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ABSTRACT
Co-speech gestures convey a wide variety of meanings and play
an important role in face-to-face human interactions. These ges-
tures have been shown to significantly influence the addressee’s en-
gagement, recall, comprehension, and attitudes toward the speaker.
Similarly, they have been shown to impact human and embodied
virtual agent interaction. The process of selecting and animating
meaningful gestures has thus become a key focus in designing
embodied virtual agents. However, the automation of this gesture
selection process poses a significant challenge. Prior gesture gener-
ation techniques have attempted to address this challenge in varied
ways from fully automated, data-driven techniques – which often
struggle to produce contextually meaningful gestures – to more
manual approaches of crafting gesture expertise, which are time-
consuming and lack generalizability. In this paper, we leverage the
semantic capabilities of Large Language Models to realize a gesture
selection approach that suggests meaningful, appropriate co-speech
gestures. We first illustrate the information on gestures encoded
into GPT4. Then we perform a study to specifically evaluate alter-
native prompting approaches for their ability to select meaningful,
contextually relevant gestures and to align them appropriately to
the co-speech utterance. Finally, we detail and demonstrate how
this approach has been implemented within a virtual agent system,
automating the selection and subsequent animation of the selected
gestures for human-agent interactions.
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1 INTRODUCTION
People now regularly interact with embodied facsimiles of people.
Graphics-based virtual humans and social robots with anthropo-
morphic features and behaviors engage users using the same verbal
and non-verbal behaviors that people use when interacting with
each other. These technologies exploit that the nonverbal behaviors
of participants powerfully influence face-to-face interaction.

In this paper, we focus on an integral part of such social interac-
tions: co-speech gestures. Gestures convey a range of meanings and
have a powerful impact on face-to-face interaction [2, 12, 21, 31], im-
pacting the speaker’s persuasiveness as well as an addressee’s com-
prehension, recall, engagement, and trust in the speaker [1, 20, 41].

However, these impacts are dependent on the particular gestures
being used and the context in which they occur [e.g., 19]. Clinicians,
politicians, and comedians use different gestures because they seek
to achieve different goals in different contexts [10, 16, 38]. Beyond
these differences in contexts and goals, there are also considerable
cultural and individual differences in the use of gestures [23, 35].

This richnessmakes gesture selection and animation a fundamen-
tal challenge in embodied agent research. To solve this challenge,
researchers have focused on various automated approaches to select
and generate virtual human gestures, often relying on data-driven
or analysis-driven approaches [for an overview, see 34, 37].

With any approach, there are design factors that are critical to
the realization of the virtual agent’s gestures. Among these are
requirements for the gestures to effectively convey the speaker’s
communicative intent. Further, we assume the virtual human should
use gestures consistent with its role in an interaction. Thus, a virtual
human who is taking on the role of a labor union executive should
not gesture like a comedian or clinician, nor should it use gestures
based on some statistical average over differing roles and situations.

In this paper, we thus assume one is designing a virtual human
to perform a specific role in some application. Leveraging recent
work on exploring the ability of Large Language Models (LLMs) to
predict gestures [18], we investigate the use of LLMs, in particular
the standard GPT-4, in gesture selection with an additional focus
on implementing this approach within a virtual human architec-
ture. What makes LLMs particularly promising as a component in
gesture selection is that they are trained on very large and highly
varied corpora. As we demonstrate, that leads to LLMs encoding
representations of both the linguistic properties critical to con-
veying meaning in gesture performances, as well as the relation
of those phenomena to actual gestures. Furthermore, we explore
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and evaluate LLMs’ ability to represent rheme and theme [11, 31],
metaphor [7, 13], image schemas [6] and rhetorical structures [29].
GPT4’s ability is assessed in the context of crafting a specific indi-
vidual, a skilled presenter from a labor organization. The gesture
selection approach is also implemented into an embodied virtual
agent architecture allowing automation of gesture selection.

Our contributions include exploring GPT-4’s capabilities in se-
lecting appropriate gestures, as well as using it to do discourse
analysis to determine when to gesture. We also evaluated different
prompting approaches. Furthermore, we automated the mapping
from GPT-4’s output into a behavior specification required by the
character animation system to select the gesture animation. Finally,
we implemented this within a virtual human framework.

2 BACKGROUND
Research on gestures and their generation in virtual humans has a
rich history, with gesture studies spanning millennia and virtual
gesture generation predating the turn of the century (e.g., [3]).
In this section, we touch on some key aspects relevant to how
we approached the problem of gesture generation. Research in
human co-speech gestures has identified different categorizations
of gestures, related to the kinds of information they convey. For
example, the work of McNeil (e.g., [31]) identifies four gesture
categories—deictic, beat, metaphoric, and iconic. This work will
largely focus on metaphoric gestures for two primary reasons:
First, our research often focuses on skilled presenters, and such
professional speakers tend to use these gestures frequently. Second,
metaphoric gestures can require deep analysis of the utterance to
uncover relations to physical imagery, called image schemas, that
underlie metaphoric gestures. Uncovering these relations presents
a challenge for automated gesture selection.

Specifically, image schemas [14] are recurring spatiotemporal
relationships grounded in our body’s interaction in the world that
are argued to underlie common patterns of physical and abstract
reasoning, as well as motivate linguistic metaphors and metaphoric
gestures. Consider this example of the image schema of container
from our data set: "with workers and employers putting a little bit
of contribution from each into a trust fund". Note container is not
only the collection, the "trust fund", but there is also a pattern of rea-
soning associated with container, putting things into the container.
The speaker used a pattern of metaphoric gestures associated with
container, a gesture denoting the container, along with gestures
depicting placing things into it.

Ideational Units: The above container example leads to an even
more challenging issue. Gestures also occur in sequences where the
individual gestures convey inter-related meanings. These gestural
sequences are called ideational units [2] or gesture units [21]. This
coupling plays important demarcative functions as well as helping
to convey relatedmeanings. These ideational units can be associated
with image schemas as above but they can also establish relations
between parts of an utterance, giving them a rhetorical structure.
Consider a communicative intent to convey a rhetorical contrast
between two abstract concepts such as strongly different political
views. Metaphorically, abstract concepts can be viewed as physical
objects, with physical properties such as locations and physical

distance conveying conceptual differences. Thus the rhetorical con-
trast between political views can be conveyed metaphorically by
abstract deictic gestures that convey this separation by pointing to
disparate regions in space. Such gestures pose difficult challenges
for gesture animation because they set up the physical space of
multiple gestures in a consistent fashion that relates physical space
and motion to meaning as the above two examples illustrate.

2.1 Gesture Selection
The process of automating the selection of co-speech gestures for
an utterance can be broken into two tasks. The first task is deter-
mining which segments of an utterance have co-speech gestures.
Since gestures emphasize as well as convey meaning for parts of
the utterance, identifying these segments is fundamental. We char-
acterize this as when to gesture. Then there is the question of what
gesture to use. In other words, what the gesture should convey, given
the utterance and the context of the interaction.

When to gesture: Gestures are tied to what the speaker seeks
to emphasize [8], which in turn transforms the meaning conveyed.
Therefore, to determine when to gesture, it is critical for co-speech
gesture generation to derive emphasis information about the ut-
terance. A common approach is to use prosodic cues [9, 15, 30].
However, this presumes that the spoken utterance that is driv-
ing gesture generation includes prosodic cues appropriate for the
meaning the speaker seeks to convey. An alternative is a discourse
analysis [32] that can identify the theme or topic of a sentence and
rheme or focus of the sentence, which is what is being said about
the topic. The rheme provides new information about the topic and,
critically, tends to be associated with gesture co-occurence [5, 31].

Gesture generation systems have used rheme analysis [4] as well
as prosodic analysis [30] to determine when to gesture. Assuming
we choose to use rheme analysis to automate when to gesture, the
question becomes how to quickly and efficiently do the analysis. In
the context of the current work, we can specifically ask whether
LLMs can do this kind of discourse analysis as part of a gesture
selection process.

What gesture to use: There is a considerable variation in
gesture types and usage frequency across individuals and con-
texts [2, 22].

As just one example of metaphoric gestures, consider the linguis-
tic metaphor that abstract concepts can be physical objects [13]. All
the physical properties and actions one takes on physical objects
can be used to convey abstract meanings gesturally. Thus, concepts,
as physical objects, can be gesturally grasped (understood), they
can be thrown away (rejected), and they can be big (important).
Two concepts, such as political orientation, as physical objects can
have separate locations to contrast them or convey their differ-
ences. Sets of abstract concepts can have cardinality (large or small)
and openness(closed or open sets). Set operations are apparent in
gestural forms, adding elements, deleting, and union of sets.

This richness is not surprising given the richness of metaphors
represented in our language [13] and argued to be integral to our
thought processes [25]. It also represents a central challenge to
approaches to gesture generation.
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3 RELATEDWORK
As noted earlier, a key challenge in designing embodied conversa-
tional agents involves selecting appropriate gestures for the charac-
ter, with various approaches proposed to address this challenge [33].

Rule-based methods [5, 26] rely on predefined sets of rules that
select from a predefined set of gesture animations. For instance,
the Behavior Expression Animated Toolkit (BEAT) is a rule-based
system that generates body movements and vocal intonations based
on linguistic and contextual features of the text [5].

Mixed approaches [28, 30, 36] integrate machine learning and
ontologies to perform syntactic, semantic, and prosodic analysis
of the utterance to infer communicative intent and then use hand-
crafted knowledge to map that intent to non-verbal behaviors such
as head movements, gestures, and gaze.

Although these rule-based and mixed systems offer designer
control over gesture selection, they are limited to a fixed relation-
ship between the properties of the speech they infer and gestures.
Essentially, there is a trade-off between the designer’s more explicit
control over a character’s use of gesture and both the burden placed
on the developer or designer and the flexibility of the approach.

Data-driven approaches aim to learn a mapping between ut-
terances and gestural motion from annotated corpora of gestural
performances. Work in this area relies on, for example, deep learn-
ing techniques. A recent review of this deep learning work [34]
has identified several key limitations, including a lack of designer
control over the performance and the limited ability of current
approaches to realize semantically meaningful gestures such as
metaphoric gestures. Recent work has become more focused on the
use of Transformer-based and diffusion-based generative models
for the selection of gestures. DiffMotion [42] generates gestures
by integrating an LSTM with a diffusion model. DiM-Gesture [43]
integrates a Mamba-based fuzzy feature extractor with Mamba- 2
diffusion architecture, to generate personalized full-body gestures.

Recent advancements have shifted towards Transformer-based
and diffusion-based generative models for gesture selection. Diff-
Motion [42] combines an LSTM with a diffusion model to generate
gestures. Meanwhile, DiM-Gesture [43] utilizes a Mamba-based
fuzzy feature extractor alongside a Mamba-2 diffusion architecture,
enabling the creation of personalized full-body gestures.

These alternatives are solving different problems in some re-
spects. Rule-based approaches continue to be used in applications,
such as health applications, where there are significant ethical con-
cerns and the designer seeks to retain control over the interaction,
whereas machine learning-based approaches allow for more gen-
eral, natural-looking behavior but with less control over what the
nonverbal behavior conveys.

3.1 Use of LLMs
In this paper, we explore a different approach. Unlike an end-to-end
machine learning approach that maps from utterance to animation,
we explore the use of LLMs for gesture selection. We therefore
go beyond traditional mixed and rule-based approaches in actu-
ally proposing gestures based on a more thorough analysis of the
utterance by the LLMbut stop short of end-to-endmachine learning-
based approaches that also generate the animation. This is both
a limitation and a potential benefit in that it allows for carefully

crafted gestures that effectively convey desired communicative
intent.

In addition, LLMs encode massive amounts of information across
domains. Unlike the simpler word-based ontologies like Wordnet
used previously in mixed approaches, or even the data used to train
end-to-end approaches, the far more extensive data used to train
LLMs allows them to encode contextual, semantic, and structural
relations at the phrase, utterance and situational levels. LLMs also
encode extensive amounts of information across scientific domains.
GPT4, when asked, can define rheme and theme, metaphors, image
schema, and metaphoric gestures. As one example:
GPT4: Image schemas are recurring, dynamic patterns
of our perceptual interactions and motor programs ...
basic cognitive structures that arise from bodily
interactions with the world ... are understood to be
one of the fundamental building blocks of human thought

GPT4: Container:|definition|, Path:|definition|,
Source-Path-Goal:|definition|, Force:|definition|...

LLMs also have representations of different gestural forms and
styles used by speakers in different roles. They have for example
knowledge of clinicians, their role, and their goals, and can even
capture the variations in gestural styles among well-known individ-
uals within these professions. Moreover, they can be prompted with
examples that prime and integrate with their existing knowledge
to improve their ability to select gestures. We asked GPT4 to report
a repertoire of gestures that a clinician and a politician would use.
GPT4: Here's a repertoire of hand gestures that
clinicians often use:
Palms Open and Upward: Indicates openness and
transparency, used when explaining procedures or
discussing options.
Hand to Chest: Expresses sincerity and empathy,
particularly in sensitive conversations.
Enclosed Hands or Fingers Interlocked: Demonstrates
patience and focus, typically seen during attentive
listening.

GPT4: Here's a repertoire of hand gestures that
politicians often use:
Fist Pumping: Used to express determination or
victory, energizing the audience.
Thumb and Index Finger Pinch: Known as the
"precision grip," it emphasizes specific and
important points, suggesting control.
Hand Chopping: Aligns with making strong,
decisive points, conveying clarity and decisiveness.

Detailing the extent of all these representations is beyond the
scope of the current paper. Rather, the focus of this paper is to
lay out an integrated approach to using LLMs to automate gesture
selection and evaluate the ability to determine when to gesture and
what gestures to use. Our approach builds on the work of Hensel
et al. [18] but goes further in exploring different prompting tech-
niques, having the LLM also determine when to gesture, develop a
prompting approach that allows the automated mapping of LLM
output to a behavior specification for a character animation system
and finally implementing the approach. The implementation takes
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utterance text as input, generates the utterance audio, and drives a
virtual human’s spoken dialog and gesturing.

4 APPROACH
To explore a gesture generation framework using GPT-4, we lay
out a set of research questions relating to gesture generation more
broadly and the selection of individual gestures more specifically:

RQ1: Selection of Gestures. What are the impacts of alternative
prompting approaches on the appropriateness of gesture selection
and the speed of inference?

• Appropriateness How appropriate are the selected gestures,
with regards to the context of the speech and the speaker?

• Speed of inference Can GPT-4 select gestures with a speed
sufficient to enable real-time inference in animation systems?

RQ2: Selection of when to gesture. Does the rheme identified
through GPT-4-enabled rheme and theme analysis correspond accu-
rately to the actual gestural timings of the speaker in the data? To
answer these research questions, we first annotated hand gestures
in a specific speech. We then used these annotations as ground
truths to evaluate gestures suggested by GPT-4 on the same ut-
terances. We used GPT-4 as its performance is superior to that of
GPT-3 or GPT-3.5, as shown by [18]. Specifically, we used the GPT-4
Chat Completion API as it is faster and more versatile in terms of
parameter settings, with the following parameters: (Temperature:
0.2, Max tokens: 256, Frequency penalty: 0). The transcribed speech
was split into utterances, using end of sentence punctuations.

4.1 Data
To derive a set of ground truth gestures and utterances, we selected
a video featuring Elizabeth Shuler, a labor activist, speaking at
the Working Families Summit, which is available through the Na-
tional Archives and Records Administration.1 To collate Elizabeth
Schuler’s gesture repertoire, we annotated three segments of the
video in which she was the primary speaker, resulting in a total
of six minutes of annotated video. We then split these annotations
into a training set (21 utterances) and a test set (20 utterances).

4.2 Classes of Gestures: Gestural Intents
Based on the training data set, we created a list of gestural classes
based on image schemas and metaphors that were apparent in the
speaker’s performance. Each of these classes conveys a particular
intent and we thus refer to these as gestural intents. Note that
alternative gestures with different physical properties can realize
one of these gestural intents. For example, the speaker may convey
the gestural intent of progress either through a forward circling
of the hands or a sweep showing the direction of progress. Below,
we list the speaker’s repertoire of gestural intents, including brief
explanations.

• Progress: This gesture represents progress, advancement, or
moving forward. It is part of the path group image schema.

• Regress: This gesture represents moving backward, regress-
ing, or returning to a previous point. It is part of the path
group image schema.

1https://youtu.be/-6NA1xl32uY?si=lOjTOkyIrQhgnsKJ

• Cycle: This gesture represents actions or processes that re-
peat in a continuous loop or follow a recurring pattern. It is
an image schema.

• Collect: This gesture represents gathering, collecting, or
bringing things together, into one entity. It is an image
schema.

• Container: This gesture represents a boundary, a sweep, or an
imaginary box holding a collection of items. This is an image
schema and basis for the container metaphoric gesture.

• Oscillation: This gesture represents alternation, uncertainty,
indecision, or items being out of balance. It is part of the
balance group image schema.

• Temporal: There are many, culture-specific time metaphors.
Here we refer to representing time as a line, with different
points on the line representing past, present, and future.

4.3 Experimental Design: Gesture Selection
To evaluate the selection of gestures, we designed a 2X2 factorial
design of alternative prompting approaches: gestural intents reper-
toire explained/not explained X annotated examples given/not given.
For each of those approaches, we asked GPT-4 to produce gestures
based on the utterances in the test set. Below is a detailed descrip-
tion of each approach.
Approach 0: In this approach, the model is not prompted with any
prior information, on gestural intents or annotations. The model is
just asked to report a gesture for each of the utterances, describe
the physical properties of its suggested gesture, and the specific
phrase in that utterance that the gesture is trying to illustrate.
Approach 1: In this approach, the model is only prompted with the
above-mentioned list of gestural intents, and their descriptions. The
model is then asked to report the gestural intents in the utterance,
suggest a gesture for each gestural intent, the physical properties
of that gesture, and the associated phrase.
Approach 2: In this approach, the model is prompted with only the
annotations from the training set. The model is then asked to report
the gestural intent, suggest a gesture for that gestural intent, the
physical properties of that gesture, and the associated phrase.
Approach 3: In this approach, the model is prompted with the above-
mentioned list of gestural intents, and the annotations from the
training set. The model is then asked to report the gestural intent,
suggest a gesture for that gestural intent, the physical properties of
that gesture, and the associated phrase.

4.4 Rheme/Theme Analysis: When to Gesture
We used GPT-4 driven discourse analysis to identify the rheme and
theme of each utterance. We then explored whether the rheme and
theme can serve as criteria to decide on when to gesture, or which
part of the utterance is most likely to be accompanied by a gesture.
Specifically, we prompted GPT-4 to identify the rheme and theme
in each utterance. Such a rheme and theme analysis could be used
on top of the gesture selection system, to prioritize which gesture/s
to use in the animation system; with gestures associated with the
rheme part of the utterance being given higher priority. To evaluate,
we analyzed whether they correspond to the part of the utterance
that the speaker gestured on.
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5 ANALYSIS
This section details the results of our experiments on GPT-4’s ability
to select appropriate gestures and determine when to gesture.

5.1 Selection of Gestures
In this section, we investigated our RQ1, examining the appropri-
ateness of gestures selected by alternative prompting approaches
and comparing their speed of inference.

5.1.1 Appropriateness. To assess the semantic appropriateness of
the gestures selected by the model, two experts jointly evaluated
each proposed gesture for every utterance in the test set across all
four approaches. Evaluators made their judgments for each gesture
and then immediately compared them. If there was disagreement,
the two discussed where this disagreement arose and resolved it
through further discussion. It should be noted, however, that there
was very little disagreement between the two experts. In order to
do the evaluation, we divided all the selected gestures by GPT-4
into the following two categories.
Category 1:
This category consists of gestures that the model generates for
specific parts of an utterance, where there is a corresponding ges-
ture on that (or close) part of the utterance in the actual speech
(i.e., ground truth is available). Experts have assigned one of the
following tags to these gestures:

• Appropriate: The gesture does convey the semantic mean-
ing that the speaker is trying to convey. Regarding the defi-
nition of appropriateness, we defined this as gestures that
are not only appropriate for the utterance (i.e., ‘fit’ with the
intended meaning) but also for the context of the speaker.

• Inappropriate: The gesture does not convey the semantic
meaning that the speaker is trying to convey.

• No corresponding gesture: The speaker produced a ges-
ture but the model did not propose a gesture at the corre-
sponding part of the utterance.

Figure 1a shows the number of gestures that belong to each
label across the proposed prompting approaches. The results indi-
cate that providing more information to the prompts yields more
appropriate gestures and less inappropriate gestures. Specifically,
approach 3 is better than approaches 1 and 2, and approaches 1,2,
and 3 are better than approach 0. Moreover, providing the model
with examples (approach 2) is slightly more effective in selecting
more appropriate gestures compared to providing the model with
solely the explanation of the gestures (approach 1).
Category 2:
This category consists of gestures that the model generates for
specific parts of an utterance, yet there is no corresponding gesture
on that (or close) part of the utterance in the actual speech (i.e.,
ground truth is not available). The experts labeled each gesture
with either the appropriate or the inappropriate tag.
The results in Figure 1b suggest that approach 1 has the highest
number of appropriate gestures and the lowest percentage of inap-
propriate gestures.
Combining all the gestures in the two categories listed above, we
analyzed the overall appropriateness, regardless of whether a cor-
responding ground truth was present or not. The results, shown

in Figure 1c, indicate that there is a slight difference between ap-
proaches 1,2 and 3, but they all outperform approach 0. Additionally,
the performance of approach 1, where the model was not prompted
with any annotations, is promising. This suggests that LLMs can
minimize the need for extensive annotations.
Furthermore, we analyzed how often the gestures generated by
GPT-4, regardless of their appropriateness, were aligned with the
gestures performed by the speaker, meaning how often the speaker
and GPT-4 gesture on the same phrase. Figure 2a and 2b depicts
the frequency of gestures being aligned, or not aligned. In not-
aligned cases, GPT-4 either produced gestures where the speaker
did not gesture or the speaker gestured but GPT-4 did not produce
a gesture. Approach 2 has a higher alignment of gestures between
GPT-4 and the speaker. On the other hand, approach 0 produced
the highest misalignment. These results suggest that limiting the
gesture classes to the speaker’s gesture repertoire helps to constrain
gesture selection to produce more accurate gesture timings. In con-
clusion, the approaches that prompted the model with a defined set
of gestural intents generated more appropriate gestures and less
inappropriate gestures. Moreover, they helped in selecting gestures
that were happening concurrently with the speaker’s gestures and
thus were more aligned.

5.1.2 Inference time. As mentioned earlier, a potential use case
for LLMs in gesture selection is to suggest gestures in real-time.
Therefore, we explored the inference times of gesture selection
across different prompting approaches. In this work, the inference
times are actually recorded as network latencies, to evaluate real-
time suitability for human-agent interactions. In these approaches,
where GPT4 was queried to report gesture name, its properties, ges-
ture description, and the associated phrase; the average inference
time per utterance across different approaches ranges from 6.51 to
9.29 seconds. Specifically, approach 0 showed the highest inference
time, and approach 1 had the lowest inference time. However, for
the purpose of animating gestures in the virtual agent, since the
animations are already defined, we truncated the query into asking
only the gesture type and the associated phrase. We calculated
different inference times for different models, GPT4 1.20 (s), GPT4-
O-mini 1.08(s), and Llama 3.1 1.23(s), Llama 2.7b fine-tuned on our
dataset 1.8(s). With a target inference time of less than one second
for online, real-time, interactions, our next step is to adapt a smaller,
faster model that can achieve this speed.

5.2 Selection of When to Gesture: Rheme and
Theme

Next, in order to answer our RQ2, we sought to analyze how often
the speaker’s gestures occur within the rhemes identified by GPT-4.
To do so, we considered all the gestures made by the speaker, in-
cluding deictics, beats, metaphorics, and iconics; and counted the
number of times these gestures happened within the rheme of the
utterances identified by GPT-4.
The results show that out of 49 gestures made by the speaker, 43 of
them occur within the identified rheme and 6 of them occur out-
side the identified rheme (they occurred on the identified theme).
Among these six gestures, were one deictic, two beat, and three
metaphoric gestures.
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(a) Selected gestures whose utterances have ground
truth

(b) Selected gestures whose utterances do not have
ground truth

(c) all gestures

Figure 1: comparison of different prompting approaches in
terms of their appropriateness

6 IMPLEMENTATION
This section details the implementation of our proposed LLM-based
nonverbal behavior generation system and explains its integration
within SIMA, the Socially Intelligent Multimodal Agent. Figure 3
illustrates the architecture for selecting gestures, assuming the
virtual human uses text-to-speech. Upon initiation, the LLM pro-
cesses a System Prompt that includes conversational context and,

potentially, examples of utterance-gesture pairings relevant to that
context. The prompt may be tailored for various roles, such as a
labor union representative at a panel or a presidential candidate
at a rally. Furthermore, this prompting stage explores different
prompting approaches to assess their impact on the creativity and
accuracy of gestures proposed by the LLM. Within our architecture,
the text-to-speech and behavior scheduling processes are standard
components commonly found in virtual human architectures, as de-
scribed in [17]. The text-to-speech system generates a schedule for
the behavior scheduler, which aligns nonverbal behaviors (gestures,
visemes) with the corresponding audio. This behavior schedule is
then sent to the animation engine in Behavior Markup Language
(BML) [24], which manages co-articulation and blending of ges-
tures. Here, we focus on how the LLM can provide specific gesture
information to guide the behavior scheduler and animation engine,
including labels or physical properties for real-time animation. The
full implementation, and information on all prompting approaches
is available on GitHub2.

6.1 SIMA Gesture Generation
The gesture generation component in SIMA takes speech in textual
format and generates a BML file specifying the gestures that the
virtual human should perform. The model used in SIMA is GPT-4,
which is prompted with prompting approach 3, as specified earlier.

6.1.1 Input Processing. The input dialogue text is tokenized and
marked with <mark name=""> tags in XML format. These <mark>
tags allow the text-to-speech engine to replace markers with precise
BML timings, enabling synchronization between spoken words and
gestures. In the current implementation, GPT-4 directly performs
the structural and semantic analyses of the dialogue text relevant
to its proposed gestures.

6.1.2 Gesture Prompting. Using predefined prompts, GPT-4 iden-
tifies potential gestures for corresponding parts of the utterance,
specifying gestural intents (e.g., container) and their associated
phrases (part of the speech where the gesture occurs). Due to how
the animation system handles gestures, this step does not include
the physical properties of gestures. The GPT4’s output is in JSON
format, which is then converted into BML. The gestural intent iden-
tified by the model is set as the gesture lexeme in the BML, and the
first word in the associated phrase (identified by its word number
within the complete sentence) in the output of the LLM is set as the
stroke-start point in the BML. All gestures generated by GPT-4 are
embedded in a single BML file, which is then passed as input to the
animation engine. The animation engine then executes the provided
gestures according to the provided timings (the stroke-start points).
The formatting of the behavior BML block is as follows: <gesture
stroke-start="T3" lexeme="Container" type="METAPHORIC" emo-
tion="neutral" />

6.2 Animation Realization
SIMA uses SmartBody [39, 40] as its animation engine, an open-
source framework for real-time animation of conversational agents.
SmartBody converts the BML generated by the SIMA gesture gen-
eration into character animation aligned with the speech audio.
2https://github.com/pariesque/SIMA
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(a) Both speaker and GPT-4 gestured, GPT-4 gestured,
or speaker gestured

(b) Both speaker and GPT-4 gestured, either GPT-4
gestured or speaker gestured

Figure 2: comparison of different prompting approaches in terms of their alignment with the speaker

User 
Prompt

Current 
Dialog

Behavior 
Selection

LLM

Text-to-
Speech

Behavior
Scheduler 

Text-Viseme
Schedule

BML

±Context

±Annotations

±Gesture Knowledge

System Prompt

Figure 3: LLM Approach to selecting gestures.
Based on the type of approach, the input of the LLM can con-
tain the context, annotation (examples), or gesture knowl-
edge (gesture description)

SmartBody’s behavior processing consists of a behavior & and
schedule manager and a motion controller engine. The behavior &
schedule manager parses the BML, extracting behavior requests and
their synchronization points. These behaviors encompass gestures,
speech visemes, and other nonverbal cues. This system retrieves the
timing of the speech markers to synchronize the speech with the
behaviors. Then, the scheduler assigns the absolute timing to the
behaviors’ time markers. Meanwhile, the motion controller manip-
ulates skeletal joints, coordinating movements like gaze, gestures,
and head nods to ensure fluid, synchronized animation.

The overall pipeline is automated, from the utterance to the craft-
ing of speech audio, gesture selection by LLM, mapping to the BML
specification of the animation, and realization in the SmartBody
animation system.

7 DISCUSSION
In this paper, we evaluated the use of LLMs to automate gesture
selection, examining various prompting approaches that yield di-
verse results suitable for different applications. As to be expected,
Approach 0, where the model was not prompted with any prior in-
formation, had the most flexibility in the gestures it recommended
and could generate creative variations of gestures. However, this
approach had the highest number of inappropriate gestures, the
lowest appropriate gestures, and the lowest alignment with the
speaker’s gestural performance and gestural timings. One might
imagine it being useful for suggesting gestures to a designer, as op-
posed to automating gesture selection. In other approaches, adding
information to the prompts, including the explanation of gestural
intents and examples from the speaker, increased the number of
appropriate gestures and decreased the number of inappropriate
gestures. Also, gestures tended to be more aligned with original
speaker, with slight variations between approaches 1, 2 and 3.

Looking at the results provided by these different approaches,
several qualitative distinctions were apparent. Note that all ap-
proaches provided, in addition to the gesture, a description of the
physical properties. In general, this was very surprising, as it repre-
sented deep relationships between meaning in the utterance and
the physical motion, as argued by gesture researchers [2, 22].

In Approach 0, which lacked gestural intents or annotation ex-
amples, the model sometimes produced shallow responses, such
as self-referential deictics triggered by words like ’I,’ ’we, and ’our.’
Additionally, this approach frequently generated inappropriate
iconic gestures that detracted from speech. Approach 1, which was
prompted with gestural intents and descriptions, had fewer gestures
than one might expect. Also sometimes the gestural intent was off
while the description of the physical motion was good. Approach
2, which was prompted with annotations, but no list or description
of gestural intents, would come up with novel gestural intents not
in the annotations. Additionally, our findings on the rheme and
theme analysis suggest that this linguistic construct can be used to

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

2057



narrow down the selection of gestures from an LLM, focusing on
those most likely to match the original speaker’s actions.

Looking at these results from the perspective of building a virtual
agent, the animation system Figure 3 requires a mapping between
gesture labels (intents) and a defined set of animations. Therefore,
limiting the model’s choice of gestures as was done is aligned
with such an animation system. Accordingly, we used approach
3 in our implementation. The generated gestures are in this case
constrained to the gestural intents and annotations in our sample
of the speakers’ style of gesturing, which in some cases is a positive
outcome in terms of personality/role consistency in behavior but
in others may be viewed as limiting, especially compared to end-
to-end machine learning based approaches to gesture animation.
Though to be clear, what is limited here is the space of gestural
types, not the language that triggers those gestures which is very
general due to the use of an LLM. Given the fact that there is a
many-to-many mapping between language and gesture, especially
when considering an individual’s gestural style, this arguably is
not as limiting as it might seem.

7.1 Open Issues
While GPT-4 has demonstrated promising capabilities in gesture
selection, its latency is too high for real-time applications in face-
to-face conversations, where inference times need to be under a
second, considering additional latencies in the system. To address
this, we plan to explore and evaluate the fine-tuning of smaller
language models to determine their suitability for integration into a
virtual human framework, aiming for real-time gesture generation.

Another issue arises when there are multiple gestures in an ut-
terance. The spatial location of gestures, and connecting one to the
other becomes an important factor in ensuring the consistency of
the gestures and making sure the right information is being con-
veyed. For example, GPT-4 sometimes identified multiple gestures
where motion of one gesture is meaningfully tied to the preceding
gesture, such as a container gesture along with a gesture suggesting
something being removed or placed in the container [27].

This raises the issue as to the capabilities of GPT-4 to specify
spatial relations between gestures in ideational units. To automati-
cally animate, it is necessary to identify where gestures begin and
end in the gestural space. The following explores this issue through
a prompt that specifically requests spatial information.
Prompt:
In the following utterance, please identify any Image
Schemas evoked by the utterance, the Phrase of the
utterance that comprise the image schema and what
gesture might be used to illustrate that Phrase as well
as where that gesture Spatially Begins and
Spatially Ends, center, left or right.
Please provide the answer in the following format:
[Type of Image Schema:]
[Phrase : Gesture : Spatially Begins: Spatially Ends]
[Phrase : Gesture : Spatially Begins: Spatially Ends]
[Phrase : Gesture : Spatially Begins: Spatially Ends]
Here is the utterance:
“For example, up in New York with SEIU-1199, you know,
coming together with workers and employers putting a
little bit of contribution from each into a trust fund
to provide for care for -- whether it’s, you know,
elderly or children or whatever, to subsidize that.”

GPT4:
To analyze the utterance for image schemas and propose

gestures that illustrate the phrases, we can identify
several key elements in the text:
[Type of Image Schema: CONTAINER]
["with SEIU-1199" : Cupped hands gesture :

Spatially Begins:Center : Spatially Ends:Center]
["into a trust fund" : Gesture of placing objects into a

container (using both hands) :
Spatially Begins:Left : Spatially Ends:Center]

[Type of Image Schema: PATH]
["coming together" : Gesture of moving hands toward

each other :
Spatially Begins:Left and Right : Spatially Ends:Center]

["putting a little bit of contribution" : Gesture mimicking
placing or dropping something along a path :
Spatially Begins:Left : Spatially Ends:Center]

[Type of Image Schema: SUPPORT]
["provide for care" : Hands held flat, palms up, as if

supporting something :
Spatially Begins:Center : Spatially Ends:Center]

These gestures and their spatial dynamics help to visually
represent the conceptual ideas expressed in the text.

Although above illustrations of spatially coordinating gestures in
ideational units are promising, more extensive testing is required.

8 CONCLUSIONS AND FUTUREWORK
The assumption underlying this work is that different designers
may have different intentions so their approach to automating ges-
ture generation may differ. In this work, we are exploring ways to
automate gesture selection assuming that a designer wants to retain
a degree of control over the form and the usage of the gestures.

We specifically demonstrated the use of LLMs to automate the se-
lection of semantically rich gestures for virtual humans. As part of
the effort, the approach considered ways of tailoring gesture selec-
tion to a specific individual’s or role’s use of gestures. We evaluated
alternative prompting approaches that varied to the degree that
prompting constrained gesture use. The approaches were evaluated
by their semantic appropriateness (RQ1). In general, the semantic
appropriateness was impressive regardless of whether the LLM was
prompted to restrict its gesture use to those gestures common to a
specific speaker. We evaluated as well the approaches in terms of
the speed of inference (RQ1), in order to determine the suitability
for incremental real-time gesture selection as opposed to offline
gesture design, as well the capability of the LLM to assess when to
gesture (RQ2). We additionally presented initial explorations in the
ability to realize spatially consistent gestures in ideational units.
Those results were very promising but need further evaluation of
methods for the LLM to control the use of gestural space across
gestures. And finally, the overall approach was implemented within
a virtual human architecture.

Our future steps would be to explore adapting a smaller language
model to enable real-time inference while also compensating for
decreases in inference appropriateness.
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