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ABSTRACT
It has long been known that every individually rational matching is

obtainable by some Nash equilibrium — even those that make little

sense in practice. In the social choice and voting literature, Nash

refinements are commonly used to avoid these spurious equilibria.

In this paper, we examine the Gale-Shapley algorithm (deferred
acceptance) where agents behave strategically but are minimally

dishonest, a common refinement in the social choice and voting

literature. Under this condition we show that when men propose,

every equilibrium corresponds to the woman-optimal marriage,

thereby yielding a unique prediction for the outcome for the stable

matching problem.

KEYWORDS
Matching Market, Stable Matching, Gale-Shapley, Deferred Accep-

tance, Minimal Dishonesty, Partial Honesty

ACM Reference Format:
James P. Bailey and Craig A. Tovey. 2025. On the Gale-Shapley Algorithm

for Stable Matchings with a Partial Honesty Nash Refinement. In Proc. of the
24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Detroit, Michigan, USA, May 19 – 23, 2025, IFAAMAS, 8 pages.

1 INTRODUCTION
The stable matching problem has been applied to a variety of areas

including the Nobel Prize winning work by Roth and Shapley on

the theory of stable allocations and the practice of market design

including the design of the National Resident Matching Program

(NRMP) [25, 31] in the United States. Both Canada (CVaRMS) [12]

and Japan (JRMP) [22] make use of similar mechanisms. It has also

been used for assigning students to schools — both Turkish uni-

versities [10] and primary schools in New York [1] and Boston [2].

More recent applications include electrical vehicle recharging [18],

ride sharing [11], refugee resettlement [3, 6], and recommendation

systems [14].

The stable matching problem seeks to find a matching between

two disjoint sets of agents, typically referred to as men and women.

In this setting, each agent has strict preferences over the opposite

set and we seek a matching that respects both sets of preferences.

The standard algorithm for finding a stable matching is the Gale-

Shapley algorithm, also known as deferred acceptance [17]. It is

also sometimes referred to as the man-optimal (woman-pessimal)
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algorithm because it always selects the stable matching that is

simultaneously best for every man [15] and worst for every woman

[23] when men propose.

It is well known that every stable matching algorithm is manip-

ulable [30] and agents may misrepresent their preferences to be

assigned a preferred partner. The Gale-Shapley algorithm is even

known to be manipulable in polynomial time [33]. While there

exist stable matching algorithms that are NP-hard to manipulate

[28], the Gale-Shapley algorithm is still typically preferred due to

both its ease to implement and a key property it has with respect

to honesty: when men propose, it is well known that men have

no incentive to misrepresent their preferences [13]. This is espe-

cially notable in matching markets where one side of the market is

incapable of manipulating its preferences. For example, in school

admissions, schools’ preferences are determined by exam scores —

as long as students propose when using the Gale-Shapley algorithm,

the resulting mechanism is strategy-proof.

In markets where both sets of agents are strategic, many open

problems remain with respect to strategic behavior (see e.g., [20] for

a recent review of open problems). In this paper, we revisit a clas-

sical analysis of strategic behavior when using the Gale-Shapley

algorithm. Under the assumption that all men are honest, Gale

and Sotomayor showed that there is always a way for the women

to coordinate to obtain the woman-optimal (man-pessimal) stable

matching [16]. Further, they showed that the corresponding pref-

erences are a strong Nash equilibrium. Gale and Sotomayor then

stated that it would be reasonable to believe that all strong Nash

equilibria would be woman-optimal. This would be especially im-

portant from a game theory perspective, as ideally equilibria yield

unique predictions for the underlying system. However, Gale and

Sotomayor expressed disappointment after observing this is not

the case:

It would have been nice to assert that the [woman-optimal matching]
is the only matching obtainable from a strong equilibrium point.
Unfortunately, this is not the case. – Gale and Sotomayor [16].

1.1 Our Contributions
Our paper resolves a significant issue in the use of the Nash equi-

librium solution concept in the study of the Gale-Shapley (Deferred

Acceptance) algorithm. Specifically, we introduce a common behav-

ioral Nash equilibrium refinement from the social choice and voting

literature to study the outcome of the Gale-Shapley algorithm when

agents behave strategically and show that every minimally dishon-

est equilibrium yields the woman-optimal stable matching (Theo-

rem 1) despite the fact that the Gale-Shapley algorithm yields the

man-optimal (woman-pessimal) matching when agents are honest.
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This allows us to make a precise, unique prediction when agents

behave strategically in the setting of stable matchings.

This result notably resolves an issue discovered by both Alcalde

and Sönmez [4] and Gale and Sotomayor [16], who showed that

the Nash equilibrium and the strong Nash equilibrium solution

concepts, respectively, yield non-unique predictions for the Gale-

Shapley algorithm. Additionally, our result provides a satisfying

response to Gale and Sotomayor’s “unfortunate” observation that

the strong Nash equilibrium solution concept does not uniquely

result in the woman-optimal stable matching.

2 MATHEMATICAL BACKGROUND
An instance of the stable matching problem includes two finite

non-empty and disjoint sets of individuals 𝑀 and 𝑊 , typically

referred to as men and women respectively. Each man𝑚 ∈ 𝑀 has a

strict preference Π𝑚 on𝑊 ∪ {𝑚} where𝑤𝑖Π𝑚𝑤 𝑗 indicates that𝑚

prefers to be matched with𝑤𝑖 to𝑤 𝑗 . If𝑚Π𝑚𝑤 then agent𝑚 prefers

to be unmatched (equivalently, self-matched) to being matched

with𝑤 . We remark that some applications require that𝑤Π𝑚𝑚 for

all𝑤 ∈𝑊 (𝑚 always prefers being matched to being unmatched).

However, our analysis is consistent with most applications of stable

matchings which allow for agents to be unmatched.

For readability, we frequently express the full set of preferences

as an ordered list, e.g., 𝑤1Π𝑚𝑤2Π𝑚𝑚Π𝑚𝑤3Π𝑚𝑤4 is represented

as (Π𝑚 : 𝑤1,𝑤2,𝑚,𝑤3,𝑤4). We also denote Π𝑘
𝑚 as the 𝑘th element

of this list, e.g., in the prior example Π1

𝑚 = 𝑤1 and Π3

𝑚 =𝑚. Sym-

metrically, for all𝑤 ∈𝑊 , Π𝑤 is a strict preference on𝑀 ∪ {𝑤}. A
preference profile is given by Π =

⋃
𝑖∈𝑀∪𝑊 Π𝑖 . We denote the set

of all possible preferences for agent 𝑖 as P𝑖 (for𝑚 ∈ 𝑀 , P𝑚 corre-

sponds to all permutations of𝑊 ∪ {𝑚}) and the set of all possible

preference profiles over𝑀 ∪𝑊 as P =
>

𝑖∈𝑀∪𝑊 P𝑖 ).
A matching 𝜇 is a bijection from𝑀∪𝑊 to itself such that 𝜇 (𝑚) ∈

𝑊 ∪{𝑚} and 𝜇 (𝑤) ∈ 𝑀∪{𝑤} for each𝑚 ∈ 𝑀 and𝑤 ∈𝑊 . Moreover,

the relationship is symmetric; 𝜇 (𝑖) = 𝑗 if and only if 𝜇 ( 𝑗) = 𝑖 . We

denote 𝜇 (𝑖) as the spouse of 𝑖 . If 𝜇 (𝑖) = 𝑖 then 𝑖 is unmatched

(equivalently, self-matched). Individual 𝑖 strictly prefers 𝜇1 to 𝜇2 if

and only if 𝜇1 (𝑖)Π𝑖𝜇2 (𝑖).
Stability is a necessary condition for many areas [19, 23, 24]. A

stable matching 𝜇 represents an equilibrium among agents where

no one will leave their partner assigned by 𝜇. Specifically, every

agent should be willing to match with their assigned partner and

there should be no pair of agents that prefer each other to their

assigned spouses. Formally:

Definition 1. Amatching 𝜇 is individually rational if for each agent
𝑖 ∈ 𝑀 ∪𝑊 either 𝜇 (𝑖) = 𝑖 (agent 𝑖 is self-matched) or 𝜇 (𝑖)Π𝑖𝑖 (agent
𝑖 prefers their assigned spouse to being self-matched).

Definition 2. A pair {𝑚,𝑤} ∈ 𝑀×𝑊 is a blocking pair with respect
to 𝜇 if 𝑤Π𝑚𝜇 (𝑚) and𝑚Π𝑤𝜇 (𝑤), i.e., if𝑚 and 𝑤 prefer each other
to their respective spouses assigned by 𝜇.

Definition 3. The matching 𝜇 is stable with respect to Π if 𝜇 is
individually rational and has no blocking pairs with respect to Π.
Equivalently, 𝜇 is stable if 𝑖Π 𝑗 𝜇 ( 𝑗) implies 𝜇 (𝑖)Π𝑖 𝑗 .

Gale and Shapley [15] proved that a stable matching always

exists by developing the Deferred Acceptance (DA) algorithm (more

commonly known as the Gale-Shapley algorithm) given below.

Informally, each𝑚 ∈ 𝑀 proposes to their most preferred partner

in Π𝑚 that has not yet rejected them. The individual receiving the

proposal accepts (thereby becoming matched with𝑚) if either (i)

they are unmatched and willing to match with𝑚, or (ii) they are

matched to 𝑚′ ≠ 𝑚 but prefer 𝑚 to 𝑚′. In the second case, the

match with𝑚′ is broken (𝑚′ becomes ummatched). The algorithm

concludes once each𝑚 ∈ 𝑀 is matched or has proposed to every

𝑤 ∈ 𝑊 whom they are willing to match with. Any remaining

unmatched𝑚 ∈ 𝑀 are then self-matched (𝜇 (𝑚) =𝑚).

Algorithm 1 Gale-Shapley Algorithm (Deferred Acceptance)

1: procedure DA
2: 𝜇 (𝑖) ← ∅ for 𝑖 ∈ 𝑀 ∪𝑊
3: 𝑘𝑚 ← 0 for𝑚 ∈ 𝑀
4: while there exists𝑚 ∈ 𝑀 where 𝜇 (𝑚) = ∅ do
5: 𝑘𝑚 ← 𝑘𝑚 + 1

6: if 𝜇 (Π𝑘𝑚
𝑚 ) = ∅ and𝑚Π

Π𝑘𝑚
𝑚

Π𝑘𝑚
𝑚 then

7: 𝜇 (𝑚) ← Π𝑘𝑚
𝑚 and 𝜇 (Π𝑘𝑚

𝑚 ) ←𝑚

8: else if 𝑚Π
Π𝑘𝑚
𝑚
𝜇 (Π𝑘𝑚

𝑚 ) then

9: 𝜇 (𝜇 (Π𝑘𝑚
𝑚 )) ← ∅ and 𝜇 (Π𝑘𝑚

𝑚 ) ← ∅
10: 𝜇 (𝑚) ← Π𝑘𝑚

𝑚 and 𝜇 (Π𝑘𝑚
𝑚 ) ←𝑚

11: else
12: do nothing

13: end if
14: end while
15: Output 𝜇

16: end procedure

The Gale-Shapley algorithm has the interesting property that

regardless of which order the set of men propose, the same out-

come is always obtained [15]. Remarkably, every man obtains his

most preferred partner among the set of stable matchings [15].

This matching is referred to as the man-optimal stable matching.

Formally, the man-optimal stable matching 𝜇𝑀 with respect to

the preference profile Π is such that for any stable matching 𝜇, for

all 𝑚 ∈ 𝑀 either (i) 𝜇𝑀 (𝑚) = 𝜇 (𝑚) or (ii) 𝜇𝑀 (𝑚)Π𝑚𝜇 (𝑚). The
woman-optimal stable matching is defined symmetrically.

Perhaps more interestingly, the man-optimal stable matching

is also the woman-pessimal stable matching [23]; that is, among

all stable matchings, the man-optimal stable matching is the least

preferred by all women. Symmetrically, the woman-optimal stable

matching is the man-pessimal stable matching. This is because

the set of stable matching forms a distributive lattice [23] where

assigning a woman a better partner results in her original partner

obtaining a less preferred spouse.

2.1 The Strategic Stable Matching Game
The ability to select a stable matching relies on the assumption

that individuals are truthfully reporting their preferences. However,

no stable matching mechanism guarantees strategy-proofness [30].

Individuals might submit a strategic profile Π̄ that is not equal to

the sincere profile Π. To understand the outcome of this strategic

behavior, we study a normal-form game with complete information

where individuals can submit whichever ordering they like even
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though players have common knowledge about the sincere profile

Π. Denote this game as the Strategic Stable Matching Game (SSM).

Strategic Stable Matching Game (SSM)
with the Gale-Shapley Algorithm

• Each individual has complete information of the sincere

preference profile Π = {Π𝑖 }𝑖∈𝑀∪𝑊 .

• To play the game, individual 𝑖 submits strategic preference

data Π̄𝑖 ∈ P𝑖 . The collection of all submitted data is denoted

Π̄.
• It is common knowledge that a central decision mechanism

will select the man-optimal matching 𝜇𝑀 (Π̄) with respect to

the submitted Π̄.
• Individual 𝑖 evaluates 𝜇𝑀 (Π̄) according to 𝑖’s partner(s) in

the matching(s) 𝜇𝑀 (Π̄) and 𝑖’s sincere preferences Π𝑖 .

With respect to the Gale-Shapley algorithm, there are some

guarantees with respect to honesty. Dubbins and Freedman showed

that when the men propose in the Gale-Shapley algorithm, no man

can benefit by altering his submitted preference list [13]. (Roth

independently showed this result one year later in [29]). This result

is especially pertinent to the college admissions problem where

colleges’ preferences are determined by examination scores. In

this setting, if the Gale-Shapley algorithm is implemented where

students “propose” to colleges, each student’s best response is to

be honest. Colleges are honest by design, resulting in a truthful

mechanism for college admissions.

However, in standard implementations of stable matching prob-

lems, both sides (in this case, men and women) are allowed to alter

their submitted preference list. This provides some recourse to

avoid the man-optimal bias introduced by using the Gale-Shapley

algorithm. If all other agents are honest, a woman can alter her pref-

erence list to obtain her woman-optimal partner [16]. Woman 𝑤

can accomplish this by submitting the preference list 𝜇𝑊 (𝑤)Π̄𝑤𝑤 ,

where 𝜇𝑊 is the woman-optimal matching, and 𝑤 Π̄𝑤𝑚 for all

𝑚 ∈ 𝑀 \ {𝜇𝑊 (𝑤)}, indicating that she is only willing to match

with her woman-optimal partner.

In this paper, we aim to understand which stable matchings can

be obtained by the Gale-Shapley algorithm when agents behave

strategically. Unfortunately, Alcalde and Sönmez have shown that

the set of Nash equilibria of SSM corresponds to the set of individ-

ually rational matchings [4, 32] regardless of which deterministic

stable matching algorithm is used.

Lemma 1 ([4, 32]). For any deterministic stable matching algo-
rithm, 𝜇 is obtained at a Nash equilibrium of SSM if and only if 𝜇 is
individually rational.

The result by Alcalde and Sönmez is discouraging. First, it sug-

gests the Nash equilibrium solution concept has little predictive

power as there can be an exponential number of stable matchings

[23] (although counting the exact number is #𝑃-complete [21]).

Second, the Nash equilibria described in Lemma 1 are rather un-

natural. The standard proof starts with an arbitrary individually

rational matching 𝜇. Then, to construct an equilibrium that yields

𝜇, individual 𝑖’s submitted preferences are constructed such that 𝑖

is only willing to match with 𝜇 (𝑖), i.e., 𝜇 (𝑖)Π̄𝑖𝑖Π̄𝑖𝑣 for all 𝑣 ≠ 𝜇 (𝑖).

We would never expect an individual to lie and indicate they are

only willing to match with their least preferred possible partner.

Therefore the equilibria described in Lemma 1 are unrealistic and

inconsistent with human behavior. In the study of social choice,

such unnatural Nash equilibria are removed via Nash equilibrium

refinements, i.e., by placing behavioral conditions on agents to only

allow “reasonable” behavior.

2.2 Nash Equilibria Refinements
Perhaps the first Nash equilibrium refinement applied to the study

of the stable matching game is the strong Nash equilibrium. The

concept was first introduced by Aumann [5]. A strong equilibrium

point is an equilibrium where no coalition of agents can cooperate

in a way in which every agent benefits. The strong equilibrium

point is a common solution concept used in social choice, especially

in voting theory.

Dubins and Freedman show that no coalition of men can all

benefit by misrepresenting their preferences when using the Gale-

Shapley algorithm [13] (Roth’s result only shows this result for a

coalition of size one [29]). Thus, it is generally assumed that all men

will be honest when using the Gale-Shapley algorithm. Under this

assumption, Gale and Sotomayor then show that there is always a

way for women to coordinate to ensure the woman-optimal match-

ing is selected despite the Gale-Shapley algorithm selecting the

man-optimal (woman-pessimal) matching when everyone is honest

[16]. Further, they show that when men are honest, and women

coordinate to obtain the woman-optimal matching, the resulting

matching is a strong Nash equilibrium. Given that the women are

always able to coordinate to obtain the woman-optimal matching,

it would be reasonable to believe that all strong Nash equilibria for

SSM with the Gale-Shapley algorithm result in the woman-optimal

matching. However, Gale and Sotomayor express disappointment

after observing this is not the case.

A criticism of the strongNash equilibrium is that the requirement

is too strong in terms of communication complexity. It requires that

agents can engage in an exponential number of private communi-

cations, i.e., to verify that a solution is a strong Nash equilibrium,

all subsets of𝑀 ∪𝑊 must communicate and verify they are unable

to generate a better solution by altering their preferences. Instead,

we focus on another Nash equilibrium refinement in the social

choice and voting literature that requires no communication be-

tween agents. Instead, it prunes the set of unrealistic equilibria

by incorporating studies from behavioral economics that suggest

individuals have an aversion to lying.

We consider the minimally dishonest Nash equilibrium [7, 9]

concept (equivalently, when there are a finite number of outcomes,

truth-bias with distortion costs [26, 27]). Informally, an agent is

minimally dishonest as long as being more honest would result in a

strictly worse outcome. Equivalently, from a utilitarian perspective,

each agent receives a small cost that scales proportional to the

size of their lie, therefore, an agent will always prefer submitting a

more honest profile as long as the outcome is at least as good for

the agent. This Nash equilibrium refinement is logically intuitive,

requires no communication between agents, and, most importantly,

is supported by various studies in behavioral economics, (see [7]

for a thorough discussion).
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To establish the “size” of a lie we must first define the distance

between two preference profiles.Wewill use the Kendall Tau (equiv-

alently, bubble sort) distance – the most common way to evaluate

the distance between two ordered lists. The Kendall Tau distance

counts the number of disagreements between two ordered lists.

Formally:

Definition 4 (Kendall Tau Distance). Let Π1

𝑖
and Π2

𝑖
be two prefer-

ence lists over a set. Then the Kendall Tau distance between Π1

𝑖
and

Π2

𝑖
is

𝐾 (Π1

𝑖 ,Π
2

𝑖 ) ≡
��{{𝑢, 𝑣} : 𝑢Π1

𝑖 𝑣 but 𝑣Π
2

𝑖𝑢
}�� .

The formal definition of minimal dishonesty can now be stated

succinctly in the notation of Definition 4.

Definition 5 (Minimally Dishonest). LetΠ be the sincere preferences
and let Π̄ be an equilibrium in SSM when using the Gale-Shapley
algorithm. Let 𝜇 be the stable matching obtained with respect to Π̄.
Agent 𝑖 is minimally dishonest if 𝐾 (Π̄′

𝑖
,Π𝑖 ) < 𝐾 (Π̄𝑖 ,Π𝑖 ) implies

𝜇 (𝑖)Π𝑖𝜇
′ (𝑖) where 𝜇′ is the matching selected when the profile Π̄′ =

[Π̄−𝑖 , Π̄′] is submitted. I.e., submitting a more honest Π̄′
𝑖
would result

in a worse outcome for agent 𝑖 .

We remark that when the set of preference profiles is finite, as it

is in the stable matching problem, it is straightforward to show that

the minimally dishonest Nash equilibrium refinement is equivalent

to truth-bias with distortion costs [26, 27] (see [8] for the distinction

between the two concepts when the set of outcomes is not finite).

In this setting, if agent 𝑖 is matched with their 𝑘th choice Π𝑘
𝑖
by

submitting the preference Π̄, then under the truth-bias concept

their associated cost of the matching would be 𝑘 + 𝜖 · 𝐾 (Π𝑖 , Π̄𝑖 ).
Since 𝐾 (Π𝑚, Π̄𝑚) ≤

( |𝑊∪{𝑚} |
2

)
, 𝜖 < 1/

( |𝑊∪{𝑚} |
2

)
ensures that

agent𝑚 ∈ 𝑀 will always be willing to manipulate their preferences

to be matched with a better partner, but will do so in a way that

minimizes the size of their manipulation.

Unlike strong equilibria points, a minimally dishonest best re-

sponse requires no communication between agents. This is a sig-

nificant improvement in terms of cognitive complexity; when 𝑛 =

|𝑀 | + 1 = |𝑊 | + 1, a minimally dishonest best response requires con-

sidering 𝑂 (𝑛!) more honest preferences whereas strong equilibria

points require considering all 𝑂 ((𝑛!)𝑛) permutations by all agents.

We also consider a cognitively simpler locally minimally dishon-
est best response which only requires agent 𝑖 to consider swapping

two adjacent members of their preference list Π̄𝑖 . This requires

considering at most 𝑛 − 1 profiles that are more honest. Prior to

defining a locally minimally dishonest best response, we introduce

a notation for swapping two adjacent members of a preference list.

Definition 6. Suppose that agent 𝑖’s 𝑘 + 1th favorite partner with
respect to Π𝑖 is Π𝑘+1

𝑖
= 𝑢 and that their 𝑘th favorite partner is Π𝑘

𝑖
=

𝑣 . Then the new preference obtained by moving 𝑢 up one position
(equivalently, moving 𝑣 down one position) corresponds to the new
preference given by Π̄𝑘

𝑖
= 𝑢, Π̄𝑘+1

𝑖
= 𝑣 and Π̄𝑙

𝑖
= Π𝑙

𝑖
for all 𝑙 ∉

{𝑘, 𝑘 + 1}.

The formal definition of local minimal dishonesty can now be

stated succinctly in the notation of Definition 6.

Definition 7 (Locally Minimally Dishonest). Let Π be the sincere
preferences and let Π̄ be an equilibrium in SSM when using the Gale-
Shapley algorithm. Let 𝜇 be the stable matching obtained with respect
to Π̄. Agent 𝑖 is locally minimally dishonest if for each 𝑢, 𝑣 where
𝑢Π𝑖𝑣 but Π̄𝑘

𝑖
= 𝑣 and Π̄𝑘+1

𝑖
= 𝑢 for some 𝑘 , then 𝜇 (𝑖)Π𝑖𝜇

′ (𝑖) where
𝜇′ is the matching selected after agent 𝑖 moves 𝑢 up one position in
Π̄𝑖 .

It is trivial to show that every minimally dishonest equilibrium

is also a locally minimally dishonest equilibrium. Therefore, when

showing properties of minimally dishonest equilibria, it suffices

to show the property for locally minimally dishonest equilibria

(Section 3). Similarly, to show the existence of locally minimally

dishonest equilibria, it suffices to show a minimally dishonest equi-

librium exists (Section 4).

We also remark that all of our results also hold when using the

Spearman Footrule distance, another common method to measure

the distance between two ordinal lists. Like the Kendall Tau distance,

it is straightforward to show that the Spearman Footrule distance

decreases when switching the order of two adjacent, incorrectly

ordered elements of a list. Since local minimal dishonesty only

considers such swaps, our results hold for both metrics.

2.3 Movement of Agents in a Preference List
We begin by showing several important properties of moving an

agent up one position in another agent’s preference list. The first

two properties are trivial consequences of Definition 6. The third

property describes how the set of stable matchings changes when

moving a partner up a single position in a preference list. The result

is relatively straightforward and likely has been observed many

times in prior works. Nonetheless, the properties will be frequently

used in our main results and we formally establish them first to

simplify explanations in subsequent sections.

Property 1 (Mostly Preserved Preferences). Suppose that agent 𝑖’s
𝑘 + 1th favorite partner with respect to Π𝑖 is Π𝑘+1

𝑖
= 𝑢 and that their

𝑘th favorite partner is Π𝑘
𝑖
= 𝑣 . Suppose that Π̄𝑖 is obtained when 𝑖

moves 𝑢 up one position. Then for all { 𝑗, 𝑘} ≠ {𝑢, 𝑣}, 𝑗Π𝑖𝑘 if and only
if 𝑗 Π̄𝑖𝑘 . I.e., swapping the positions of adjacent agents 𝑢 and 𝑣 does
not impact the relative rankings of any other agents.

Property 1 follows immediately since Π𝑙
𝑖
= Π̄𝑙

𝑖
for all 𝑙 ∉ {𝑘, 𝑘+1}

and since 𝑙 ∉ {𝑘, 𝑘 + 1} implies 𝑙 < 𝑘 + 1 if and only if 𝑙 < 𝑘 .

Property 2 (Improved Honesty). Suppose that agent 𝑖’s 𝑘 + 1th
favorite partner with respect to Π̄𝑖 is Π̄𝑘+1

𝑖
= 𝑢 and that their 𝑘th

favorite partner is Π̄𝑘
𝑖
= 𝑣 . Let Π̄′

𝑖
be the preference list obtained by

moving 𝑢 up one position. If agent 𝑖 sincerely prefers agent 𝑢 to agent
𝑣 (𝑢Π𝑖𝑣), then Π̄′ is more sincere than Π̄. Specifically, and formally:
𝐾 (Π̄𝑖 ,Π𝑖 ) = 𝐾 (Π̄′𝑖 ,Π𝑖 ) + 1.

This result follows immediately from Property 1; since all other

preferences are preserved, restoring the preference relation between

𝑢 and 𝑣 decreases the number of disagreements with Π𝑖 by exactly

one. Notably, this property implies that every minimally dishon-

est equilibrium is also a locally minimally dishonest equilibrium

since the set of more honest profiles considered by local minimal

dishonesty is a subset of those considered by minimal dishonesty.
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Next, we show that moving agent 𝑢 up one position in agent 𝑖’s

preference list can only create new stable matchings that match 𝑢

to 𝑖 . Symmetrically, if agent 𝑣 is moved down in 𝑖’s preference list

then the only stable matchings that can be lost will match agent 𝑖

to agent 𝑣 .

Property 3 (Set of Stable Matchings). Consider any profile Π̄ and
let Π̄′ be obtained when agent 𝑖 moves agent 𝑢 up one position in Π̄𝑖

causing agent 𝑣 to move down one position. LetU andU′ be the set
of stable matchings stable with respect to Π̄ and Π̄′ respectively. Then:

(1) if 𝜇 ∈ U′ \ U, then 𝜇 (𝑖) = 𝑢
(2) if 𝜇 ∈ U \U′, then 𝜇 (𝑖) = 𝑣 ,

i.e., the movement only creates new stable matchings that match 𝑖 to
𝑢 and only removes stable matchings that match 𝑖 to 𝑣 .

Proof. The second claim follows immediately from the first

claim when considering moving agent 𝑣 up one position in Π̄′

causing agent 𝑢 to move down one position. It now suffices to show

the first claim and assume that 𝜇 ∈ U′ \ U. We then consider the

cases where 𝜇 ∉ U because 𝜇 is not individually rational or 𝜇 has a

blocking pair.

First we show that if 𝜇 is not individually rational with respect

to Π̄, then 𝜇 (𝑖) = 𝑢 (and 𝑣 = 𝑖). Suppose 𝜇 is not individually

rational with respect to Π̄ and there is some agent 𝑗 where 𝑗 Π̄𝜇 ( 𝑗)
( 𝑗 prefers to be self-matched). However, with respect to Π̄′, 𝜇 is

stable and therefore individually rational implying 𝜇 (𝑘)Π̄′
𝑘
𝑘 for all

𝑘 . Therefore Π̄′
𝑗
and Π̄ 𝑗 differ with respect to the pair 𝑗 and 𝜇 ( 𝑗).

Since only Π̄𝑖 changes, 𝑗 = 𝑖 . Further, by Property 1, the relation

between agents with respect to Π̄𝑖 and Π̄′
𝑖
remain unchanged with

exception of 𝑢 and 𝑣 and {𝑢, 𝑣} = {𝑖, 𝜇 (𝑖)}. Since 𝑢 is moved one

position (and ahead of 𝑣) in Π̄′
𝑖
, 𝑢Π̄′

𝑖
𝑣 and 𝑢 = 𝜇 (𝑖) and 𝑣 = 𝑖 as

claimed.

Next, suppose that 𝜇 is not stable with respect to Π̄ because there

is a blocking pair { 𝑗, 𝑘} where 𝑗 and 𝑘 are distinct. We show that,

without loss of generality, that 𝑗 = 𝑖, 𝜇 (𝑖) = 𝑢, and 𝑘 = 𝑣 . Since

{ 𝑗, 𝑘} is a blocking pair, 𝑘Π̄ 𝑗 𝜇 ( 𝑗) and 𝑗 Π̄𝑘𝜇 (𝑘) (they prefer each

other to their current match with respect to Π̄). However, since 𝜇 is
stable with respect to Π̄′, either 𝜇 ( 𝑗)Π̄′

𝑗
𝑘 or 𝜇 (𝑘)Π̄′

𝑘
𝑗 ({ 𝑗, 𝑘} is not

blocking with respect to Π̄′). Therefore either 𝑗 ’s or 𝑘’s preferences
changed when moving from Π̄ to Π̄′. Since only 𝑖’s preferences

change, without loss of generality, 𝑗 = 𝑖 . Since 𝑘 ≠ 𝑖 , Π̄′
𝑘
= Π̄𝑘 .

Therefore, in order for {𝑖, 𝑘} to not be blocking with respect to Π̄′,
𝜇 (𝑖)Π̄′

𝑖
𝑘 even though 𝑘Π̄𝑖𝜇 (𝑖). By Property 1, the relation between

agents with respect to Π̄𝑖 and Π̄
′
𝑖
remain unchanged with exception

of𝑢 and 𝑣 and {𝑢, 𝑣} = {𝑘, 𝜇 (𝑖)}. Since𝑢 is moved one position (and

ahead of 𝑣) in Π̄′
𝑖
, 𝑢Π̄′

𝑖
𝑣 and 𝑢 = 𝜇 (𝑖) and 𝑣 = 𝑘 as claimed. □

3 MINIMALLY DISHONEST EQUILIBRIA FOR
THE GALE-SHAPLEY ALGORITHM

In this section, we show that when agents are minimally dishon-

est, there is a unique outcome of the stable matching game — the

woman-optimal matching will always be selected when using the

man-optimal (Gale-Shapley) algorithm. This is precisely the re-

sult that Gale and Sotomayor remarked that they expected when

studying strategic behavior when using the Gale-Shapley algorithm

[16]. To establish this main result, we first reveal several important

properties of a minimally dishonest equilibrium Π̄.

Lemma 2. Let Π̄ be a (locally) minimally dishonest Nash equilibrium
for SSM with the Gale-Shapley algorithm that results in the matching
𝜇𝑀 . For𝑚 ∈ 𝑀 , if 𝜇𝑀 (𝑚) = Π𝑘

𝑚 (man𝑚 is matched to his 𝑘th most
preferred partner), then the first 𝑘 elements of Π̄𝑚 are a permutation
of the first 𝑘 elements of Π𝑚 .

We remark that if we were only considering minimally dishonest

best responses, then it would suffice to cite [13, 29] that shows it is

always a best response for men to be completely honest when using

the Gale-Shapley algorithm, i.e., the only minimally dishonest best

response for men is always to be honest. However, the cognitively

simpler locally minimally dishonest equilibrium concept requires

some additional work to establish the same result in Lemma 6.

Proof of Lemma 2. For contradiction, suppose there exists an

agent 𝑣 = Π
𝑞
𝑚 where 𝑞 > 𝑘 and a 𝑢 = Π

𝑝
𝑚 where 𝑝 ≤ 𝑘 but 𝑣Π̄𝑚𝑢.

Without loss of generality, we may assume that𝑢 and 𝑣 are adjacent

in Π̄𝑚 , i.e., 𝑣 = Π̄𝑙
𝑚 and 𝑢 = Π̄𝑙+1

𝑚 for some 𝑙 : If not, there is either

some 𝑢′ where 𝑢′ = Π
𝑝′
𝑚 for some 𝑝′ ≤ 𝑘 where 𝑣Π̄𝑚𝑢

′Π̄𝑚𝑢 or

some 𝑣 ′ where 𝑣 ′ = Π
𝑞′
𝑚 for some 𝑞′ > 𝑘 where 𝑣Π̄𝑚𝑣

′Π̄𝑚𝑢. In both

cases, we can select 𝑢′ or 𝑣 ′ inductively until obtaining an adjacent

pair. We then let Π̄′𝑚 be the preferences obtain when𝑚 moves 𝑢 up

one position in Π̄𝑚 resulting in the new profile Π̄′ = [Π̄−𝑚, Π̄′𝑚].
By Property 2, man𝑚 is more honest when submitting Π̄′𝑚 . Thus,

since Π̄𝑚 is a minimally dishonest best response, man𝑚 must re-

ceive a worse outcome when submitting Π̄′𝑚 , i.e., 𝜇𝑀 (𝑚)Π𝑚𝜇
′
𝑀
(𝑚)

where 𝜇′
𝑀

is the matching selected with respect to Π̄′.
LetU andU′ be the set of stable matchings stable with respect

to Π̄ and Π̄′ respectively. First, 𝜇𝑀 ∈ U′ since otherwise, by the

second part of Property 3, 𝜇𝑀 (𝑚) = 𝑣 = Π̄
𝑞
𝑚 for some 𝑞 > 𝑘

contradicting that𝑚 is matched with their 𝑘th preferred partner.

Similarly, by the first part of Property 3, either 𝜇′
𝑀
(𝑚) = 𝑢 or

𝜇′
𝑀
∈ U. If 𝜇′

𝑀
(𝑚) = 𝑢 = Π

𝑝
𝑚 for some 𝑝 ≤ 𝑘 , then we contradict

that 𝜇𝑀 (𝑚)Π𝑚𝜇
′
𝑀
(𝑚). Thus both 𝜇 and 𝜇′ are in bothU andU′.

Since 𝜇𝑀 (𝑚)Π𝑚𝜇
′
𝑀
(𝑚), 𝜇′

𝑀
(𝑚) ≠ 𝜇𝑀 (𝑚). Since 𝜇𝑀 and 𝜇′

𝑀
are

the man-optimal matchings with respect to Π̄ and Π̄′ respectively,
𝜇𝑀 (𝑚)Π̄𝑚𝜇

′
𝑀
(𝑚) but 𝜇′

𝑀
(𝑚)Π̄′𝑚𝜇𝑀 (𝑚), i.e., the relation between

𝜇𝑀 (𝑚) and 𝜇′𝑀 (𝑚) changes for agent 𝑚. However, by Property

1, all relations are preserved except the relation between 𝑢 and 𝑣

and (𝜇𝑀 (𝑚), 𝜇′𝑀 (𝑚)) = (𝑢, 𝑣) since 𝜇𝑀 (𝑚)Π𝑚𝜇
′
𝑀
(𝑚). Therefore,

𝑢Π̄𝑚𝑣 and 𝑣Π̄
′
𝑚𝑢.

However, this contradicts our selection of 𝑢 and 𝑣 . They were

selected such that 𝑣Π̄𝑚𝑢 and 𝑢Π̄′𝑚𝑣 . Therefore man𝑚 submitted

preferences is a permutation of his 𝑘 favorite possible partners. □

Next, we show the same result for the set of women. The proof

follows similarly to Lemma 2 but changes slightly since the Gale-

Shapley algorithm does not select the woman-optimal stable match-

ing with respect to the submitted preferences.

Lemma 3. Let Π̄ be a (locally) minimally dishonest Nash equilibrium
for SSM with the Gale-Shapley algorithm that results in the matching
𝜇𝑀 . For𝑤 ∈𝑊 , if 𝜇𝑀 (𝑤) = Π𝑘

𝑤 (woman𝑤 is matched to her𝑘thmost
preferred partner), then the first 𝑘 elements of Π̄𝑤 are a permutation
of the first 𝑘 elements of Π𝑤 .
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Proof. The first few parts of the proof follow identically to the

proof of Lemma 3. For contradiction, we suppose there exists an

agent 𝑣 = Π
𝑞
𝑤 where 𝑞 > 𝑘 and a 𝑢 = Π

𝑝
𝑤 where 𝑝 ≤ 𝑘 but 𝑣Π̄𝑤𝑢.

Without loss of generality, we again may assume that 𝑢 and 𝑣 are

adjacent in Π̄𝑤 , i.e., 𝑣 = Π̄𝑙
𝑤 and 𝑢 = Π̄𝑙+1

𝑤 for some 𝑙 and we let Π̄′𝑤
be the more honest preference list (by Property 2) obtained after𝑤

moves 𝑢 up one position in her preference list Π̄𝑤 .

As in the proof of Lemma 2, the matching selected with respect

to Π̄′ = [Π̄−𝑤 , Π̄′𝑤], 𝜇′𝑀 , must be strictly worse for woman𝑤 , i.e.,

𝜇𝑀 (𝑤)Π𝑤𝜇
′
𝑀
(𝑤). Again following identically to Lemma 2, 𝜇𝑀 and

𝜇′
𝑀

are both stable with respect to both Π̄ and Π̄′.
However, this contradicts that the Gale-Shapley algorithm se-

lects the man-optimal matching. Since men’s preferences remain

unchanged from Π̄ to Π̄′, 𝜇𝑀 is preferred to 𝜇′
𝑀

by all men with

respect to Π̄ if and only if 𝜇𝑀 is preferred to 𝜇′
𝑀

by all men with

respect to Π̄′. Since 𝜇𝑀 is man-optimal with respect to Π̄, 𝜇𝑀 is

also preferred to 𝜇′
𝑀

with respect to Π̄′ which contradicts that 𝜇′
𝑀

is selected by the Gale-Shapley algorithm with respect to Π̄′. □

Lemma 4. Let Π̄ be a (locally) minimally dishonest Nash equilibrium
for SSM with the Gale-Shapley algorithm that results in the matching
𝜇𝑀 . Then 𝜇𝑀 is the only matching that is stable with respect to Π̄.

Proof. For contradiction, suppose 𝜇𝑊 is the woman-optimal

matching with respect to Π̄ and 𝜇𝑊 ≠ 𝜇𝑀 . Then there is at least one

woman𝑤 where 𝜇𝑊 (𝑤)Π̄𝑤𝜇𝑀 (𝑤) = Π𝑘
𝑤 . However, by Lemma 3,

𝜇𝑊 (𝑤)Π𝑤𝜇𝑀 (𝑤) since the first 𝑘 elements of Π̄𝑤 is a permutation

of the first 𝑘 elements of Π𝑤 . This is a contradiction since woman𝑤

could alter her preferences to obtain the preferred partner 𝜇𝑊 (𝑤)
by indicating she is only willing to match with 𝜇𝑊 (𝑤). □

Lemma 5. Let Π̄ be a (locally) minimally dishonest Nash equilibrium
for SSM with the Gale-Shapley algorithm that results in the matching
𝜇𝑀 . For 𝑖 ∈ 𝑀 ∪𝑊 , if 𝜇𝑀 (𝑖) = Π𝑘

𝑖
(agent 𝑖 is matched to her 𝑘th

most preferred partner), then Π𝑙
𝑖
= Π̄𝑙

𝑖
for all 𝑙 ≤ 𝑘 . I.e., all agents are

honest up to their assigned partner.

Proof. Similar to the proof of Lemma 2, for contradiction, sup-

pose there exists an agent 𝑣 = Π
𝑞

𝑖
where 𝑞 ≤ 𝑘 and a 𝑢 = Π

𝑝

𝑖

where 𝑝 < 𝑞 ≤ 𝑘 but 𝑣Π̄𝑖𝑢. Notably, this means 𝑢Π𝑖𝜇𝑀 (𝑖). As in
Lemma 2, we may assume that 𝑢 and 𝑣 are adjacent in Π̄𝑖 . We then

let Π̄′
𝑖
be the more honest preference list (by Property 2) obtained

when 𝑖 moves 𝑢 up one position in Π̄𝑖 resulting in the new profile

Π̄′ = [Π̄−𝑖 , Π̄′𝑖 ].
By Lemma 4, 𝜇𝑀 is the only stable matching with respect to

Π̄. Let 𝜇′
𝑀

be the stable matching selected with respect to Π̄′. By
Property 3, if 𝜇 is stable with respect to Π̄′, then either 𝜇 = 𝜇𝑀 or

𝜇 (𝑖) = 𝑢Π𝑖𝜇𝑀 (𝑖). Therefore 𝜇′𝑀 (𝑖) ∈ {𝜇𝑀 (𝑖), 𝑢}, which contradicts

local minimal dishonesty since agent 𝑖 receives at least as good of

an outcome when submitting the more honest Π̄′
𝑖
. □

Lemma 6. Let Π̄ be a (locally) minimally dishonest Nash equilibrium
for SSM with the Gale-Shapley algorithm. For𝑚 ∈ 𝑀 , Π𝑚 = Π̄𝑚 . I.e.,
all men are honest when selecting the man-optimal matching.

Proof. Lemma 6 follows from the application of Algorithm 1.

Let 𝜇𝑀 be the matching selected with respect to Π̄ and for man𝑚,

let 𝑘 be such that 𝜇𝑀 (𝑚) = Π𝑘
𝑚 . By Lemma 5, Π𝑙

𝑚 = Π̄𝑙 for all 𝑙 ≤ 𝑘 .

Since Algorithm 1 ceases after all men have beenmatched, and since

each man’s preference list is accessed by Algorithm 1 in order, the

ordering of {Π̄𝑙
𝑚}𝑙>𝑘 is irrelevant for determining 𝜇𝑀 . Therefore, a

(locally) minimally dishonest man𝑚 will sincerely report {Π̄𝑙
𝑚}𝑙>𝑘

since any violationwould contradict (local) minimal dishonesty. □

Lemma 7. Let Π̄ be a (locally) minimally dishonest Nash equilibrium
for SSM with the Gale-Shapley algorithm that results in the matching
𝜇𝑀 . Then 𝜇𝑀 is stable with respect to Π.

Proof. By Lemma 1, 𝜇𝑀 is individually rational since it is a

Nash equilibrium. For contradiction, suppose that 𝜇𝑀 is not stable

with respect to Π implying there is a blocking pair {𝑚,𝑤}. This
means that𝑚Π𝑤𝜇𝑀 (𝑤) and𝑤Π𝑚𝜇𝑀 (𝑤). However, by Lemma 5,

each individual is honest up to their partner assigned implying

𝑚Π̄𝑤𝜇𝑀 (𝑤) and𝑤 Π̄𝑚𝜇𝑀 (𝑤). Thus, {𝑚,𝑤} is also a blocking pair

for 𝜇𝑀 with respect to 𝜇𝑀 , contradicting that 𝜇𝑀 is stable with

respect to Π̄. □

Theorem 1. Let Π̄ be a (locally) minimally dishonest Nash equi-
librium for SSM with the Gale-Shapley algorithm that results in the
matching 𝜇𝑀 . Then 𝜇𝑀 is the woman-optimal stable matching with
respect to Π.

Proof. Let 𝜇𝑊 be the sincere woman-optimal stable matching

(with respect to Π). We show that 𝜇𝑊 is stable with respect to Π̄
implying 𝜇𝑀 = 𝜇𝑊 since there is a unique stable matching at every

equilibrium (Lemma 4). By Lemma 7, 𝜇𝑀 is stable with respect to Π.
By [15], for 𝑤 ∈ 𝑊 , either 𝜇𝑀 (𝑤) = 𝜇𝑊 (𝑤) or 𝜇𝑊 (𝑤)Π𝑤𝜇𝑀 (𝑤)
since the woman-optimal matching 𝜇𝑊 assigns each woman her

most preferred partner from the set of all stable matchings. By

Lemma 5, this implies that each woman is honest up to her woman-

optimal partner assigned by 𝜇𝑊 . Similarly, by Lemma 6, each man

is completely honest and therefore honest up to his woman-optimal

partner. Following the same argument in the proof of Lemma 7,

this implies that 𝜇𝑊 is stable with respect to Π̄ as desired. Thus,

𝜇𝑀 = 𝜇𝑊 and the sincere woman-optimal matching is selected

when agents are minimally dishonest. □

Theorem 1 recovers the unique prediction that is so important for

Nash equilibria — when agents are minimally dishonest while using

the Gale-Shapley algorithm, the unique outcome is the woman-

optimal stable matching. This is precisely the perverse result that

Gale and Sotomayor expected when studying the Gale-Shapley al-

gorithm using the strong Nash equilbrium refinement. Interestingly,

we also show that a (locally) minimally dishonest Nash equilibrium

is also a strong Nash equilibrium.

Proposition 1. Let Π̄ be a (locally) minimally dishonest Nash equi-
librium for SSM with the Gale-Shapley algorithm. Then Π̄ is also a
strong Nash equilibrium.

Proof. Let 𝜇𝑀 be the matching selected with respect to Π̄. Since,
by Lemma 5, every individual is honest up to their partner assigned

by 𝜇𝑀 , an individual prefers the matching 𝜇 to 𝜇𝑀 with respect to

Π̄ if and only if they also prefer it with respect to Π. Therefore, it
suffices to show that no coalition can alter its preferences so that

each agent in the coalition prefers the new matching with respect

to Π̄.
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First, observe that by Lemma 4, 𝜇𝑀 is the only stable matching

with respect to Π̄ and therefore is the man-optimal matching. By

Theorem 1.7.2 of [19], for any coalition that includes at least one

man, “it is not possible for the members of the coalition to collec-

tively falsify their preferences so that every one of them obtains a

better partner than in” 𝜇𝑀 . Similarly, 𝜇𝑀 is also the woman-optimal

stable matching (since it is the only stable matching), and symmet-

rically by Theorem 1.7.2 of [19] no coalition that includes at least

one woman can falsify their preferences so that everyone obtains a

strictly better outcome. Thus, every (locally) minimally dishonest

Nash equilibrium is also a strong Nash equilibrium. □

4 ON THE EXISTENCE OF MINIMALLY
DISHONEST EQUILIBRIA

Our results establish strong properties for minimally dishonest equi-

libria. However, thus far our results have skimmed over whether

minimally dishonest equilibria exist. In this section, we establish

that at least one (locally) minimally dishonest equilibrium equilib-

rium always exists. Moreover, we show that one can be found after

applying a polynomial number of best responses.

Lemma 8. Let Π be a sincere set of preferences, and let Π̄ be a
corresponding submitted preference profile when selecting the man-
optimal matching. Suppose Π̄ is such that:

(i) There is a unique stable matching 𝜇𝑀 with respect to Π̄
(ii) Each woman 𝑤 ∈ 𝑊 is honest up to her spouse assigned by

𝜇𝑀 .
(iii) Π𝑚 = Π̄𝑚 for all𝑚 ∈ 𝑀 (men are honest)

For each 𝑖 ∈ 𝑀 ∪𝑊 , let Π̄′
𝑖
be a minimally dishonest best response to

Π̄ and let Π̄′ = [Π̄−𝑖 , Π̄′𝑖 ]. Then
(1) 𝜇𝑀 is the unique stable matching with respect to Π̄′

(2) If 𝑖 ∈𝑊 , then 𝑖 is honest up to her spouse assigned by 𝜇𝑀 .
(3) If 𝑖 ∈ 𝑀 , then Π̄′

𝑖
= Π𝑖

Proof. First, we remark that (𝑖) − (𝑖𝑖𝑖) imply Π̄ is a Nash equi-

librium (not necessarily minimally dishonest); the result follows

identically to the proof of Proposition 1. Claims 1,2 and 3 follow

identically to Lemmas 4, 5, and 6, respectively, since the only con-

dition they used was that agents were at a Nash equilibrium where

agents are relatively honest, which is guaranteed by conditions

(𝑖) − (𝑖𝑖𝑖). □

We can then simply apply minimally dishonest best responses

iteratively to find a minimally dishonest Nash equilibrium.

Theorem 2. There exists a Nash equilibrium that can be trans-
formed into a (locally) minimally dishonest Nash equilibrium using
at most |𝑊 | ·

( |𝑀 |+1
2

)
minimally dishonest best responses.

Proof. We present a Nash equilibrium Π̄ satisfying properties

(𝑖) − (𝑖𝑖𝑖) of Lemma 8. If there is an individual 𝑤 ∈𝑊 that is not

minimally dishonest, the we apply Lemma 8 to obtain a new profile

Π̄′. Notably, since Π̄ is already a Nash equilibrium, then 𝑤 only

violated minimal dishonesty implying that Π̄′ is more honest than

Π̄. Further, by Lemma 8, Π̄′ satisfies properties (𝑖) − (𝑖𝑖𝑖) of Lemma

8 and is also a Nash equilibrium.We apply this process iteratively to

obtain a minimally dishonest Nash equilibrium. Since each iteration

results in a more honest profile, and since honesty is measured with

the Kendall Tau distance, a non-negative, integer function, only a

finite number of iterations can be applied.

Formally: Let 𝜇𝑊 be the woman-optimal matching with respect

to Π. Let Π̄𝑚 = Π𝑚 for all𝑚 ∈ 𝑀 and let Π̄𝑤 = Π𝑤 for all𝑤 where

𝜇𝑊 (𝑤) = 𝑤 (woman𝑤 is unmatched). Finally, for all𝑤 ∈𝑊 where

𝜇𝑊 (𝑤) ≠ 𝑤 , let Π̄𝑤 be the profile obtained by truncated Π𝑤 after

her partner assigned by 𝜇𝑊 . Formally, if 𝜇𝑊 (𝑤) = Π𝑘
𝑤 , then let

Π̄𝑙
𝑤 = Π𝑙

𝑤 for all 𝑙 ≤ 𝑘 , let Π̄𝑘+1
𝑤 = 𝑤 , and let the remainder of Π̄𝑤

be arbitrary.

We denote this preference profile as Π̄0
and remark that Π̄0

satisfies conditions (𝑖) − (𝑖𝑖𝑖) of Lemma 8 and therefore is a Nash

equilibrium. Denote the potential function 𝜙 which measures the

total dishonesty of a profile as 𝜙 (Π̄) = ∑
𝑖∈𝑀∪𝑊 𝐾 (Π̄𝑖 ,Π𝑖 ). Since

all men are honest, 𝜙 (Π̄0) ≤ |𝑊 | ·
( |𝑀 |+1

2

)
.

Next, suppose Π̄𝑙
satisfies conditions (𝑖) − (𝑖𝑖𝑖) of Lemma 8,

but is not a minimally dishonest equilibrium. Then there exists a

woman 𝑤 ∈ 𝑊 who is not providing a minimally dishonest best

response, for by [4], every man’s only minimally dishonest best

response is to be honest. Let Π̄𝑙+1
be the new profile obtained when

woman𝑤 applies her minimally dishonest best response. Since Π̄𝑙

is a Nash equilibrium by Lemma 8, Π̄𝑙+1
is more honest than Π̄𝑙

and 𝜙 (Π̄𝑙+1) < 𝜙 (Π̄𝑙 ) Furthermore, by Lemma 8, Π̄𝑙+1
also satisfies

conditions (𝑖) − (𝑖𝑖𝑖).
Since𝜙 is a non-negative, integer-valued functionwhere𝜙 (Π̄0) ≤

|𝑊 | ·
( |𝑀 |+1

2

)
, this process can be applied at most |𝑊 | ·

( |𝑀 |+1
2

)
times,

i.e., we find a minimally dishonest Nash equilibrium after at most

|𝑊 | ·
( |𝑀 |+1

2

)
iterations. □

5 CONCLUSION
In this paper, we have studied the Gale-Shapley algorithm using a

minimal dishonesty refinement to eliminate unrealistic Nash equi-

libria. We have shown the resulting equilibria always yield the

woman-optimal stable matching. From a normative perspective,

this result is important as ideally equilibria should yield unique

predictions for the underlying system. Further, our results sup-

port Gale and Sotomayor’s initial belief that the woman-optimal

matching will always be obtained when using the Gale-Shapley

(man-optimal) algorithm.
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