OB. We can also push forward a correlation between fully/freely
constraining roles and higher/lower Organizational Fit Level. If
all of these observations hold, then the Organizational Fit Level
may quantify the organizational fit, and the Consistency Score met-
ric may be used to validate the effectiveness of MOISE+MARL in
controlling organizational fit when roles are applied.

Finally, we also check the relevance of the M𝑂𝐼𝑆𝐸+ by com-
paring MOISE+MARL with its AGR equivalent called AGR+MARL
which only considers roles and does not explicitly include goals.

6 Results
This section presents and analyzes the experimental results from
applying MOISE+MARL across the environments.

6.1 Quantitative organizational fit and
consistency

Table 1 summarizes the performance metrics for each environment
and the most efficient algorithm under both the RB and OB. Across
all environments, the organizational fit metric is significantly higher
under the OB, confirming that MOISE+MARL effectively aligns
agent behaviors with organizational specifications.

For example, in the Predator-Prey environment with MAD-
DPG, agents in the OB configuration achieved an organizational
fit level of 0.87, which represents a 44% increase compared to the
RB (0.43). Similarly, in the Overcooked-AI environment, MAPPO

under the OB reached an organizational fit of 0.91 (an increase
of 89% over the RB’s 0.48). These improvements are mirrored in
theWarehouse Management environment with Q-Mix, where
the organizational fit rose from 0.50 in the RB to 0.90 in the OB,
suggesting a MOISE+MARL’s consistent effectiveness.

In general, agents constrained with organizational specifications
show a lower reward deviation and a higher convergence rate that
suggests an impact on their behavior. Wemanually observed agents’
interactions in visualizable environments such as Predator-Prey
and verified that trained agents’ behaviors do align with the ex-
pected behavior of a structural and functional implicit organization.
Indeed, the significant variation depending on the application of
organizational specifications on agents, and the manually verified
alignment of agents with roles suggests that organisational fit level
correlates with the organizational fit.

Considering organizational fit level reliable across all environ-
ments, the consistency score also shows important values with a
minimal value of 0.76 for the Cyber-Defense environment. This
suggests that despite a noisy environment that introduces some
disturbance in agents’ behavior, the inferred organizational specifi-
cations are still close to applied ones.

6.2 Performance and stability across algorithms
The results indicate that policy-based and actor-critic algorithms
likeMADDPG andMAPPO benefit substantially from the MOISE+
MARL framework, particularly in terms of consistency and stability.
For example, MAPPO in the Overcooked-AI environment saw a
reward standard deviation reduction from 15.6 (RB) to 10.4 (OB),
reflecting a more stable policy with less behavioral fluctuation.
MADDPG in Predator-Prey also showed a similar pattern, with
a standard deviation drop from 21.5 in the RB to 15.2 in the OB,
indicating increased reliability.

In contrast, value-based algorithms like Q-Mix maintained high
performance in cumulative reward but displayed greater variability
in consistency. For instance, in Warehouse Management, Q-Mix
achieved a reward standard deviation of 13.8 in the OB, a notable
improvement over 18.9 in the RB but still higher than the stability
observed in policy-based algorithms. This suggests that while Q-
Mix is effective for achieving task goals, it may require further
tuning for roles with MOISE+MARL to enhance consistency.

6.3 Impact of organizational constraints on
policy convergence, robustness and
violation rates

Applying organizational constraints resulted in faster convergence
rates across all environments. In the Cyber-Defense environment,
COMA with MOISE+MARL converged at a rate of 0.86, compared
to 0.70 in the RB. Similar trends were observed in the Warehouse
Management environment with Q-Mix, which showed an im-
provement from 0.74 in the RB to 0.88 in the OB. This expedited
convergence can be attributed to the structured guidance of roles
and missions, which narrows the policy search space.

In addition to the presented results where constraint hardness
is set to 1, we observed that constraint violation rates were consis-
tently higher when organizational constraints were defined with a
lower constraint hardness. In Overcooked-AI,MAPPO recorded
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Table 1: Detailed results for each environment and favored algorithm under both RB and OB.

Env. Alg. Org.
Spec.

Cum.
Rew.

STD Conv.
Rate

Viol. Rate Cons.
Score

Rob.
Score

Org. Fit
Lvl

Predator-Prey MADDPG 200.1 21.5 0.65 12.3% - 0.65 0.43
Predator-Prey MADDPG Yes 245.8 15.2 0.85 .0% 0.81 0.83 0.87
Overcooked-AI MAPPO 348.2 15.6 0.75 7.1% - 0.71 0.48
Overcooked-AI MAPPO Yes 391.2 10.4 0.92 .0% 0.89 0.89 0.91
Warehouse Management Q-Mix 257.4 18.9 0.74 7.8% - 0.68 0.50
Warehouse Management Q-Mix Yes 307.1 13.8 0.88 .0% 0.88 0.86 0.90
Cyber-Defense COMA 162.4 17.3 0.70 12.2% - 0.67 0.45
Cyber-Defense COMA Yes 188.9 11.2 0.86 .0% 0.76 0.80 0.83

a null violation rate with a constraint hardness of 1, compared
to 7.1% with a constraint hardness of 0. Similarly, inWarehouse
Management, Q-Mix reduced the violation rate from 7.8% to zero
as constraint hardness increased. This further supports the frame-
work’s effectiveness in enhancing adherence to desired behaviors.

Additionally, we observed a consistent improvement in robust-
ness when organizational specifications were applied to agents. For
instance,MADDPG inPredator-Prey andMAPPO inOvercooked-
AI achieved high consistency scores of 0.81 and 0.89, respectively,
indicating that agents closely followed the inferred roles. Robust-
ness also improved, with MAPPO in Overcooked-AI achieving a
robustness score of 0.89, up from 0.71 in the RB, underscoring the
framework’s impact on agents’ resilience to perturbations.

However, one can point out a potential bias: organizational spec-
ifications were specifically designed to encompass all observations,
avoiding non-handled new situations.

6.4 Comparison between MOISE+MARL and
AGR+MARL

Table 2: Performance comparison between MOISE+MARL
and AGR+MARL.

Framework Env. Conv.
Rate

Robustness
Score

Org.
Fit

Cumulative
Reward

MOISE+MARL PP 0.85 0.83 0.87 245.8
AGR+MARL PP 0.75 0.69 0.56 208.4
MOISE+MARL OA 0.92 0.89 0.91 391.2
AGR+MARL OA 0.82 0.75 0.58 348.9
MOISE+MARL WM 0.88 0.86 0.90 307.1
AGR+MARL WM 0.76 0.72 0.61 278.6

Table 2 highlights the impact of intermediary goals within MOISE+
MARL. InOvercooked-AI,MAPPO underMOISE+MARL achieved
a cumulative reward of 391.2, with an organizational fit of 0.91—33%
higher than AGR+MARL’s 0.58. Similarly, in Warehouse Manage-
ment, Q-Mix under MOISE+MARL attained a cumulative reward
of 307.1, an increase of nearly 10% over AGR+MARL’s 278.6, with a
higher robustness score (0.86 vs. 0.72).

Overall, these results underscore the importance of intermediary
goals in fostering more stable, goal-oriented behaviors. By facilitat-
ing a clearer path to the global goal, MOISE+MARL consistently

outperforms AGR+MARL in achieving higher rewards, robustness,
and organizational fit across Predator-Prey (PP), Warehouse Man-
agement (WM), and Overcooked-AI (OA). Finally, we analyzed the
impact of increasing the number of organizational constraints on
training time. Preliminary results suggest a nearly linear growth in
training duration as the number of constraints increases 1.

7 Conclusion and future works
The MOISE+MARL framework introduced in this paper aims to
enhance control and explainability in MARL by incorporating orga-
nizational models that define explicit roles and missions for agents.
Experimental results across several environments indicate that this
framework helps agents adhere to expected behaviors while facili-
tating better policy convergence by constraining the policy search
space. The results also show that agents trained with roles and
goals exhibit behaviors closely resembling those determined via
the framework, suggesting coherence between the application of
organizational specifications and their expected effects.

However, the framework’s reliance on predefined organizational
specifications means it may struggle to adapt in highly dynamic or
unstructured environments where agent roles and missions are less
defined or evolve over time. Moreover, the computational overhead
associated with enforcing organizational constraints and dynami-
callymodifying rewards and actionsmay pose scalability challenges.
Additionally, TEMM can be computationally intensive, which may
hinder its applicability in real-time scenarios.

We are currently pursuing three main directions:

• Developing adaptive mechanisms that allow roles and mis-
sions to evolve dynamically during training, enabling agents
to respond to changes in real-time

• Exploring automated methods, such as Large Language Mod-
els, for generating organizational specifications based on
observed agent behaviors to help users on defining these
specifications manually

• Improving the computational efficiency of TEMM or explor-
ing alternative evaluation methods for real-world applica-
tions with larger agent populations.

Acknowledgments
This work was supported by Thales Land Air Systems within the
framework of the Cyb’Air chair and the AICA IWG

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

1975



References
[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. 2017. Constrained

Policy Optimization. In Proceedings of the 34th International Conference onMachine
Learning. 22–31.

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. 2019. Optuna: A Next-generation Hyperparameter Optimization Frame-
work. arXiv:1907.10902 [cs.LG] https://arxiv.org/abs/1907.10902

[3] Stefano V. Albrecht and Jacob Y. Foerster. 2024. Survey on Recent Advances in Co-
operative Multi-Agent Reinforcement Learning. Journal of Artificial Intelligence
Research (2024). to appear.

[4] Mohammed Alshiekh, Roderick Bloem, Matthew Johnson, James Kapinski, Keith
Julian, and Mykel J Kochenderfer. 2018. Safe reinforcement learning via shielding.
Proceedings of the 32nd AAAI Conference on Artificial Intelligence (2018).

[5] Hamid R Berenji and David Vengerov. 2000. Learning, cooperation, and coordi-
nation in multi-agent systems. Inference Systems Corporation, Technical report
(2000).

[6] Aurélie Beynier and Alain Mouaddib. 2013. A Decentralized Approach for Rein-
forcement Learning in Cooperative Multi-agent Systems. In Proceedings of the
23rd International Joint Conference on Artificial Intelligence (IJCAI). 163–168.

[7] Micah Carroll, Rohin Shah, Mark Ho, Tom Griffiths, Pieter Abbeel, and Anca
Dragan. 2020. Overcooked-AI: A Benchmark for Multi-Agent Learning under
Partial Observability. Proceedings of the 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (2020), 2374–2380.

[8] Jacques Ferber, Olivier Gutknecht, and Fabien Michel. 2003. Agent/Group/Roles:
Simulating with Organizations. In ABS 2003 - 4th International Workshop on
Agent-Based Simulation, J.P. Muller (Ed.). Montpellier, France. https://hal-lirmm.
ccsd.cnrs.fr/lirmm-00269714

[9] Jakob Foerster et al. 2018. Counterfactual multi-agent policy gradients. Interna-
tional Conference on Machine Learning (ICML) (2018).

[10] Jakob Foerster, Yannis Assael, Nando de Freitas, and Shimon Whiteson. 2018.
Learning to Communicate with Deep Multi-Agent Reinforcement Learning. Ad-
vances in Neural Information Processing Systems 31 (2018), 2137–2145.

[11] Javier Garcia and Fernando Fernandez. 2015. A comprehensive survey on safe
reinforcement learning. Journal of Machine Learning Research 16, 1 (2015), 1437–
1480.

[12] Mohammad Ghavamzadeh and Sridhar Mahadevan. 2006. Hierarchical reinforce-
ment learning with cooperative agents. In Proceedings of the 23rd International
Conference on Machine Learning. 119–126.

[13] Qi Hu, Jun Chen, Jiajun Zhao, Zhenyu Xu, Xiaolin Liu, et al. 2021. MarlLib: A
comprehensive library for multi-agent reinforcement learning. arXiv preprint
arXiv:2106.05912 (2021).

[14] Hubner, Jomi F et. al. 2007. Developing organised multiagent systems using
the MOISE+ model: programming issues at the system and agent levels. Int.
Journal of Agent-Oriented Software Engineering (2007), 370. https://doi.org/10.
1504/ijaose.2007.016266

[15] A. Isakov, D. Peregorodiev, P. Brunko, and I. Tomilov. 2024. Cooperative-
Competitive Decision-Making in Resource Management: A Reinforcement Learn-
ing Perspective. In Advances in Machine Learning and Automated Learning.
Springer. https://doi.org/10.1007/978-3-031-77731-8_34

[16] Ariel Kwiatkowski, Mark Towers, Jordan Terry, John U. Balis, Gianluca De Cola,
Tristan Deleu, Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG,

Rodrigo Perez-Vicente, Andrea Pierré, Sander Schulhoff, Jun Jet Tai, Hannah Tan,
and Omar G. Younis. 2024. Gymnasium: A Standard Interface for Reinforcement
Learning Environments. arXiv:2407.17032 [cs.LG] https://arxiv.org/abs/2407.
17032

[17] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.
2017. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environ-
ments. Advances in Neural Information Processing Systems 30 (2017).

[18] K. Matsuyama, K. Su, J. Wang, D. Ye, and Z. Lu. 2025. CORD: Generalizable
Cooperation via Role Diversity. arXiv preprint (2025). arXiv:2501.02221 https:
//arxiv.org/abs/2501.02221

[19] Frans A. Oliehoek and Christopher Amato. 2016. A Concise Introduction to
Decentralized POMDPs. Springer. https://link.springer.com/book/10.1007/978-3-
319-28929-8

[20] Y. Qi, J. Cao, and B. Wu. 2024. Bidirectional Q-learning for recycling path
planning of used appliances under strong and weak constraints. Communications
in Transportation Research (2024). https://www.sciencedirect.com/science/article/
pii/S2772424724000362

[21] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. 2018. QMIX: Monotonic value function fac-
torisation for deep multi-agent reinforcement learning. Proceedings of the 35th
International Conference on Machine Learning (2018), 4295–4304.

[22] Alex Ray, Joshua Achiam, and Dario Amodei. 2019. Benchmarking Safe Explo-
ration in Deep Reinforcement Learning. In arXiv preprint arXiv:1910.01708.

[23] N. Sao Mai. 2024. The intrinsic motivation of reinforcement and imitation learning
for sequential tasks. Ph.D. Dissertation. HAL Archive. https://hal.science/tel-
04853270

[24] Jack Serrino, Max Kleiman-Weiner, et al. 2019. Finding Friend and Foe in Multi-
Agent Games. In Advances in Neural Information Processing Systems.

[25] Maxwell Standen, Martin Lucas, David Bowman, Toby J. Richer, Junae Kim, and
Damian Marriott. 2021. CybORG: A Gym for the Development of Autonomous
Cyber Agents. arXiv:2108.09118 [cs.CR]

[26] Justin K Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth
Hari, Eugene Sulivan, Ruben Glatt Perez, Lukas Santos, Cameron Horsch, Chris-
tian Dieffendahl, et al. 2020. PettingZoo: Gym for multi-agent reinforcement
learning. Proceedings of the NeurIPS 2020 Track on Datasets and Benchmarks
(2020), 21–23.

[27] W. Wen, W. Long, P. Zhai, and L. Zhang. 2024. Role Play: Learning Adap-
tive Role-Specific Strategies in Multi-Agent Interactions. arXiv preprint (2024).
arXiv:2411.01166 https://arxiv.org/abs/2411.01166

[28] Andrew Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. 2008. Learning
and transferring roles in multi-agent MDPs. In Proceedings of AAAI. AAAI.

[29] Z. Xie, S. Shen, Y. Wang, C. Qiao, and B. Tang. 2024. Roco: Role-Oriented Com-
munication for Efficient Multi-Agent Reinforcement Learning. SSRN Electronic
Journal (2024). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5060074

[30] Chengjie Yu, Hao Dong, Yiqun Zhao, and Shuxin Zheng. 2021. The Surprising
Effectiveness of PPO in Cooperative Multi-Agent Games. Advances in Neural
Information Processing Systems 34 (2021), 1091–1104.

[31] Sagir M Yusuf and Christopher Baber. 2020. Inferential Reasoning for Hetero-
geneous Multi-Agent Missions. International Journal of Electrical and Computer
Engineering (2020).

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

1976

https://arxiv.org/abs/1907.10902
https://arxiv.org/abs/1907.10902
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269714
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269714
https://doi.org/10.1504/ijaose.2007.016266
https://doi.org/10.1504/ijaose.2007.016266
https://doi.org/10.1007/978-3-031-77731-8_34
https://arxiv.org/abs/2407.17032
https://arxiv.org/abs/2407.17032
https://arxiv.org/abs/2407.17032
https://arxiv.org/abs/2501.02221
https://arxiv.org/abs/2501.02221
https://arxiv.org/abs/2501.02221
https://link.springer.com/book/10.1007/978-3-319-28929-8
https://link.springer.com/book/10.1007/978-3-319-28929-8
https://www.sciencedirect.com/science/article/pii/S2772424724000362
https://www.sciencedirect.com/science/article/pii/S2772424724000362
https://hal.science/tel-04853270
https://hal.science/tel-04853270
https://arxiv.org/abs/2108.09118
https://arxiv.org/abs/2411.01166
https://arxiv.org/abs/2411.01166
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5060074

	Abstract
	1 Introduction
	2 Related works
	2.1 Evaluating organizational fit
	2.2 Controlling organizational fit

	3 The MOISE+MARL framework
	3.1 Markov framework for MARL
	3.2 The MOISE+ organizational model
	3.3 Linking MOISE+ with MARL
	3.4 Easying constraint guides implementation

	4 The TEMM method
	5 Experimental framework
	5.1 Implementing MOISE+MARL
	5.2 Environments used
	5.3 MARL algorithms used
	5.4 Organizational specifications
	5.5 Computing resources and hyperparameters
	5.6 Evaluation metrics and protocol

	6 Results
	6.1 Quantitative organizational fit and consistency
	6.2 Performance and stability across algorithms
	6.3 Impact of organizational constraints on policy convergence, robustness and violation rates
	6.4 Comparison between MOISE+MARL and AGR+MARL

	7 Conclusion and future works
	Acknowledgments
	References



